Piezoelectric Simulations

Outline

• Overview

• Examples

• Relevant Products

• Useful Features

Overview

Industries Using Piezoelectric Devices

Piezoelectric Devices

Piezoelectric Effect

COMSOL

Coupled Constitutive Equations

Stress-Charge Form

- $T = c_E S e^T E$ $D = eS + \varepsilon_S E$
- Strain-Charge Form $S = s_E T + d^T E$ $D = dT + \varepsilon_T E$
- T = stress; S = strain
- *E* = electric field
- D = electric displacement
- c_F = elasticity matrix (rank 4 tensor c_{iikl})
- $e = \text{coupling matrix (rank 3 tensor } e_{ijk})$
- ε_s = permittivity matrix (rank 2 tensor ε_{ij})

In COMSOL, you can choose any one of these equation forms based on the material data you have

$$\varepsilon_{s} = \varepsilon_{T} - ds_{E}^{-1}d^{T}$$

 $c_E = S_F^{-1}$

 $e = ds_F^{-1}$

Examples

A Piezoceramic Tube

This model performs a static 2D axisymmetric analysis of a piezoelectric actuator. A radially polarized piezoelectric tube is simulated, with two sets of boundary conditions. The first case illustrates the inverse piezoelectric effect, and the second case shows the direct piezoelectric effect. The model is based on a paper by S. M. Peelamedu et al. (Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering March 1, 2000 vol. 214 no. 2 87-97).

http://www.comsol.com/model/a-piezoceramic-tube-37

Piezoelectric Shear-Actuated Beam

This model performs a static analysis of a composite cantilever beam equipped with a piezoceramic actuator. An electric field is applied perpendicular to the poling direction, thereby introducing a transverse deflection of the beam.

http://www.comsol.com/model/piezoelectric-shear-actuated-beam-24

Piezoelectric Actuated Microgripper

This model shows the fundamentals of how to set up a piezoelectric model with mechanical contact. The microgripper contains a stacked piezoactuator, which operates in the longitudinal mode. Simultaneous contraction in the transversal direction and elongation in the longitudinal direction closes the gripper and moves objects.

http://www.comsol.com/model/piezoelectric-actuated-microgripper-4695

SAW Gas Sensor

This model analyzes the eigenfrequencies of a surface acoustic wave (SAW) gas sensor. In particular, the model studies how the additional mass load from an adsorbed gas lowers the resonance frequency.

http://www.comsol.com/model/saw-gas-sensor-2129

Thin Film BAW Composite Resonator

Bulk acoustic wave (BAW) resonators are useful components for many radio-frequency applications, where they can operate as narrow band filters. This example shows how you can perform eigenfrequency and frequencyresponse analyses of a composite thin-film BAW resonator.

http://www.comsol.com/model/thin-film-baw-composite-resonator-5784

Composite Piezoelectric Transducer

A composite piezoelectric ultrasonic transducer is analyzed. An eigenfrequency analysis is followed by a frequency response analysis to calculate the input admittance as a function of the excitation frequency.

http://www.comsol.com/model/composite-piezoelectric-transducer-503

Thickness Shear Mode Quartz Oscillator

A quartz oscillator, operated in the thickness shear mode, is simulated. The model shows how to set up the co-ordinate system correctly for AT cut quartz and to model the response of a device driven at resonance. The resonant frequency of the oscillator is altered by changing the capacitance of a shunt capacitor.

http://www.comsol.com/model/thickness-shear-mode-quartz-oscillator-4707

Piezoacoustic Transducer

In a phased-array microphone, the piezoelectric crystal plate fits into the structure through a series of stacked layers, which are divided into rows. The space between these layers is referred to as the kerf and the rows are repeated with a periodicity, or pitch. Using functionality provided by the Acoustics Module, this model simulates a single row of such a structure, solving for the acoustic pressure generated by the transducer and the structural deformation due to the electric load.

http://www.comsol.com/model/piezoacoustic-transducer-1477

Spherical Piezoacoustic Transducer

This tutorial shows how to model the acoustic waves generated in air by a hollow spherical piezoelectric material. The device is poled along the radial direction of the sphere, requiring the definition of a new local system of coordinates. Because the direction of poling imparts anisotropy to the material response, it is critical to incorporate it correctly in the simulation.

http://www.comsol.com/model/radially-polarized-spherical-piezoelectric-acoustic-transducer-6210

Tonpilz Piezo Transducer

A tonpilz transducer is used for relatively low frequency, high power sound emission. It is one of the popular transducer configuration for SONAR applications. The transducer consists of piezoceramic rings stacked between a head mass and a tail mass which are connected by a central bolt. In this model the frequency response of the transducer is studied to determine structural and acoustic response of the device such as deformation, stresses, radiated pressure, sound pressure level, farfield beam pattern, the transmitting voltage response (TVR) curve, and the directivity index (DI) of the sound beam.

http://www.comsol.com/model/tonpilz-piezo-transducer-11478

Tunable Evanescent Mode Cavity Filter using a Piezoelectric Device

An evanescent mode cavity filter can be realized by adding a structure inside of the cavity. This structure changes the resonant frequency below that of the dominant mode of the unfilled cavity. A piezo actuator is used to control the size of a small air gap which provides the tunability of the resonant frequency.

http://www.comsol.com/model/tunable-evanescent-mode-cavity-filter-using-a-piezoelectric-device-12619

Relevant Products

COMSOL Product Line – Version 5.0

COMSOL Multiphysics*

COMSOL, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, or supported by those trademark owners. For a list of such trademark owners, see http://www.comsol.com/tm

Relevant COMSOL Modules

- Identical piezo-implementation in these modules
 - Structural Mechanics Module
 - MEMS Module
 - Acoustics Module
- When do you need one or the other?

When do you need...

- Structural Mechanics Module:
 - Useful if you are planning to use any of the special structural elements (*beam, plate, shell, truss, membrane*)

When do you need...

- MEMS Module:
 - Useful if you are planning to calculate lumped parameters (Z, Y, S)
 - Connect your FEA model to lumped electrical circuits
 - Combine with other exotic multiphysics effects (*Electromechanics, Thermoelasticity* and *Piezoresistivity*)

When do you need...

- Acoustics Module:
 - Special interfaces such as *Acoustic-Piezoelectric Interaction* in both frequency domain and time domain
 - Useful if you are planning to model acoustic transducers or acoustic-structure interaction

Useful Features

Key Steps in Modeling

Device Geometry

Coupling With More Physics

Types of Modeling Geometry

2D – Plane Stress

2D – Axial Symmetry

2D – Plane Strain

3D - Solid

Material Properties

- Piezoelectric
 - 🚦 Barium Sodium Niobate
 - 🚦 Barium Titanate
 - Barium Titanate (poled)
 - 📕 Lithium Niobate
 - 📑 Lithium Tantalate
 - Lead Zirconate Titanate (PZT-2)
 - Lead Zirconate Titanate (PZT-4)
 - Lead Zirconate Titanate (PZT-4D)
 - Lead Zirconate Titanate (PZT-5A) Lead Zirconate Titanate (PZT-5H)
 - Lead Zirconate Titanate (PZT-5J)
 - Lead Zirconate Titanate (PZT-7A)
 - Lead Zirconate Titanate (PZT-8)
 - Quartz LH (1949 IRE)
 - 🚦 Quartz RH (1949 IRE)
 - Quartz LH (1978 IEEE)
 - Quartz RH (1978 IEEE)
 - 🚦 Rochelle Salt
 - 🚦 Bismuth Germanate
 - Cadmium Sulfide
 - Gallium Arsenide
 - 📕 Tellurium Dioxide
 - Zinc Oxide
 - Zinc Sulfide
 - 🚦 Ammonium Dihydrogen Phosphate
 - 📑 Aluminum Nitride

- 23 different piezo materials
- View and edit the properties
- Add your own piezo materials

Property	Name	Value	Unit
Relative permittivity	epsilonr	{1704.4, 1704.4, 1433.6}	1
Density	rho	7500[kg/m^3]	kg/m³
Compliance matrix (ordering: xx, yy, zz, yz, xz, xy)	sE	{1.65e-011[1/Pa], -4.78e	1/Pa
Coupling matrix (ordering: xx, yy, zz, yz, xz, xy)	dET	{0[C/N], 0[C/N], -2.74e-0	C/N

Compliance matrix (ordering: xx, yy,...

	-4./0	-8.45	0[1/Pa]	0[1/Pa]	0[1/Pa]
0	1.65e	-8.45	0[1/Pa]	0[1/Pa]	0[1/Pa]
0	0	2.07e	0[1/Pa]	0[1/Pa]	0[1/Pa]
0	0	0	4.35e	0[1/Pa]	0[1/Pa]
0	0	0	0	4.35e	0[1/Pa]
0	0	0	0	0	4.26e

Material Anisotropy due to Poling

http://www.comsol.com/blogs/piezoelectric-materials-crystal-orientation-poling-direction/

User Defined Coordinate System

http://www.comsol.com/model/radially-polarized-piezoelectric-transducer-6147

Material Anisotropy due to Crystal Cut

(Y X I t) -51°/ -45°

http://www.comsol.com/blogs/piezoelectric-materials-understanding-standards/

User Defined Coordinate System

Rolale	d S	ystem		- +		
 Coordinate System Identifier 						
Identifier:	sys3					
▼ Settings						
— Coordin	ate na	mes		_		
First (x1)		Second (x2)	Third (x3)			
x1		x2	хЗ			
— Euler an	gles (Z	-X-Z)		_		
α:						
0				rad		
β:						
35.25[deg]			rad		
v:						
r						
0				rad		

http://www.comsol.com/model/thickness-shear-mode-quartz-oscillator-4707

Physics Interfaces

Piezoelectric Devices

Acoustic-Piezoelectric Interaction

Search AC/DC A	Select Physics	Pressure Acoustics, Frequency Domain (acpr) Pressure Acoustics 1
 AC/DC Acoustics Acoustic-Structure Interaction Acoustic-Shell Interaction, Frequency Domain Acoustic-Shell Interaction, Frequency Domain Acoustic-Shell Interaction, Transient Acoustic-Piezoelectric Interaction, Transient Acoustic-Piezoelectric Interaction, Transient Elastic Waves (elw) Acoustic-Flastic Waves Interaction Pipe Acoustics, Frequency Domain (pard) Pipe Acoustics, Transient (patd) Matria Values 1 Charge Conservation, Piezoelectric 1 Multiphysics Multiphysics Acoustic-Structure Boundary 1 (asb1) 	Search	Sound Hard Boundary (Wall) 1
 Acoustics Pressure Acoustics Acoustic-Structure Interaction, Frequency Domain Acoustic-Solid Interaction, Transient Acoustic-Shell Interaction, Transient Acoustic-Shell Interaction, Transient Acoustic-Piezoelectric Interaction, Transient Elastic Waves (elw) Acoustic-Porcelastic Waves Interaction Pipe Acoustics, Frequency Domain (pad) Pipe Acoustics, Transient (patd) Pipe Acoustics Thermoscourtier 	▷ 🔨 AC/DC	🔚 Initial Values 1
 Pressure Acoustics Acoustic-Structure Interaction, Frequency Domain Acoustic-Solid Interaction, Transient Acoustic-Shell Interaction, Frequency Domain Acoustic-Shell Interaction, Transient Acoustic-Piezoelectric Interaction, Transient Elastic Waves (elw) Acoustic-Piezoelectric Interaction Pipe Acoustics, Frequency Domain (pad) Pipe Acoustics Pipe Acoustics Thermoscourties Thermoscourties 	A m Acoustics	Solid Mechanics (solid)
 Acoustic-Solid Interaction, Frequency Domain Acoustic-Solid Interaction, Transient Acoustic-Shell Interaction, Frequency Domain Acoustic-Piezoelectric Interaction, Frequency Domain Acoustic-Piezoelectric Interaction, Frequency Domain Acoustic-Piezoelectric Interaction, Transient Elastic Waves (elw) Acoustic-Elastic Waves Interaction Pipe Acoustics, Frequency Domain (pafd) Pipe Acoustics, Transient (patd) Matroacoustics Multiphysics Acoustic-Structure Boundary 1 (asb1) 	Acoustic-Structure Interaction	🎦 Linear Elastic Material 1
 Acoustic-Solid Interaction, Transient Acoustic-Shell Interaction, Frequency Domain Acoustic-Piezoelectric Interaction, Frequency Domain Acoustic-Piezoelectric Interaction, Transient Elastic Waves (elw) Acoustic-Elastic Waves Interaction Poroelastic Waves (pelw) Acoustic-Poroelastic Waves Interaction Pipe Acoustics, Frequency Domain (pafd) Pipe Acoustics, Transient (patd) Meroacoustics Thermoscourtics Thermoscourtics 	MP Acoustic-Solid Interaction, Frequency Domain	🔚 Free 1
Acoustic-Shell Interaction, Frequency Domain Acoustic-Piezoelectric Interaction, Frequency Domain Acoustic-Piezoelectric Interaction, Frequency Domain Acoustic-Piezoelectric Interaction, Transient Elastic Waves (elw) Acoustic-Elastic Waves Interaction Pripe Acoustics, Frequency Domain (pafd) Pripe Acoustics, Transient (patd) Acoustics Multiphysics Acoustic-Structure Boundary 1 (asb1)	Acoustic-Solid Interaction, Transient	🍋 Initial Values 1
 Acoustic-Piezoelectric Interaction, Frequency Domain Acoustic-Piezoelectric Interaction, Transient Elastic Waves (elw) Acoustic-Elastic Waves Interaction Poroelastic Waves (pelw) Acoustic-Poroelastic Waves Interaction Pipe Acoustics, Frequency Domain (pafd) Pipe Acoustics Pipe Acoustics Multiphysics Acoustic-Structure Boundary 1 (asb1) 	Acoustic-Shell Interaction, Frequency Domain	Piezoelectric Material 1
 Acoustic-Piezoelectric Interaction, Transient Elastic Waves (elw) Acoustic-Elastic Waves Interaction Poroelastic Waves (pelw) Acoustic-Poroelastic Waves Interaction Pipe Acoustics, Frequency Domain (pad) Pipe Acoustics, Transient (patd) Aeroacoustics Memoacoustics Thermoacoustics 	Acoustic-Piezoelectric Interaction, Frequency Domain	Electrostatics (es)
Acoustic-Elastic Waves Interaction Acoustic-Poroelastic Waves Interaction Pipe Acoustics, Frequency Domain (pafd) Pipe Acoustics, Transient (patd) Aeroacoustics Material Values 1 Acoustic-Structure Boundary 1 (asb1)	Acoustic-Piezoelectric Interaction, Transient	E Charge Conservation 1
 Poroelastic Waves (pelw) Acoustic-Poroelastic Waves Interaction Pipe Acoustics, Frequency Domain (pafd) Pipe Acoustics, Transient (patd) Aeroacoustics Thermosecurtics 	Acoustic-Elastic Waves Interaction	🔚 Zero Charge 1
 Acoustic-Poroelastic Waves Interaction Pipe Acoustics, Frequency Domain (pafd) Pipe Acoustics, Transient (patd) Aeroacoustics Thermosecurtics Thermosecurtics 	Noroelastic Waves (pelw)	Partial Values 1
Pipe Acoustics, Transient (patd) Pipe Acoustics, Transient (patd) Aeroacoustics Thermosecurities	Me Acoustic-Poroelastic Waves Interaction	Charge Conservation. Piezoelectric 1
Aeroacoustics Thermoscourties	Dipe Acoustics, Frequency Domain (pard)	A A Multiphysics
Acoustic-Structure Boundary 1 (<i>usb1</i>)	Meroacoustics	A source Revendence 1 (sold 1)
		Acoustic-structure Boundary 1 (<i>asb1</i>)
Add Piezoelectric Effect 1 (pzel)	Add	Piezoelectric Effect 1 (pzel)

Combining With More Physics

Basic Analysis Types

- Stationary
 - Static and quasi-static analysis
- Time-Dependent
 - Full transient analysis
 - Can include damping
- Eigenfrequency
 - Find resonance frequencies and mode shapes
 - Include damping to find Q-factor
- Frequency Domain
 - Frequency response analysis
 - Include damping
 - Include phase difference between loads
- Linear Buckling
 - Obtain critical buckling load

More Details On Features

Working With Mixed Materials

Different Material Models

- Different material models allow easy implementation of multi-layered and multi-material structures
- Important functionality for modeling sandwiched structures for transducers, resonators, BAW, SAW and similar acoustic devices and RF filters
- Different damping models can also be added

Details Of Piezoelectric Material

 Coordinate System Selection
Coordinate system:
Global coordinate system 🔹
Piezoelectric Material Properties
Constitutive relation:
Stress-charge form 🔹
Elasticity matrix (Ordering: xx, yy, zz, yz, xz, xy):
C _E From material
Coupling matrix:
e From material 🔹
Relative permittivity:
ϵ_{rs} From material
Remanent electric displacement:
0 X
Dr 0 Y C/m ²
0 Z
Density:
ρ From material •
 Geometric Nonlinearity
Force linear strains

Use this to implement effect of poling direction and crystal orientation on material properties

Use this to change the equation form based on the material properties available to you

This is useful to model any electrical bias or residual polarization in the piezoelectric material

Material Losses and Damping

http://www.comsol.com/model/thin-film-baw-composite-resonator-5784

Different Damping Models

- Mechanical Damping
 - Allows you to add purely structural damping
- Coupling Loss
 - Allows you to add electromechanical coupling loss
- Dielectric Loss
 - Allows you to add dielectric or polarization loss
- Conduction Loss (Time-Harmonic)
 - Allows you to add energy loss due to electrical resistance in a harmonically vibrating piezoelectric material

Mechanical Damping

▼ D	amping Settings				
Damp	ing type:				
Ray	leigh damping	•			
Mass	damping parameter:				
$\alpha_{\mathrm{d}M}$	0	1/s			
Stiffness damping parameter:					
$\beta_{\mathrm{d}\kappa}$	0	s			
₽ dK	•				

▼ C	amping Settings				
Damp	ing type:				
Isotropic loss factor 🔹					
Isotro	pic structural loss factor:				
η_{s}	User defined 🔹				
	0 1				

• [Dampin	g Setting	gs		
Damp	ping typ	e:			
Los	s factor	for cE			•
Loss f	factor fo	r elasticit	ty matrix o	:E:	
η_{cE}	Use	r defined			•
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	1
	0	0	0	0	
	0	0	0	0	
	۲ 📃				Þ

Rayleigh Damping (Time domain and Frequency Domain) Isotropic Loss Factor (Frequency Domain only) Anisotropic Loss Factor (Frequency Domain only)

Coupling Loss

 Coupling Loss Settings 	
Coupling loss:	
Rayleigh damping	•
Coupling damping parameter:	
β_{dC} 0	s
	_

Rayleigh Damping (Time domain and Frequency Domain)

Coup	oling los	s:			
Lo	ss facto	r for e			•
Loss	factor fo	or couplir	ng matrix (e:	
η_e	Use	r defined			•
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	1
	4				Þ.

Anisotropic Loss Factor (Frequency Domain only)

Dielectric Loss

c loss:						
Dispersion •						
Relative permittivity contribution:						
0	0	0	- 1			
0	0	0	1			
0	0	0				
Anisotropic •						
Relaxation time:						
0			s			
	rsion permittivity 0 0 Anisotrop on time: 0	rsion permittivity contributi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rsion permittivity contribution: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

Dispersion (Time domain and Frequency Domain)

 Dielectric Loss Settings 							
Dielectric loss:							
Loss factor for εS •							
Loss factor for electrical permittivity ɛS:							
η_{cS}	User defined 🔹						
	0 0						
	0 0						
	0 0 0						
	Anisotropic						
	Isotropic Diagonal Symmetric						
	Anisotropio	:					

Anisotropic Loss Factor (Frequency Domain only)

Conduction Loss (Frequency Domain)

•	Conduction Current								
Elec	trical co	nductivity:							
$\sigma_{\rm e}$	User defined 🔹								
	0	0	0						
	0	0	0	S/m					
	0	0	0						
	Symmetric 🔹								
	Isotrop Diagor	pic nal							
	Symm	etric							

Electrical Conductivity

•	 Conduction Current 						
Electrical conductivity:							
$\sigma_{\rm e}$	Linearized resistivity						
$\sigma_{\rm e} = \frac{1}{\rho_{\rm 0}(1 + \alpha_{\rm r}(T - T_{\rm 0}))}$							
Reference temperature:							
T ₀	293.15[K]	к					
Resistivity temperature coefficient:							
α_r	0	1/K					
Reference resistivity:							
$\rho_{\rm 0}$	0	Ω·m					
	_	-					

Linearized Resistivity

Additional Sources of Stress and Strain

Initial Stress and Strain Useful for adding pre-stress, prestrain and any inelastic strain Thermal Expansion

Useful for adding stress or strain due to temperature difference

Electrical and Structural Boundary Conditions

Periodic Boundary Conditions

- Model only a periodic segment
- Computationally efficient
- Can also be used in frequency domain and eigenfrequency studies to capture asymmetric modes
- Use advanced postprocessing to visualize solution in full geometry

Low Reflecting Boundary

Solid Mech	⊫	Initial Values			Time
🔚 Free 1		Material Models	×		— Inne
Piezoek		Volume Forces	×		– Mini
▲ ≷ Electrostati		Mass, Spring, and Damper	×		
P Charge		Domain Constraints	×		– Usef
Thitial V		Free			unbo
🔚 Charge		Boundary Load			dom
Multiphysie Multiphysie Multiphysie Multiphysie		Fixed Constraint			uom
		Prescribed Displacement			
		Roller		9	
		Connections	×		
		Pairs	•		
		Mass, Spring, and Damper	۲		Spring Foundation
		More Constraints	•		Thin Elastic Layer
		Edges	•		Added Mass
		Points			Thin-Film Damping
	-	Rolt Pre-Tension			Low-Reflecting Boundary

- Low Reflecting Boundary
 - Time-dependent analysis
 - Minimize reflection of waves
 - Useful for modeling large unbounded space in time domain

Modeling Large Regions

- Infinite Element Domain
 - Static analysis
 - Solution incorporates the effect of an infinitely extended region
- Perfectly Matched Layer
 - Frequency domain and eigenfrequency analysis
 - Absorbs elastic and acoustic waves

Special Electrical Features

- Terminal
 - Advanced boundary condition
 - Obtain impedance (Z), admittance (Y) and Sparameters
- Terminal Sweep
 - Feature for obtaining lumped parameter matrix in a multi-terminal system
- Electrical Circuit
 - Interface to create a lumped electrical circuit model that can be connected to the FEA model
 - Circuit can be created using features in COMSOL or by importing a SPICE netlist
- * These features require the *MEMS Module*

S-parameter matrix

More Information

- COMSOL Documentation
 - COMSOL Multiphysics Reference Manual
 - Structural Mechanics Module User's Guide
 - MEMS Module User's Guide
 - Acoustics Module User's Guide
- Tutorials: <u>http://www.comsol.com/models</u>
- Blogs: <u>http://www.comsol.com/blogs/</u>
- Videos: <u>http://www.comsol.com/video/</u>
- Webinars: <u>http://www.comsol.com/events/webinars</u>

