

化学反应工程模块

化学反应工程模块简介

© 1998-2018 COMSOL 版权所有

受列于 cn.comsol.com/patents 的专利和美国专利 7,519,518、 7,596,474、 7,623,991、 8,219,373、 8,457,932、 8,954,302、 9,098,106、 9,146,652、 9,323,503、 9,372,673 和 9,454,625 的保护。专利申 请中。

本文档和本文所述的程序根据 COMSOL 软件许可协议 (cn.comsol.com/comsol-license-agreement) 提供,且仅能按照许可协议的条款进行使用和复制。

COMSOL、COMSOL 徽标、COMSOL Multiphysics、COMSOL Desktop、COMSOL Server 和 LiveLink 为 COMSOL AB 公司的注册商标或商标。所有其他商标均为其各自所有者的财产, COMSOL AB 及其子公司和产品不与上述商标所有者相关联,亦不由其担保、赞助或支持。相关商标所有者的列 表请参见 cn.comsol.com/trademarks。

版本: COMSOL 5.5

联系信息

请访问"联系 COMSOL"页面 cn.comsol.com/contact,以提交一般查询、联系技术支持或搜索我们的联系地址及号码。您还可以访问全球销售办事处页面 cn.comsol.com/contact/offices,以获取地址和联系信息。

如需联系技术支持,可访问 COMSOL Access 页面并填写在线申请表,位于: cn.comsol.com/support/case 页面。其他有用的链接还包括:

- 技术支持中心: cn.comsol.com/support
- 产品下载: cn.comsol.com/product-download
- 产品更新: cn.comsol.com/support/updates
- COMSOL 博客: cn.comsol.com/blogs
- 用户论坛: cn.comsol.com/community
- 活动: cn.comsol.com/events
- COMSOL 视频中心: cn.comsol.com/video
- 技术支持知识库: cn.comsol.com/support/knowledgebase

文档编号: CM021602

化学反应工程模块简介5
化学反应工程仿真 6
建模策略7
化学反应动力学研究 — 完美混合或平推流反应器建模8
反应器和系统研究 — 与空间相关的模拟9
化学反应工程模块接口11
根据空间维度和研究类型排列的物理场接口14
教学示例:整装反应器中的氧化氮还原反应17
简介 17
化学18
结果
三维反应器研究 24
总结
参考文献31
反应工程接口 - 三维模型46

化学反应工程模块简介

化学反应工程模块专门用于化工系统建模,重点在于分析化学物质组分、反应 动力学、流体流动和温度等随空间和时间的变化。本模块包含的物理场接口可 用于分析化学反应动力学,稀溶液、浓溶液和电解质溶液中的质量传递、层流 和多孔介质流,以及能量传递。

这些接口中包含的动力学表达式用于描述溶液中和催化表面上的反应体系,以 及质量传递定义的模型。您也可以使用一系列预设的表达式来计算系统的热力 学和传递属性。

本模块主要用于化工反应器和反应系统,它也广泛用于分析质量传递为主的系统,包括反应装置单元、分离和混合工艺、层析和电泳现象,等等。本模块还 广泛用于教学和培训课程,可以很好地解释化工、化学反应工程、电化学工 程、生物技术和传递现象。

除了上述传统的化工行业应用,本模块也是研究清洁技术工艺(例如催化单元 和反应式过滤器)的常用工具,典型的应用如生物技术中的微型实验室,以及 分析化学中的传感器和设备研发。

在化学反应工程模块接口中列出了这些接口及其功能的概述。

化学反应工程仿真

基于各种不同的原因,在化学反应工程的反应过程或系统的研发过程中需要进 行仿真分析。

在初始阶段,仿真用于剖析和认识反应过程或系统。通过建立模型和研究仿真 结果,工程师和科学家可以获得进一步创新所需的认识和灵感。

对反应过程有了深刻认识后,便可进一步使用建模和仿真来优化和控制工艺的 变量和参数。这些"虚拟"实验可以模拟各种不同的运行条件,以调整复杂的 工艺参数。

建模的另一个用途是模拟难以通过实验来研究的情况。其中一个示例是提高设 备安全性,例如化学原料泄漏事故。仿真可用于开发防止和控制由这些假想事 故造成的冲击的协议和程序。

在所有案例中,建模和仿真都可以极大地减少大量实验或建立原型所需的成本,而且还有可能对工艺或设计获得更好的认识。

建模策略

图1中的流程图描述了化学反应过程和系统的建模和模拟策略。

图 1: 流程图总结了建模反应系统或设计化工反应器的策略。

该策略建议首先研究与空间无关,或空间相关性已定义的反应系统。

与空间无关的系统通常处于完美混合状态,即系统中化学物质的浓度和温度处 处相同,仅仅只是时间的函数—这通常称为完美混合反应器。与此不同,平 推流反应器则是一种空间相关性已定义的系统。 当去掉空间相关性效应或可以准确定义这种效应时,实验和建模研究都能集中 到反应过程本身,以及控制反应的速度定律。

下一步是将这些信息应用到所研究的化工反应器或系统中。当然,这些反应器 的长、宽、高各不相同,并且受到各种外部参数的影响,例如流入、流出、冷 却与加热。这些都是与空间 (和时间)相关的系统。

化学反应动力学研究一完美混合或平推流反应器建模

化学反应工程中的一个重要部分是定义各 种反应的反应速率定律,它们基于化学反 应机理的假设或猜想。在理想情况下,反 应机理及其相关的反应速率定律可以通过 进行严格控制的实验来找到,在这些实验 中,空间和时间变化的影响都是明确已知 的。在某些情况下可能难以进行这样的实 验,但文献研究或类似反应的定律能够提 供初始的假设。

完美混合反应器或理想平推流反应器是最 有效的复制和建模严格控制实验条件的反 应器类型。这些虚拟实验可用于研究各种

实验室规模的完美混合反应器。

动力学参数,以及其他条件对反应系统的影响。然后,通过比较实验和模拟的 结果,使用参数评估可以找到假设的反应机理的反应速率常数。这些结果与其 他实验研究进行比较,可以进一步验证和校准反应机理及其动力学参数。

在已定义的反应器环境中,反应系统建模也提供了对多种 (特定的)操作条件 所产生的影响的认识,例如温度或压力变化。得到的关于反应系统或过程的知 识越多,便越容易对这些系统和过程的更高级描述进行建模和模拟。

反应器和系统研究 — 与空间相关的模拟

一旦决定并调整好反应过程或系统的机理和动力学参数,它们即可用于对真实 世界环境中的系统或过程的更高级的研究。此类研究需要变量的完整描述,包 括与时间和空间的关系,除反应动力学外,还必须包含材料传递、传热和流体 流动。

真实世界环境

根据可以做出的 (有时是必须的) 假设,可以在一维、二维或三维空间中建立 这些描述,如有必要,还需要考虑时间相关性。

催化转化器内整体反应器中的温度等值面。表面图显示了其中一种反应物的浓度分布。

再强调一次,如果有可能,应始终将仿真和实验结果进行比较,既可以是反应 器或系统本身得到的结果,也可以是它们的原型测试结果。有关物质传递、传 热和流体流动的模型通常会涉及常用的材料参数,这些数据或来源于文献,或 来自相似的系统,它们必须经过校正以提高模型的精度。 确定模型的精度后,该模型即可用于模拟真实世界中各种不同运行条件下的化 学反应器或过程。从这些模型得到的认识以及它们提供的精确结果,能够直接 用于更加精确的研发或化学反应器优化,也能方便地用于系统控制。

化学反应工程模块接口

图 2 显示拥有**化学反应工程模块**许可证后可用的化学反应工程接口。您可以使 用这些物理场接口对化学物质传递、流体流动和传热进行建模。另请参见根据 空间维度和研究类型排列的物理场接口。

图 2: 三维模型的模型向导中显示的化学反应工程模块的接口列表。

化学反应与质量传递

反应工程接口(<u></u>)能够分析已知环境中的化学反应动力学,可以模拟体或表面上的可逆反应、平衡反应和不可逆反应。您可以研究使用间歇式、连续搅拌式、半间歇式和平推流反应器控制的环境中的物质浓度和温度的变化。当您拥有**优化模块**许可证时,还可以进行参数估计。

化学接口(**·**••)的功能与**反应工程**接口相似,但不能对与空间无关的系统进行 建模。当一个反应工程模型导出至一个空间相关的模型时,总是会创建这样 一个接口。同样,本接口也可以为一些空间相关的传递接口提供反应动力学 和材料属性,如**稀物质传递**接口。 **稀物质传递**接口(**。**)模拟通过扩散、对流 (与流体流动耦合)及电迁移产生 的化学物质传递,在混合物中有一种组分 (溶剂)过量存在。也可用于模拟多 孔介质中的传输,既支持固相物质固定不动,也支持假设充气介质固定不动的 情况。

浓物质传递接口(↓↓) 可对通过扩散、对流和电迁移发生的化学物质传递进行 建模,其中混合物的传递属性 (如扩散)根据混合物的组成来进行计算。此接 口支持多组分传递模型,包括 Fick 扩散、混合物平均模型和 Maxwell - Stefan 方程。

Nernst-Planck 方程接口 (") 包含电迁移项、对流和扩散质量传递,并假设满 足电中性条件。此接口可以求解物质浓度外,还可以求解电势。

Nernst-Planck-Poisson 方程接口(1) 是一个多物理场接口,用于描述不存在 局部电中性这一假设条件下电解质物质的传递。可模拟通常在靠近电极表面的 位置出现的电荷分离,此处电解质中的离子被电极上未屏蔽的过剩电荷吸引和 排斥。电荷分离区域也称为扩散双电层,通常为电极表面与电解质之间几个纳 米的范围。

电泳输送接口 (******) 用于求解水基系统中存在电位梯度时物质的电泳输送。输 送的物质可以是弱酸、强酸、碱、两性电解质和不带电荷物质的任意混合。此 接口支持弱酸、碱和两性电解质的解离平衡,以及水的自动电离反应。

层流,浓物质接口 ()) 在**反应流**下,耦合了**单相流**接口和**浓物质传递**接口的功能。

层流,稀物质接口 ()) 在**反应流**下,耦合了**单相流**接口和**稀物质传递**接口的功 能。

多孔介质反应流,稀物质传递接口 (**ﷺ**)处理通过自由 / 多孔介质流传递的稀 溶液反应混合物。此多物理场接口耦合了 Brinkman 方程和**多孔介质稀物质传** 递接口的功能。

多孔介质反应流,浓物质传递接口(**ﷺ**)处理通过自由/多孔介质流传递的浓 溶液反应混合物。此多物理场接口耦合了 Brinkman 方程和**浓物质传递**接口的 功能。

表面反应接口(+))可对涉及表面吸附物质,以及在反应表面附近本体溶液中物质的反应进行建模。此接口一般定义在边界上,与定义在域中的质量传递接口相互耦合。可与反应流接口和电化学接口一起耦合使用,其中电化学接口需

要**电池与燃料电池模块、腐蚀模块、电化学模块**或**电镀模块**中的任一个模块。 反应表面增长速度的预定义表达式,用于轻松地建立具有移动边界的模型。

裂隙中的稀物质传递接口 (➡) 用于模拟溶质物质沿裂隙表面的传输,其中裂隙的厚度与其他尺寸相比非常小。类似的几何结构通常难以剖分网格。在这一接口中,裂隙定义为模型几何中的边界,由此避免了对薄尺寸进行网格剖分。针对裂隙是多孔结构的情况,在此接口中可以定义平均裂隙厚度以及孔隙率。这时可以采用不同的有效扩散系数模型。此接口支持经对流、扩散和分散进行的传递,以及各种化学反应。

单相流

蠕动流接口 (⋙) 用于模拟雷诺数很低的流体流动,可以忽略 Navier-Stokes 方 程中的惯性项。蠕动流也称为 Stokes 流,一般发生在高粘度或几何长度比例较 小的系统 (例如微流体和 MEMS 器件)中。

另一个有用的工具是将材料属性 (密度、粘度等)以方程的形式描述为其他参数的函数,例如材料浓度、压力或温度。材料库中的许多材料均使用与温度和 压力相关的属性函数。

多孔介质和地下水流

达西定律接口(图)用于对流体通过间隙流入多孔介质进行建模,其中假设多 孔介质和流体介质各向同性。通过耦合连续方程和孔隙流体(或气体)的状态 方程,此接口可用于对被压力驱动的流建模。**达西定律**的典型应用包括反应气 体在催化剂涂层或薄膜中的渗透。

达西定律可用于分析多孔介质,其中假设流体主要受到孔隙中摩擦阻力的影响。该物理场接口适用于流速非常低或介质孔隙率相对较小的情况。流体渗过 过滤层或填充层等应用适合用本接口来建模。

Brinkman 方程接口() 用于模拟空隙尺寸较大的多孔流动, Brinkman 方程 接口对达西定律接口进行了扩展,描述粘性剪切力所致的动能耗散,与 Navier-Stokes 方程类似。此接口也可以添加 Forchheimer 阻力项,模拟非常开 放的床身的粘性阻力,湍流阻力在此非常重要。Forchheimer **阻力**有时称为 Ergun 方程。当流速非常低或几何长度比例非常小时,还可以选择忽略惯性项 (Stokes 流)。

自由和多孔介质流动接口(**N**)适合用于分析连接自由流体和多孔介质的设备, 例如固定床反应器和催化转化器。应该注意,如果多孔区域相对于自由流体域 大很多,并且您的主要仿真兴趣不在界面附近区域,则可以将流体流动接口耦 合到**达西定律**接口中,从而减少整个模型的计算量。

自由和多孔介质流动接口至少用于两个不同的域:自由通道和多孔介质。根据 相关域的材料属性定义,此接口中添加了相应的最优化方程。例如,您可以选 择 Stokes-Brinkman 流动特征来降低方程对多孔区域惯性效应的相关性,或仅 选择 Stokes 流动特征来降低方程对自由通道内惯性效应的相关性。

同样,在此接口中,您可以直接通过常数或表达式来定义多孔介质流动的材料 属性,包括密度、动态粘度、渗透率、孔隙率和基体属性等。

传热

传热接口包含**流体传热 ()**≥)、**固体传热** () ≥) 和多孔介质传热 () ≥),可以考虑 热传导和热对流。这些特征能够无缝地相互耦合,也能与单个模型耦合使用。 当您拥有**传热模块**许可证时,在能量方程中还会包含**表面对表面**辐射。

根据空间维度和研究类型排列的物理场接口

下表列出了 COMSOL Multiphysics 基本许可证提供的物理场接口和特定于此 模块的物理场接口。

物理场接口	图标	标记	空间维度	可用的预设研究类型
<mark>:</mark> 化学物质传递				
表面反应	•*	sr	所有维度	稳态 (三维,二维,二 维轴对称) ; 瞬态
稀物质传递1	:	tds	所有维度	稳态; 瞬态
多孔介质稀物质传递	-ò	tds	所有维度	稳态; 瞬态

物理场接口	图标	标记	空间维度	可用的预设研究类型
裂隙中的稀物质传递	7 1	dsf	三维, 二维, 二维轴对称	稳态; 瞬态
电泳输送	•••• •••	el	所有维度	稳态; 带初始化的稳态; 瞬态; 带初始化的瞬态
化学	: :	chem	所有维度	稳态; 瞬态
浓物质传递	:	tcs	所有维度	稳态; 瞬态
Nernst-Planck 方程	:	npe	所有维度	稳态; 瞬态
Nernst-Planck-Poisson 方 程	: • •	tds+es	所有维度	稳态; 瞬态; 稳态源扫描; 小信号分析,频域
反应工程	4	re	零维	瞬态; 稳态平推流
。反应流				
层流	///	—	三维, 二维, 二维轴对称	稳态; 瞬态
层流,稀物质 ¹	///	_	三维, 二维, 二维轴对称	稳态; 瞬态
🔊 多孔介质反应流		_		
稀物质传递	, 19	rfds	三维, 二维, 二维轴对称	稳态; 瞬态
浓物质传递	.	rfcs	三维, 二维, 二维轴对称	稳态; 瞬态

物理场接口	图标	标记	空间维度	可用的预设研究类型	
◎ 流体流动					
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●					
蠕动流	***	spf	三维, 二维, 二维轴对称	稳态; 瞬态	
层流 ¹	///	spf	三维, 二维, 二维轴对称	稳态; 瞬态	
💽 多孔介质和地下水法	充				
Brinkman 方程	0	br	三维, 二维, 二维轴对称	稳态; 瞬态	
达西定律	\$	dl	所有维度	稳态; 瞬态	
自由和多孔介质流动		fp	三维, 二维, 二维轴对称	稳态; 瞬态	
∭ 传热					
流体传热 ¹)≋	ht	所有维度	稳态; 瞬态	
固体传热 ¹	/≧	ht	所有维度	稳态; 瞬态	
多孔介质传热		ht	所有维度	稳态; 瞬态	
¹ 此物理场接口随核心 CON	/ISOL 包	一起提供	,并添加了针对	此模块的功能。	

教学示例:整体式反应器中氧化氮还原反应

这是一个催化转化器模型,通过添加氨从汽车尾气中脱除氧化氮。本例显示化 学反应工程仿真中描述的建模策略应用,并展示如何通过一系列的仿真来提高 对反应器系统的认识。为此,该模型使用了**化学反应工程模块**中的多个物理场 接口和特征。

简介

本例对汽车尾气管整装反应器中氧化氮 (NO) 的选择性还原反应进行建模。引 擎排放的废气经过一个填充多孔基体的整装反应器,向其中引入氨 (NH₃),废 气中的 NO 经过还原反应被选择性脱除。

与此同时,在平行反应中 NH₃ 被氧化,而且这两个反应的反应速率都受到温度 和组分的影响。这意味着,添加的 NH₃ 必须足够与 NO 反应,同时又不致过量 而将多余的 NH₃ 释放到大气中。

仿真的目标是找到最理想的 NH₃ 混合比例,研究相关的工艺参数,评估这些工艺条件的影响。

内燃机引擎释放的NOx 废气在催化转化器中发生还原反应降低浓度。

建议您再次查看图1中的流程图,按照建模策略步骤完成本模型,如下所述。 首先,将入口反应速率作为非等温条件下温度和相关反应物浓度的函数以及对 于非等温条件,研究反应动力学。通过这些研究,得到满足能够描述还原反应 要求的通用条件。根据特定催化转化器运行条件,以及废气中 NO 的假设流 量,得到必需的 NH₃ 剂量。最后,建立催化转化器三维模型,经过求解,最终 得到质量传递、传热和流体流动等过程的结果,分析优化反应器配料量等运行 参数。

化学

整装反应器的 V_2O_5/TiO_2 涂层中发生两个平行反应,我们希望得到的反应是 NO 与氨气的还原反应:

$$4NO + 4NH_3 + O_2 \longrightarrow 4N_2 + 6H_2O \tag{1}$$

然而,在这个过程中,氨气同时会发生氧化反应:

$$4NH_3 + 3O_2 \longrightarrow 2N_2 + 6H_2O$$
(2)

采用 Eley-Rideal 机理来描述 NO 向 N₂ 的非均相转化机理,其中关键的反应涉 及 NO 气体与表面吸附的 NH₃ 之间的反应。根据参考文献 1,方程 1 有下面的 反应速率方程 (mol/(m³·s)):

$$r_1 = k_1 c_{\rm NO} \frac{a c_{\rm NH3}}{1 + a c_{\rm NH3}}$$
(3)

其中

$$k_1 = A_1 \exp\left(-\frac{E_1}{R_g T}\right)$$

且

$$a = A_0 \exp\left(-\frac{E_0}{R_{\rm g}T}\right)$$

对于方程 2,反应速率 (mol/(m³·s)) 表达式为:

$$r_2 = k_2 c_{\rm NH3} \tag{4}$$

其中

$$k_2 = A_2 \exp\left(-\frac{E_2}{R_g T}\right)$$

18 |

非等温通道模型

要找到可将尾气所含 NO 还原的 NH₃ 的最小含量, 需要一个可以考虑反应物浓度和系统温度变化的反应器模型。

从质量传递的角度来考虑,可以认为反应器的通道之间相互独立。因此,我们 可以执行初始仿真,其中的单个反应通道由非等温平推流方程建模,表示结构 化反应器。

使用反应工程接口来建立和求解模型。

模型方程

利用稳态假设,平推流反应器的质量平衡方程为:

$$\frac{dF_i}{dV} = R_i \tag{5}$$

其中 F_i 是物质的摩尔流速 (mol/s), V 表示反应器容积 (m³), R_i 是物质的净反 应速率 (mol/(m³·s))。理想反应气体的能量平衡方程为:

$$\sum_{i} F_{i}C_{p,i}\frac{dT}{dV} = Q_{\text{ext}} + Q \tag{6}$$

其中 $C_{p,i}$ 是物质的摩尔热容 (J/(mol·K)), Q_{ext} 是系统的单位体积添加的热量 (J/(m³·s))。 Q表示化学反应热 (J/(m³·s))。

$$Q = -\sum_{j} H_{j} r_{j}$$

其中, H_i 是反应热 (J/mol), r_i 是反应速率 (mol/(m³·s))。

在长 0.36 m、横截面积为 12.6 mm² 的通道中求解反应器方程。假设废气中 包含 41.1 mmol/m³ 的 NO,系统温度为 523 K,穿过通道的流动速率是 0.3 m/s。

结果

反应动力学

方程 1 和方程 2 给出的竞争反应带来了一个问题,即还原过程最理想的 NH₃ 配料量,根据反应式的化学计量系数,要求 NH₃ 与 NO 的比例最少为 1:1。这样 看起来配置过量的 NH₃ 是必要的,但同时,需要避免过多的 NH₃ 会随气流排 出反应器。

分析反应动力学有助于明确有利于发生还原反应所需的条件。首先研究还原反 应和氧化反应的入口反应速率,它们是温度和反应物含量的函数。图 3 所示为 还原反应的入口速率 (方程 1)。曲线表示不同的 NH₃:NO 比值,其范围从 1 到 2。进入催化转化器的废气所含 NO 的浓度已知为 41.1 mmol/m³。

图 3: NO 还原反应 (r_l) 的入口反应速率随温度的变化曲线,其中 NH₃:NO 的比值范围 从 l 到 2。

NO 还原的速率达到一个最大值,然后在更高温度下减小。增加气相中的 NH₃ 浓度会导致表面吸附 NH₃ 水平的增加,促使气相 NO 向 N₂转化。这就解释了 为什么当 NH₃:NO 比值增大时,速率最大值点朝更高温度移动。在最高温度附 近 NO 还原速率减小,可以解释为 NH₃ 在催化表面的解吸速率变得比吸附 NH₃ 和气相 NO 的反应速率更快。

根据方程 4, 氨氧化率随着温度和 NH₃ 浓度的变化而增大。图 4显示的是选择 性参数, 定义为:

$$S = \frac{r_1}{r_2}$$

它的值比 1 大时表示 NO 还原反应是主要反应,而值比 1 小则表示 NH₃ 氧化反应是主要反应。很明显,当温度升高或 NH₃:NO 比值变大时, NO 还原选择因 子减小。

图 4: 选择性参数 (*r*₁/*r*₂) *随温度的变化曲线,其中* NH₃:NO 比值范围从 1 到 2 。 从反应动力学分析中可知,有利的反应条件要求中等温度与相对较低 NH₃:NO 含量比。

非等温通道模型

为进一步优化反应器模型中的剂量,我们需要考虑改变反应物浓度和系统温度。因此,我们用一个平推流反应器来模拟反应通道的行为。

图 5 所示的是 NH₃ 的摩尔流速随反应器位置坐标的变化曲线。不同的曲线表示 不同的 NH₃:NO 比值,范围从 1 到 2。在这些条件下,结果表明 NH₃:NO 比值 至少为 1.3 才能保证 NH₃ 在整个反应通道中都能作为有效的还原剂。

图 5: NH3 的摩尔流速 (mol/s) 随通道容积的变化。

图 6 中的选择性参数表明 NO 还原反应在整个通道中是主要反应,剂量水平介于 1.3 和 1.4 之间。

图 6: 选择性参数 (r₁/r₂) 随通道容积的变化。

三维反应器研究

从反应动力学与单通道模型分析中可以清楚地观察到,温度对最佳 NH₃ 配料量 有着重要影响。由于反应器中通道与通道之间的温度分布不同,需要建立三维 反应器模型。

模型几何

整装反应器的标准结构由长方体通道和固体支撑壁组成。反应器长为 0.36 m, 半径为 0.1 m。每一个通道的截面积是 12.6 mm²,长方体通道中孔隙的空隙分 数是 0.75。

图 7:通道中发生 NO 还原化学反应,支撑壁支撑了整个反应器结构。根据对称性只需 要整个反应器结构的八分之一。

模型方程和假设

在本例中,基于伪均相假设对整装反应器中的数百个通道进行建模。由于通道 之间没有质量交换,每个通道都可以使用一维质量传递方程来描述。此外,假 设通道中的层流充分发展,因此平均流场与反应器两端的压力差成正比,流体 流动只在通道方向传递质量与能量。能量方程描述通道中反应气体的温度,以 及整装反应器结构和支撑壁中的热传导。由于温度不仅影响反应动力学,而且 影响反应气体的密度和粘度,能量方程将反应器结构中的所有通道联系到一起,实现三维耦合模型。

质量传递

利用稳态形式的对流 - 扩散方程给定的质量守恒描述了在反应通道中的传递和 反应:

$$\nabla \cdot (-D_i \nabla c_i) + \mathbf{u} \cdot \nabla c_i = R_i \tag{7}$$

在方程 7 中, D_i 表示扩散系数 (m²/s), c_i 是物质浓度 (mol/m³), 而 u 是速度 矢量 (m/s)。 R_i (mol/(m³·s)) 相当于物质的反应速率表达式。

质量传递只发生在通道的轴向,在本例中相当于三维几何结构的 x 轴方向。对 于扩散传递,这可以通过设置扩散矩阵的 y、z 分量为 0 来实现。整装反应器中 压力驱动的流也在 x 轴方向上定义,以此将对流传质过程限制在通道方向。这 些单个通道的模型通过整装反应器的传热方程来连接。

流体流动

假设通道中是充分发展的层流流动,平均流速与反应器的压力差成正比。可以 使用**达西定律**接口对整装反应器内的气体流动进行建模,其控制方程为:

$$\nabla \cdot (\rho \mathbf{u}) = 0 \tag{8}$$

$$\mathbf{u} = -\frac{\kappa}{\mu} \nabla p \tag{9}$$

反应器被视为多孔介质,其中有效渗透率是 κ (m²)。密度 ρ (kg/m³) 和粘度 μ (Pa·s),表示反应气体的属性。

传热

多孔整装反应器的传热模型方程表述为:

$$(\rho C_p)_{\text{eff}} \frac{\partial T}{\partial t} + \rho_f C_{pf} \mathbf{u} \cdot \nabla T = \nabla \cdot (k_{\text{eff}} \nabla T) + Q$$
(10)

对于稳态,可以简化为:

$$\rho_{\rm f} C_{nf} \mathbf{u} \cdot \nabla T = \nabla \cdot (k_{\rm eff} \nabla T) + Q \tag{11}$$

其中 $\rho_f(kg/m^3)$ 是流体密度, $C_{pf}(J/(kg \cdot K))$ 是流体热容, $k_{eq}(W/(m \cdot K))$ 是等效 热导率。此外, $\mathbf{u}(m/s)$ 是流体速度场,在本模型中使用**达西定律**接口来计算; $Q(W/m^3)$ 是放热反应产生的热源:

| 25

$$Q = Q_1 + Q_2 = -r_1 H_1 - r_2 H_2 \tag{12}$$

固体 - 流体系统的有效热导率 k_{eff} , 与固体的热导率 k_p 和流体的热导率 k_f 相关:

$$k_{\rm eff} = \Theta_{\rm p} k_{\rm p} + \Theta_{\rm f} k_{\rm f}$$
(13)

在方程 13 中, Θ_p 表示固体材料的体积分数,这里为 0.25;它与流体的体积分数 Θ_f 相关:

$$\Theta_f + \Theta_p = 1 \tag{14}$$

方程 11 是**传热**接口在流体域的方程。在反应器的支撑壁中只需要考虑热传导过程:

$$-\nabla \cdot (k_{\rm s} \nabla T) = 0 \tag{15}$$

其中 k_{s} (W/(m·K)) 是固体壁的热导率。

如上所述,温度不仅影响反应动力学,还影响反应气体的密度和粘度。通过这 种方式,传热方程将反应器中的所有通道耦合在一起。

热力学和传递属性

平推流模型 (方程 6)和三维整装反应器模型 (方程 11)的能量平衡方程都 需要输入精确的热力学数据。该模块使用以下一组多项式作为默认表达式来描 述物质的热力学属性:

$$C_{p,i} = R_g(a_1 + a_2T + a_3T^2 + a_4T^3 + a_5T^4)$$
(16)

$$h_i = R_g \left(a_1 T + \frac{a_2}{2} T^2 + \frac{a_3}{3} T^3 + \frac{a_4}{4} T^4 + \frac{a_5}{5} T^5 + a_6 \right)$$
(17)

$$s_i = R_g \left(a_1 \ln T + a_2 T + \frac{a_3}{2} T^2 + \frac{a_4}{3} T^3 + \frac{a_5}{4} T^4 + a_7 \right)$$
(18)

其中, $C_{p,i}$ 表示物质热容 (J/(mol·K)), T是温度 (K), 而 R_g 是理想气体常数 8.314 (J/(mol·K))。另外, h_i 是物质的摩尔焓 (J/mol), s_i 表示摩尔熵 (J/(mol·K))。对每一种物质,上面的多项式均需要输入 7 个系数。系数 $a_1 - a_5$ 与物质热容相关,系数 a_6 与物质构象焓 (0 K) 相关,系数 a_7 来源于物质构象熵 (0 K)。

方程 16 到方程 18 的形式参考 CHEMKIN 或 NASA 格式 (参考文献 2)。数 据库资源列出了不同温度范围的系数 (参考文献 3)。在本例中,软件读取热 力学系数文件,这样可以直接使用预定义的热力学属性表达式。

除热力学属性外,模型方程也需要传递属性来精确描述空间相关的反应器模型。例如,质量传递(方程7)需要输入物质扩散系数。

对于反应气体混合物,反应工程接口使用气体动力学理论来建立传递属性表达 式,比如扩散、粘度和热导率均作为温度、压力和组分的函数。在本例中,使 用以下公式计算物质扩散率 (m²/s)。

$$D = 2.695 \cdot 10^{-3} \cdot \frac{\sqrt{T^3((M_A + M_B)/(2 \cdot 10^3 M_A M_B))}}{p\sigma_A \sigma_B \Omega_D}$$
(19)

其中 Ω_D 是碰撞积分。

$$\Omega_{\rm D} = f\left(T, \sigma, \frac{\varepsilon}{k_{\rm b}}, \mu_{\rm D}\right) \tag{20}$$

为计算方程 19, 您需要定义特征长度和 Lennard-Jones 相互作用势的最小能量 值,即分别为 $\sigma(10^{-10} \text{ m})$ 和 $\epsilon/k_b(K)$ 。还需要提供物质偶极矩 $\mu_D(Debye)$ 。反 应气体中的每一种物质都对应一组特征常数,您可以从文献、数据库或实验中 找到这些数据。也可以在**反应工程**接口中手动输入 σ 、 ϵ/k_b 和 μ_D ,也可以导入 包含这些数据的文本文件,正如本例所示。

物质	特征长度 σ [Å]	能量最小值 ε/k _b [K]	偶极矩 μ _D [D]
H2O	2.640	809.1	1.8
N2	3.798	71.4	0.0
NH3	2.900	558.3	1.5
NO	3.492	116.7	0.2
02	3.467	106.7	0.0

本模型已从参考文献4整理了所需的数据参数,总结如下:

结果

图 8 显示整装通道块中 NO 的转化率,最佳 NH₃:NO 比为 1.35。出口处的平均转化率为 97%。图中的等值面显示了反应器中不同位置通道的性能,清晰地表明了该问题的三维性质。

图 8: 等值面显示的是反应器中 NO 的转化率。

单个通道之间虽然不存在质量交换,但会通过反应器中的温度分布相互耦合, 其中温度分布会影响反应气体的流动速率及反应速率。图9所示为反应器的横 截面温度。

图 9: 反应器横截面的温度分布。

放热反应使反应器中间部分的温度升高,周围的温度则由于向周围散热而降低。三维反应器计算得到的最高温度为 542.7 K。可以清楚地观察到支撑壁相 对较高的热导率效应。

根据入口的动力学分析,升高温度对选择因素有不利影响,会导致氨气被氧化 (方程 2)而不是在 NO 还原反应(方程 1)中参与反应。图 10 所示为整装反 应器对称面上的 r₁/r₂ 分布。图 10 结果表明 r1/r2 的值比 1 大,这意味着在反应 器所有区域中选择还原反应是主要反应。

图 10: r₁/r₂ 的值大于 1 表示 NO 还原是主要反应。

选择性绘图再次揭示了该问题的空间相关性。在反应器外表面附近相对较冷的 区域,显示了较高的选择因子,而在中心区域附近,选择因子下降较快。相对 单通道模型,在出口中心附近,三维反应器模型显示出明显更低的选择因子参 数值。然而,整体来看 NO 还原反应仍是主要反应。

从这个三维模型得到的信息可用于研究反应系统的其他方面。这些结果可以与 原型反应器或实际的整装反应器的其他结果相比较,从而更好地调整材料参 数,如渗透率常数。本模型可以模拟不同的运行条件,例如汽车加速和减速, 也可以验证其他催化剂和设计。

总结

化学反应工程模块可以从两个不同的层面来分析整装反应器的 NO 还原反应:

 通道模型 — 用一个简单的平推流反应器模型来研究反应动力学,并减少条件 来促进对 NO 还原的选择性。研究配料量的影响进一步完善平推流反应器模 型的设置。 2 三维反应器模型 — 在全三维反应器模型中测试反应器运行条件,关注整装通 道耦合所产生的空间相关效应。

在研究条件下,当反应物 NH₃:NO 的比值约为 1.35 时,反应接近最佳状态。 在这个比值条件下,氨气浪费量最小且不会减少 NO 还原反应。同时,这个比 值也有利于 NO 还原反应,限制可能产生的反应热。另一方面,这还有助于控 制反应器温度,促进 NO 还原反应。

本例中使用的建模策略有很多优点。首先使用简易模型进行快速仿真,缩小仿 真范围,之后再计算更高级和计算量更大的模型。有序的建模方法也能帮助您 决定何时以何种方式考虑温度相关性和空间相关性。对系统的深刻认识有助于 获得有效地建模方法和解决方案。无论是完全混合模型还是完全三维模型,都 可以决定特定系统的具体细节。

参考文献

1. G. Shaub, D. Unruh, J. Wang, and T. Turek, *Chemical Engineering and Processing*, vol. 42, p. 365, 2003.

2. S. Gordon and B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouquet Detonations, NASA-SP-273, 1971.

3. 本案例所用数据来自 GRI-Mech 3.0. www.me.berkeley.edu/gri-mech

4. B.E. Poling, J.M. Prausnitz, and J.P. O' Connell, *The Properties of Gases and Liquids Fifth Ed.*, McGraw-Hill, 2001.

反应器模型注意事项

以下分步操作说明将指导您建立并求解两个模型,模拟整装反应器中的 NO 催 化还原。第一个模型为简单的平推流反应器模型。第二个模型计算的是全三维 整装反应器,将质量传递与传热和流体流动进行耦合。

此外,也可以打开完整的平推流反应器模型文件,直接建立三维反应器模型。 请参阅生成空间依赖性模型1,获取进一步详细信息。

模型 monolith_kinetics.mph 的文档中包含如何建立并求解反应动力学模型的详细说明。有关如何打开此文件的信息,请参阅教学示例:整体式反应器中氧化氮还原反应。

注: 这些操作说明基于 Windows 用户界面,但同样适用于 Linux 和 Mac,只 是略有差别。

1 双击桌面上的 COMSOL 图标启动软件。打开软件时,您可以使用模型向导 来新建 COMSOL 模型,或使用空模型来手动创建。对于本例,单击模型向 导按钮。

如果 COMSOL 已打开,您可以通过在**文件**菜单中选择**新建**,然后单击**模型** 向导 🧟 来启动它。

模型向导可以指导您进行建模的初始几个步骤。接下来的窗口可供您选择建 模空间的维度。

- 2 在选择空间维度窗口中单击零维 · 。
- 3 在选择物理场树中双击化学物质传递下的反应工程 (re) 4, 将其添加到物 理场列表中。也可以右键单击,然后选择添加物理场 +。
- 5 单击**完成** 🗹。

定义 — 参数和变量

首先导入一组全局参数,用于定义反应器的工艺条件,包括反应通道的尺寸、 反应气体的流量和温度。然后为模型特定的表达式导入变量,用于定义反应速 率常数和选择性参数 S。

注:根据您的安装路径,本练习使用文件的位置有所不同。例如,如果软件安装在硬盘上,文件路径类似于

C:\Program Files\COMSOL54\applications\。

参数

1 在主屏幕工具栏中单击参数 Pi 并选择参数 1 Pi 。

注:在 Linux 和 Mac 下, 主屏幕工具栏是指 Desktop 顶部附近的一组特定 控件。

2 在参数的设置窗口中单击从文件加载 📂。

3 浏览至案例库文件夹

Chemical_Reaction_Engineering_Module\Tutorials下的文件 monolith_kinetics_parameters.txt。双击以添加或单击**打开**。

参数即可添加到表格中。

设置			~
参数			
▼ 参数			
" 名称	表达式	值	描述
Tin	523[K]	523 K	Inlet temperature
T amb	350[K]	350 K	Ambient temperature
rad	2[mm]	0.002 m	Channel radius
A	pi*rad^2	1.2566E-5 m ²	Channel cross section area
v_av	0.3[m/s]	0.3 m/s	Average gas velocity
vrate	v_av*A	3.7699E-6 m³/s	Volumetric flow rate
UA	200[W/(K*m^3)]	200 W/(m³⋅K)	Volumetric heat transfer coefficient
F_NO_in	1.55e-7[mol/s]	1.55E-7 mol/s	Inlet molar flow NO
F_NH3_in	F_NO_in*X0	2.0925E-7 mol/s	Inlet molar flow NH3
X0	1.35	1.35	Ratio NH3 to NO at inlet
F_O2_in	2.71e-6[mol/s]	2.71E-6 mol/s	Inlet molar flow O2
F_N2_in	6.86e-5[mol/s]	6.86E-5 mol/s	Inlet molar flow N2
F_H2O_in	7.34e-6[mol/s]	7.34E-6 mol/s	Inlet molar flow H2O
A0	2.68e-17[1/s]	2.68E-17 1/s	Frequency factor for correction
A1	1e6[1/s]	1E6 1/s	Frequency factor for reaction 1
A2	6.8e7[1/s]	6.8E7 1/s	Frequency factor for reaction 2
EO	-243e3[J/mol]	-2.43E5 J/mol	Activation energy for correction
E1	60e3[J/mol]	60000 J/mol	Activation energy for reaction 1
E2	85e3[J/mol]	85000 J/mol	Activation energy for reaction 2

变量 1

在主屏幕工具栏中单击变量 a=,并选择局部变量。(或在模型开发器的组件
 1下右键单击定义 ≡,并选择变量 a=。

2 在**变量的设置**窗口,定位至**变量**栏。

3 在表中输入以下设置:

名称	表达式	单位	描述
S	re.r_1/re.r_2		Selectivity
а	AO*exp(-EO/(R_const*re.T))	1/s	Arrhenius correction

现在定义化学反应。首先,输入 NO 还原的反应公式。反应工程接口会自动编 译反应公式,并根据质量作用定律 (化学计量学)给出反应速率。

反应 1

- 1 在反应工程工具栏中,,单击反
 应 ▲ (或在模型开发器中,右键单击
 反应工程 (re) ▲,并选择反应 ▲)。
- 2 I 在反应的设置窗口中,在化学反应式 下的反应式文本框中输入 4N0+4NH3+02=>4N2+6H20。
- 3 单击**应用**,在**反应式**节点下生成每种 反应的**物质**。

设置 _{反应}		* #
标签:	1: 4NO+4NH3+O2=>4N2+6H2O	F
▷域	选择	
▼ 反	应式	
反应式		
4NO-	+4NH3+O2=>4N2+6H2O	应用
反应类	型:	
不可	逆	•
$R_i = i$	/ _i r	

4 在模型开发器中单击 1:4NO+4NH3+O2=>4N2+6H2O 节点 🔔。

- 丛 反应: 1: 4NO+4NH3+O2=>4N2+6H2O
- 🗼 物质: Species: NO
- 🗼 物质: Species: NH3
- 🗼 物质: Species: O2
- ↓ 物质: Species: N2
- 🗼 物质: Species: H2O

在本例中,用文献中已知的反应速率表达式替换自动生成的反应速率表达式。 调整单位,避免默认设置假设反应速率遵循质量作用定律造成的单位错误。

5 定位至**反应速率**栏。从反应速度列表中选择用户定义。

在反应速率 (/) 文本框输入 re.kf_1*re.c_NO*a*re.c_NH3/

(1+a*max(re.c_NH3,0))[m²⁴/mol⁸]。最大算子可以避免负浓度的出现。

•	反应速率		
反应	应速率:		
F	护定义		•
反应			
r	chem.kf_1*chem.c_NO*a*chem.c_NH3/(1+a*max(chem.c_NH3,0))[m^24/(mol^8)]	mol/(m³·s)	重置为默认设置

输入 Arrhenius 参数,设置反应中使用的温度相关的速率常数。

1 在**速率常数**栏,选中**使用** Arrhenius 表达式复选框。

- 2 输入反应的 Arrhenius 参数, 由于使用了默认的不可逆反 应,只需输入正反应参数。
 - 在**正反应频率因子** (A^f) 文 本框,输入 A1[m²⁴/ mol⁸]。
 - 在**正反应活化能** (*E*^f) 文本 框中输入 E1。

▼ ;	東率常数	
🚺 億	赶用 Arrhenius 表达式	
k ^f =	$= A^{f} (T/T_{ref})^{n^{f}} e \times p(\frac{-E^{f}}{R_{g}T}), \ T_{ref} = 1K$	
正反	应频率因子:	
\mathcal{A}^{f}	A1[m^24/(mol^8)]	m²⁴/(s·mol [®])
正反	应温度指数:	
n ^f	0	1
正反	应活化能:	
E^{f}	E1	J/mol

反应2

- 1 在**反应工程**工具栏,单击**反应** 👗 来添加另一个反应, NH₃ 的氧化反应。
- 2 在反应的设置窗口找到化学反应式栏。在公式文本框中输入(或复制粘贴) 4NH3+302=>2N2+6H20。
- 3 单击应用。
- 4 定位至反应速率栏。 在反应速率列表中 选择用户定义。在 反应速率(r)文本框 中,输入 re.kf_2*re.c_NH3 [mol^6/m^18]。

	•	反应速率		
	反应	立速率:		
	F	用户定义		•
Ē	反应	· · 速率:		
	r	chem.kf_2*chem.c_NH3[mol^6/m^18]	mol/(m³·s)	重置为默认设置

5 定位至速率常数栏。选中使用 Arrhenius 表达式复选框。

- 在 A^f 文本框, 输入 A2[m^18/mol^6]。

- 在 <i>E^f</i> 文本框,输入 E2。	
▼ 速率常数	
☑ 使用 Arrhenius 表达式	
$k^{f} = A^{f} (T/T_{ref})^{n^{f}} exp(\frac{-E^{f}}{R_{g}T}), T_{ref} = 1K$	
正反应频率因子:	
A ^f A2[m^18/(mol^6)]	m¹ଃ/(s·mol⁵)
正反应温度指数:	
n ^f 0	1
正反应活化能:	
E ^f E2	J/mol

设置反应动力学后,定义合适的化学反应的反应模型。使用反应工程节点时可 以选择某个预定义的反应器类型。由于您计划建立一个简单的通道模型,之前 已选择**稳态平推流**研究类型,现在选择**平推**反应器。

反应工程接口 - 入口反应器速率

通过研究与温度和组成相关的入 口反应速率,来研究反应动力 学。

- 1 在**模型开发器**中,选择**反应工** 程(re) ▲ 节点。
- 2 在反应的设置窗口,从反应器 类型列表中选择平推流。
- 3 在能量平衡下的温度(T) 文本 框,输入 500[K]+250*re.Vr[K/ m³]。由于使用稳态平推流研 究类型得到的因变量 Vr (反应 器体积),该表达式会使温度 在 500[K] 和 750[K] 之间变 化。

▼ 反应器	
反应器类型:	
平推流	•
▼ 能量平衡	
排除	•
温度:	
7 500[K]+250*re.Vr[K/m^3]	к
▷ 计算传递属性	
▷ 混合物属性	
▷ 活性	
▷ 离散化	
▼ 质量平衡	
体积速率:	
用户定义	•
体积流率:	
V vrate n	1³/s 重置为默认设置

4 从**质量平衡**下的**体积速率**列表 中选择**用户定义**。在 v 文本框中输入 vrate。

初始值1

下一步将定义反应器中的入口值。

1 在**模型开发器的反应工程**节点下,单击**初始值** 1 📩 。

2 在初始值的设置窗口,定位至体积物质初始值栏。

3 在表中输入以下设置:

物质	摩尔流动速率 (MOL/S)
H20	F_H20_in
N2	F_N2_in
NH3	F_NH3_in
NO	F_NO_in
02	F_02_in

物质: NO 和物质 NH3

接下来,锁定反应物 NO 和 NH3 的浓度,只研究温度对入口反应速率的 影响。

- 1 在模型开发树中,单击物质:NO 和物质:NH₃ ↓ 节点。在每个设置窗口, 展开物质浓度 / 活性。
- 2 选中锁定浓度 / 活性复选框,以设置物质浓度常数。

4 🚢 反应工程: Reaction Engineering <i>(re)</i>	
<mark>많</mark> 初始值: Initial Values 1	▷ 物质类型
————————————————————————————————————	▷ 广议参数
🗼 物质: Species: NO	/ / ~>m
↓ 物质: Species: NH3	▷反应速率
,え物质: Species: O2	▼ 物质浓度/活性
🙏 物质: Species: N2	
🙏 物质: Species: H2O	☑ 锁定浓度/活性

研究1

选择各种入口比率以检查 NH3:NO 剂量比对入口速率的影响。

参数化扫描

- 1 在**研究**工具栏,单击参数化扫描 🔡。
- 2 在研究设置中,单击表格下的添加按钮 + 。在参数名称列,选择 X0 (Ratio NH3 to NO at inlet)。
- 3 开始时可以选择较宽的剂量范围,然后缩小范围来寻找最优剂量范围。在参数值列表列中输入 range(1,0.2,2),求解介于1和2之间的剂量。

扫描类型: 指定组合	指定组合			
"参数名称	参数值列表	参数单位		
X0 (Ratio NH3 to NO	▼ range(1,0.2,2)			
1 L + E \ E				

收紧求解器容差是很好的做法,可以保证结果的精度。相对容差和绝对容差都 应该被收紧,从而保证在连续测试运行时结果不会改变。在本案例中,相对容 差需减至 1e-7。 步骤 1: 稳态平推流

- 1 在模型开发器的研究 1 节点下,单击步骤 1:稳态平推流 📐。
- 2 在**设置**窗口,定位至**研究设置**栏。从容差列表中选择用户控制,并在文本框 中输入 1e-7。
- 3 在研究工具栏,单击计算 =。

结果一人口反应速度

在建模过程中,会对条件的设置进行或大或小的修改,然后重复计算多次,因此,建议每次计算后保存所得的解。

参数化解1-复制1

- 1 在模型开发器的研究1 > 求解器配置下,右键单击参数化解1,从解菜单下选择复制 届。
- 2 在**复制**节点的**设置**窗口中,在标签文本框中输入 Kinetics (或按 F2 来重命 名节点)。名为 Kinetics 的解可用于进一步后处理。

按照这些操作步骤,可以得到图 3 和图 4 显示的结果,单通道模型的入口剂量 条件和温度跃变。

摩尔流率 (re)

- 1 在**结果**节点下,单击**摩尔流率 (re)** ~ 节点。在**设置**窗口的**标签**文本框中键 入**反应速率**,以更改绘图组的名称。
- 2 在反应速率 ~ 节点的数据栏下,从数据集列表中选择存储的解:研究 1/ Kinetics。
- 3 在绘图中移除标题以减少信息。单击并展开标题栏,在标题类型选择列表中选择无。

- 4 找到**绘图设置**栏。选择 x 轴标 签复选框。
- 5 在相关的文本框中输入**温度** (K)。
- 6 定位到**图例**栏,在**位置**列表 中选择**左上。**
- 7 展开反应速率 ∼ 节点,并 单击全局1 ≥。
- 8 在设置窗口,定位至 y- 轴数 据栏。单击替换表达
 式 ↓ ,在组件1 > 反应
 工程下搜索或选择
 comp1.re.r 1。
- 9 在 x 轴数据栏,从参数列表中 选择表达式。在表达式文本 框中输入 comp1.re.T。
- 10 找到颜色和样式栏并将其展 开。在宽度文本框中输入2。
- Ⅱ 展开**图例**栏。在包含子栏中 单击以清除表达式复选框。

▼ y 轴数据			+ •	۲
"表达式	单位	描述		
comp1.re.r_1	mol/(m	Reaction ra	te	
↑ ↓ 🖂 🔪 📂 🗔 👘 ד				
表达式:				
描述:				
▶ 标题				
12 12 June 2			-	
▼ x 轴数据			₽ •	4 •
轴源数据:				
体				•
参数:				
表达式				•
表达式:				
comp1.re.T				
单位:				
К				•
□ 描述:				
Temperature				

12 单击绘制 💿 以生成图 3。单击图形工具栏上的缩放到窗口大小按钮。

选择性

最快速创建相似绘图的方法是复制现有绘图。

- 1 右键单击反应速率 (re) ~ 节点,并选择生成副本 🔄。
- 2 此绘图旨在显示选择性。在已复制节点的**设置**窗口中,在**标签**文本框输入选 择性。
- 3 定位到图例栏,从位置列表中选择右上。
- 4 展开**选择性1**节点,单击**全局1** 🕞 。
- 5 在设置窗口,定位至 y- 轴数据栏。单击替换表达式 ↓ ,并在组件1 > 定义 > 变量下选择 comp1.S 选择性。

6 在设置窗口或结果工具栏,单击绘制 💿 来生成图 4。

反应工程接口 - 非等温单通道模型

根据之前部分中的输入 (结果 - 入口反应速率), 您现在已了解反应动力学行 为,并能继续通过建立非等温条件下的单通道模型来研究整个体系。

- 1 在模型开发器中,单击组件1 (comp1)下的反应工程 (re) 👗 节点。
- 2 在设置窗口,定位至能量平衡栏并更改先前设置。选择包含并将外部加热或 冷却(Q)表达式替换为(T_amb-re.T)*UA。

	能量平衡	
f	卫 含	•
外音	附加热或冷却:	
Q	(T_amb-re.T)*UA	W/m ³

热力学属性可使用 CHEMKIN 导入。**反应工程**接口可以设置物质传输和热力 学性能的预定义表达式。热力学性能表达式按照 NASA 多项式格式设置,传输 性能表达式是基于气体运动理论。导入的文件中包含软件计算表达式所需的各 种参数。

在此, 热力学表达式用于表示平推流反应器的能量平衡 (方程 11)。用来计算 物质扩散系数的传输表达式, 将用于后面描述的三维整装反应器。

3 在设置窗口中,单击展开导入 CHEMKIN 物质属性栏。

- 4 单击**浏览**,在案例库件夹中定位到热 力学输入文件 monolith_kinetics_thermo.txt并 双击。
- ▼ 导入 CHEMKIN 物质属性
 热力学输入文件:
 monolith_kinetics_thermo.txt
 浏览....
 导入
 传递输入文件:
 浏览....
 导入

5 单击**导入。**

初始值1

入口温度也需要进行定义。

- 1 在**模型开发器**中,单击反应工程节点下的初始值 I 📩 。
- 2 在**初始值的设置**窗口中,定位至**广义参数**,在入口温度(T_{0,in})文本框中输入 T_in。

N2

NH3

NO

02

物质: NO 和物质 NH3

最后,反应器中的浓度在单通道模 型中应是可变的。

- 1 在**模型开发器**中,依次单击**物质:** NO 和**物质:**NH3 ↓ 节点。
- 2 单击以清除物质浓度 / 活性栏中的 锁定浓度 / 活性复选框。

▼) 乂参致		
入口温度:		
T _{0,in} T_in		К
▼ 体物质初始值		
入口摩尔流率		
"物质	摩尔流率 (mol/s)	
H2O	F H2O in	

F_N2_in

F NH3 in

F_NO_in

F_O2_in

研究1

求解模型通道上一系列点上的值。

步骤 1: 稳态平推流

 1 在模型开发器中,单击研究1 下的步骤1:稳态平推流反 应 №。

▼ 研究设			
体积单位:	m^3		•
体积:	0 0.36*A	m³	<u></u>
容差:	用户控制		•
相对容差:	1e-7		

2 在设置窗口中,定位至研究设
 置栏,在体积文本框中,输入
 0 0.36*A,以求解体积为 0.36[m]*A[m^2]的管式反应器。

0 0.00 A, 风水麻本积为 0.30[m]

3 单击**计算 =**。

结果 — 非等温通道模型

参数化解1-复制1 首先保存当前解。

- 1 在模型开发器的研究 1 > 求解器配置下,右键单击参数化解 1 → 。从解菜单中,选择复制 → 。
- 2 在**复制**节点的**设置**窗口中,在标签文本框中输入 Nonisothermal。 按照以下步骤生成图 5。

摩尔流率 (re)

- 1 在**结果**下单击**摩尔流率 (re)** ~ 节点。在**标签**文本框中输入绘图组名称:摩尔流率 NH3,非等温。
- 2 在设置窗口的数据栏,从数据集列表中选择已保存的解研究 1/ 非等温。
- 3 可移除标题。单击展开**标题**栏,并在**标题类型**列表中选择无。
- 5 找到颜色和样式栏并将其展开,在宽度文本框中输入 2。
- 6 展开图例栏,在包含子栏中,取消选中表达式复选框。
- 7 在一维绘图组工具栏上单击绘制 💿 以生成图 5。

研究 1

此外,单通道模型也可用于检查较为狭窄范围剂量比率的选择性,例如1.3 到 1.5 之间。

参数化扫描

- 1 在研究1下单击参数化扫描 🕌。
- 2 在设置窗口中,定位至研究设置栏。将参数值列表中的文本改为 range(1.3,0.1,1.5)。
- 3 在**主屏幕**工具栏,单击**计算 =**。

参数化解1-复制1

首先保存当前解。

- 1 在模型开发器的研究 1 > 求解器配置下右键单击参数化解 1 ↓ a 在解菜单下,选择复制 □ 。
- 2 在复制解的设置窗口的标签文本框中输入 Nonisothermal 2。

温度 (re)

按照以下步骤生成图 6。

- 1 在**结果**下单击**温度 (re)** ~ 节点。在**设置**窗口的**标签**文本框输入:选择性, 非等温。
- 2 在数据栏下的数据集列表中,选择已保存的解研究 1/ 非等温 2。
- 3 单击扩展**标题**栏。从**标题类型**列表中选择无。
- 4 移动图例框,具体为定位到图例栏,在位置列表中选择中间偏右。

选择性,非等温

- 1 在**模型开发器**中,展开**绘图组**节点,单击**全局** 1 📐。
- 2 在设置窗口的 y- 轴数据中单击替换表达式 ↓ · 。在组件1 > 定义 > 变量菜单下,选择 comp1.S。
- 3 展开**颜色和样式**栏,在**宽度**文本框中输入 2。
- 4 定位到图例栏,在包含子栏中,取消选中表达式复选框。
- 5 单击**绘制 动** 以生成图 6。

您还可以绘制表示反应器中温度的绘图组。

- 1 右键单击**选择性,非等温** ~ 节点,并选择**生成副本** 👍。
- 2 在生成的副本节点的设置窗口中,在标签文本框中输入:温度,非等温。

温度,非等温

2 在一维绘图组工具栏上单击绘制 ፩。

反应工程接口 - 三维模型

注:当前,该模型已位于**案例库**的 Tutorials 文件夹中。此外,您也可以从 此文件夹打开 monolith_plugflow.mph 模型文件,并继续进行下面的分步 操作。

三维模型的目的是使用多个内置的热和传递属性,这需要考虑**反应工程**(<u></u>) 接口。

全局定义 - 参数

模型 monolith_kinetics.mph 中最优的 NH₃:NO 比率,将在本模型中 用到。

1 在**模型开发器**中,展开**全局定义** 🌐 ,然后单击参数 Pi。

2 在参数表中参数 X0 对应的表达式列中输入 1.35。替换现有的值。

反应工程 (re)

在**反应工程 (re)** 👗 节点进行设置,激活传递属性,将在空间相关的三维模型 中用到。

- 在模型开发器中展开组件 1 (comp1) 节点。
- 2 在**模型开发器**中,单击**反应工** 程 (re)节点 <u>↓</u>。
- 3 在设置窗口,单击展开计算传 递属性,选中计算混合物属性 复选框后,可以显示空间相关 模型中的一些混合属性。

▼ 计算传递属性
☑ 计算混合物属性
热容:
自动
$C_{\rho} = \sum w_i \frac{C_{\mathbf{p},i}}{M_i}, w_i = \frac{c_i M_i}{\sum c_i M_i}$
导热系数:
自动
$k = 0.5(\sum_{i} x_i k_i + (\sum_{i} x_i / k_i)^{-1}), x_i = \frac{c_i}{\sum_{i} c_i}$

在计算混合传递属性时,有几种

其他性能是必需的。这些可以通过**反应工程**节点下的 CHEMKIN 进行导入,与热力学性能的设置相同。

1 单击展开导入 CHEMKIN 物质属性栏。

46

2 在**传递输入文件**下单击**浏览**。转至案例库文件夹,并双击文件 monolith 3d transport.txt。

注:根据您的安装路径,本练习使用文件的位置有所不同。例如,如果软件安装在硬盘上,文件路径类似于 C:\Program

Files\COMSOL54\applications\。

3	单击	i导ノ	10		
		CUE	41/75.1	44-02-0	

▼ ⊕/\ Cr	TEIVINIIN初原周注
热力学输入了	文件:
monolith_k	cinetics_thermo.txt
浏览	导入
传递输入文(4:
monolith_3	d_transport.txt
浏览	导入

物质: NO、物质: NH3 和物质: H2O

导入的偶极矩的单位为 Debye。这里默认的偶极矩单位为 C*m ,因此在每种物质的节点下都需要进行设置。

- 1 分别在**模型开发器**中单击**物质:NO**、 **物质:NH3、物质:H2O ↓** 节点。
- 2 在每个节点下,定位至物质传输表达式 栏,在偶极矩文本框中的已有值后输入 [D]。例如,NO文本框内的输入变为 0.2[D],NH3文本框内输入为 1.5 [D],H20的为1.8 [D]。

物质: N2

在许多有氮气的气体系统中,氮气含量通 常较高,因此作为溶剂。在本模型中也可 以做相同的假设。这样可以计算多种传输 性能,并简化问题。

▼ 物履	质传递表达式	
电位特	征长度:	
σ	3.492e-10[m]	m
最小势能	能:	
$\epsilon/k_{\rm b}$	116.7	К
偶极矩:		
$\mu_{\rm D}$	0.2[D]	C∙m

Ŧ	物质类型	
物质	质类型:	
7	本体物质 🔹 👻	
本	体物质	i
表	面物质	
溶	剂	i

1 在模型开发器中,单击物质:N2 🧎。

2 在设置窗口,定位至物质类型栏,从物质类型列表中选择溶剂。

本例的下一阶段将建立实际的三维平推流反应器模型,包括反应、质量传递、 传热和流体流动。

生成空间依赖性模型1

生成空间依赖性模型特征可将在反应工程接口的平推流通道模型中设置的属性 导出至全三维整装模型。特别是,反应动力学、热力学和输运性能被传递至描 述空间相关系统的物理场接口。反应动力学均包含在 3D 模型中的化学接口 中。

- 1 在反应工程工具栏单击生成空间依 赖性模型 ↔ (或右键单击反应工 程 (re) ▲,并从菜单中进行选 择)。
- 2 在物理场接口栏:
 - 从**化学物质传递**列表中选择**多孔** 介质稀物质传递:新建。
 - 从**流体流动**列表中选择达西定 律:新建。
 - 从传热列表中选择**多孔介质传热** 律:新建。

由于质量平衡在计算中是必须考虑的 因素,因此在模型中为默认设置。稀 物质传递接口适用于气体与溶剂的混 合物,因此该设置无需进行更改。

3 转至空间相关的模型产生栏。单击 创建/刷新。将启动三维(默认在 组件设置栏中)组件设置。

设置 ▼ ₽
标签: Generate Space-Dependent Model 1
▼ 空间依赖模型产生
创建/刷新
▼ 分量设置
要使用的组件: 组件: 3D Model (3D)
▼ 物理场接口
化学物质传递 多孔介质稀物质传递: Transport of Diluted Species i ▼ 流体流动
达西定律: Darcy's Law 1 (dl) ▼
传热 多孔介质传热: Heat Transfer in Porous Media 1 (ht) ▼
▼ 研究类型
研究类型: 稳态 ▼

添加物理场接口和局部变量

除了**生成空间依赖性模型**接口,还以通过单击**主屏幕**工具栏上的**添加物理** 场 ¾ 来添加其他接口。

注: 在**组件 2** 中,三维模型中自动添加了**化学** 🛟 接口。其中包含**反应工程**接 口中的动力学、热学和传输属性设置。如有必要,可以直接在这个节点中进行 更改。

组件 2

首先重命名组件节点。

- 1 在模型开发器中,单击组件 2 (comp2)。
- 2 在标签文本框中输入三维模型。

变量 2

2 在**变量的设置**窗口,定位至**变量**栏。

3 在表中输入以下设置:

名称	表达式	单位	描述
S	chem.r_1/chem.r_2		选择性
а	A0*exp(-E0/(R_const*chem.T))	1/s	Arrhenius 修正

几何

使用**几何**节点来导入反应器几何模型文件。根据对称性,只需模拟整个反应器 几何结构的八分之一。

- 1 在**几何**工具栏中单击插入序列 🔜。
- 2 浏览至案例库文件夹

Chemical_Reaction_Engineering_Module\Tutorials 下的文件 monolith_3d_geom_sequence.mph。双击进行添加。

注:根据您的安装路径,本练习使用文件的位置有所不同。例如,如果软件安装在硬盘上,文件路径类似于

C:\Program Files\COMSOL54\applications\.

3 在**几何**工具栏上,单击**全部构建**。

定义 - 选择

模型设置的主要操作为向模型几何的域和边界指派特征。显式选择特征添加到 几何后可使这个过程更高效。导入的几何序列包含八个预定义的显式选择节 点。下表列出了这些选择的名称以及选定实体。

节点名称	选定的域或边界
支撑壁	域1
通道块	域 2、3、4、5 和 6
入口	边界 4、9、13、19 和 23

节点名称	选定的域或边界
出口	边界 30、31、32、33 和 34
对称	边界 2、3、6、8、15 和 18
入口壁	边界1
出口壁	边界 29
反应器表面	边界 27

要将域或边界指派给**显式**节点,方法是在几何中左键单击。可以将域或边界的 标识号添加到**输入实体**列表中。要移除选择,再次单击可进行切换。

除了上述**显式选择**节点外,序列中还包含一个**并集选择:入口端**,其中包含入口上的所有边界。此选择定义为**入口**选择和**入口壁**选择的并集。

几何工具栏上的选择 💊 菜单提供了更多的选择节点。

材料

下一步指定模型的材料属性。从可用材料库中选择随时可用的材料,也可以定义您自己的材料。

材料 1

1 在**主屏幕**工具栏中单击添加材料 👯。

2 在添加材料窗口中单击流体和气体 > Gases 下的 Nitrogen 😝 。

3 展开**添加到组件 十**,并单击**三维模型**。

4 在**主屏幕**工具栏,单击添加材料以关闭添加材料窗口。

在几何选择中分配材料,设置物理场接口中可用的物理属性。

Nitrogen

1 在模型开发器中单击材料下的 Nitrogen 非 。

2 在**材料的设置**窗口的**几何实体层**下,从选择列表中选择通道。

然后,创建用户定义的材料,并将其关联到支撑壁。

材料 2

- 1 在材料工具栏中单击空材料 🔋。
- 2 单击材料 2 非 , 并按 F2 键。
- 3 在**新名称**文本框中输入**壁**,然后单击 确定。
- 4 在材料设置窗口的几何实体层下,从 选择列表中选择支撑壁 № 。
- 壁
- 1 在**模型开发器**中展开**材料**下的**壁**节 点,单击**基本**。
- 2 在设置窗口中定位到**输出属性**栏。
- 3 单击表格下的**添加**按钮 🕂 ,将打开**物理量**对话框。
- 4 滚动列表,在常规分支中选择密度。您也可以在输入框中键入密度,然后单击过滤器 ➡ 按钮,搜索该物理量。

1 物理量	×
键入过滤文本	-
▲ 🚺 常规	
■ 活化能 (J/mol)	E
🚦 密度 (kg/m^3)	
Ⅰ 消光系数 (1/m)	
频率因子 (1/s)	
熱导率补充 (1)	
1) 汽阻因子 (1)	
🚺 含水量 (kg/m^3)	
▲ >>)) 声学	Ψ
	确定取消

- 5 单击确定,将密度添加为壁材料的输出属性。
- 6 在输出属性表格中输入以下设置:

属性	变量	表达式
密度	rho	2970[kg/m^3]

设置			₩
¹ ∕]74 标签: \	Walls		Ē
几何	实体选择		
几何实体	k层: 域		•
选择:	Object_selection: Supportin	g walls	•
	1	90 <mark>1</mark> 1	÷

- 7 使用**输出属性**表格下的**添加 十** 按钮,重复上述步骤,添加热容和导热系数。
- 8 添加**输送**分支中的**恒压热容**。
- 9 在输出属性表中输入以下设置:

属性	变量	表达式
恒压热容	Ср	975[J/kg/K]

10 添加**输送**分支中的**导热系数**。

11 在输出属性表中输入以下设置:

属性	变量	表达式
导热系数	{k_iso, kii =	35[W/m/K]
	k_iso, kij = 0}	

输出属性表应与下图相符。

输出属性					
"属性	变量	表达式	单位	大小	
密度	rho	2970[kg/m^3]	kg/m³	1x1	
恒压热容	Ср	975[J/kg/K]	J/(kg·K)	1x1	
导热系数	k_iso ; kii = k_iso, kij = 0	35[W/m/K]	W/(m·K)	3x3	

在下一阶段的建模中,设置物理场接口来描述整装反应器的传质、传热和流体 流动。

化学 1 (chem)

在**模型开发器**中,单击**全部折叠** ≣↑ 以获取更佳的模型树概览,便于剩余模型 设置。

将压力设为默认值,以计算质量传递接口的传递属性 (扩散率)。

- 1 单击展开三维模型,并单击化学 l (chem) 🛃 节点。
- 2 在化学的设置窗口,定位至模型输入栏。

3 在 p 列表中选择用户定义。在相应的文本框输入 1[atm]。

现在添加两个**流动耦合**特征和两个**温度耦合**特征,用于耦合不同物理场接口中 的流体速度和温度。

流动耦合

- 1 右键单击**模型开发器**树中的**多物理场 🧥** 节点,选择**流动耦合** 🛁。
- 2 保留已添加的流动耦合的默认设置。达西定律接口设为源,稀物质传递接口 设为目标。这意味着前一接口中求解的速度将应用于后一接口中。
- 3 右键单击**流动耦合 1** 🚽 并选择**生成副本** 👍。
- 4 在新建的流动耦合的设置窗口中,在目标列表中选择多孔介质传热(ht)。

温度耦合

- 1 右键单击模型开发器树中的多物理场 🧥 节点,选择温度耦合 🗗。
- 2 保留已添加的温度耦合的默认设置。多孔介质传热接口设为源,多孔介质稀 物质传递接口设为目标。这意味着前一接口中求解的温度将应用于后一接口。
- 3 右键单击**温度耦合 1** 🔐 节点,选择**生成副本** 🛶。
- 4 在新建的温度耦合的设置窗口中,在目标列表中选择达西定律(dl)。

此多物理场节点应如下图所示:

多孔介质稀物质传递接口

1 单击三维模型下的多孔介质稀物质传递 (tds) 题。

2 在设置窗口的域选择下,从选择列表中选择通道块。

多孔介质传递性能 1

整体式反应通道的质量传递模型中假设质量传递在反应器的轴向扩散,本例中 沿 x 轴。这可以通过仅指定对角扩散矩阵第一个元素的扩散率来实现。

1 展开**多孔介质稀物质传递 1 (tds)** 节点,单击**多孔介质传递属性 1** 节点 🏪。 节点左上角的 'D'表示这是默认节点。

2 在**设置**窗口的**基体属性**下,从**孔隙率**列表中选择**用户定义**,在关联文本框中 键入 0.75。

按如下步骤所示,填充**扩散**下的表格。注意**扩散系数**框中预定义的变量对应于 **生成空间依赖性模型**中设置的扩散系数表达式。

3 从 D_{cH20} 扩散系数列表中选择对角线。在表中输入以下设置:

root.comp2.chem.D_H20	0	0
0	0	0
0	0	0

4 对其余物质重复上述过程。将扩散吸收中 xx 分量以外的其他分量设为零。 扩散栏的设置应如下图所示:

▼ 扩散					
$D_{ej} = D_{F}$	= j				
流体材料:					
无				•	
流体扩散	系数:				
D _{F,cH20}	用户定义			•	
	comp2.chem.D_H2O	0	0		
	0	0	0	m²/s	
	0	0	0		
	对角线			•	
D _{F,cNH3}	用户定义				
	comp2.chem.D_NH3	0	0		
	0	0	0	m²/s	
	0	0	0		
	对角线				
D _{F,cN0}	用户定义				
	comp2.chem.D_NO	0	0		
	0	0	0	m²/s	
	0	0	0		
	对角线				
D _{F,c02}	用户定义				
	comp2.chem.D_O2	0	0		
	0	0	0	m²/s	
	0	0	0		
	对角线				
有效扩散	系数模型:				
无修正				•	

在**生成空间依赖性模型**过程中,会自动设置用于定义反应速率和入口浓度的特征。这些定义对应于为平推流通道模型指定的反应器条件。确保在三维反应器的正确域和边界中指派了特征。

流入 1

1 在模型开发器中单击多孔介质稀物质传递1下的流入1 📻。

2 在**流入的设置**窗口中,从选择列表中选择入口。

流出1

1 在模型开发器中单击流出1 🕞。

2 在**流出的设置**窗口中边界选择下,从选择列表中选择出口。

多孔介质传热 1

现在可以设置**多孔介质传热**接口了。先定义支撑固体壁的热传导,注意壁面物 理属性来自与该域关联的**壁**材料节点。

固体1

2 在物理场工具栏中单击域,选择固体 😑。

3 在设置窗口的域选择下,从选择列表中选择**支撑壁**。

然后定义**多孔介质流体**特征,考虑通道块内的对流传热和传导传热。

多孔介质1

2 在热传导,液体栏下的导热系数(k)列表中选择用户定义,并从列表中选择 对角线。

通过指定对角线矩阵元素,您可以描述通道内部的各向异性热传导。

3 在 k 表格中输入以下设置:

0.13[W/(m*K)]	0	0
0	0.25[W/(m*K)]	0
0	0	0.25[W/(m*K)]

4 在热力学,流体栏下,从密度(ρ)、恒压热容(C_p)和比热率(γ)的列表中均选 择来自材料。

• ‡	热力学,流体
流体	类型:
5	体/液体 🗸 🗸
密度	:
ρ	来自材料
恒压	热容:
C_p	来自材料
比热	<u>率</u> :
γ	来自材料

5 在**静止固体**下,添加固体的体积分数,即在**体积分数**字段中输入 0.25。

6 在热传导,多孔基体和热力学,多孔基体下,保留根据材料定义的属性。

<u>熱源</u>1

将放热化学物质的热源与通道块关联。请注意描述热源的特征和表达式是**生成** 空间依赖性模型特征生成的。

1 在**多孔介质传热 1 (ht)** (题下,单击热源 1 🚍。

2 在设置窗口的域选择下,从选择列表中选择通道块。

设置边界条件

指派温度、流出、热通量和对称边界,完成**传热**接口的设置。

1 单击**温度1**节点 🔲 。在**设置**窗口的**边界选择**下,从**选择**列表中选择入口。

2 单击**流出 1** 节点 🔲 。在**设置**窗口的**边界选择**下,从**选择**列表中选择出口。

- 3 在物理场工具栏,单击边界,并选择温度 📄。
- 4 在设置窗口的边界选择下,从选择列表中选择入口壁。在温度(T₀)文本框输入T_in。
 - 现在,模型开发器中的节点应与下图相符。
- ▲ 💕 多孔介质传热: Heat Transfer in Porous Media 1 *(ht)*
 - ➢ 多孔介质: Porous Medium 1
 - ╊ 初始值: Initial Values 1 ■ 热绝缘: Thermal Insulation 1
 - 热源: Heat Source 1
 - 温度: Temperature 1
 -) 固体: Solid 1
 - 📄 温度: Temperature 2
- 5 在**物理场**工具栏中单击**边界**,选择 **热通量** —。
- 6 在热通量的设置窗口中,从边界选择下的列表中选择反应器表面。

▼ 边界选择			
选择: [Object_selection: Reactor surface		•
活动	27	م ت ب	+

- 7 单击**热通量**下的**对流热通量**按钮。
 - 在传热系数(b) 文本框输入
 10[W/(m²*K)]。
 - 在**外部温度 (T_{ext})** 文本框输入 T_amb。
- 8 在物理场工具栏中单击边界,添加 第二个热通量节点 ■。
- 9 在**设置**窗口:
 - 从**边界选择**下的列表中选择出口 壁。

Ŧ	热通量				
0	广义向内热通量				
0	对流热通量				
<i>q</i> 0 :	$= h \cdot (T_{ext} - T)$				
传热	热系数:				
A	用户定义	•			
传热	热系数:				
h	10[W/(m^2*K)]	W/(m²·K)			
外音	外部温度:				
T e	xt 用户定义	▼			
	T_amb	К			

- 单击**热通量**下的**对流热通量**按钮。在**传热系数(***h***)** 文本框中输入 1, 在**外 部温度(***T*_{ext}**)** 文本框输入 T_amb。
- 10 在物理场工具栏中单击边界,选择对称 📻 。
- 11 在对称的设置窗口中,从边界选择下的列表中选择对称。

模型开发器下多孔介质传热的节点序列应如下图所示。

达西定律接口

按照以下步骤设置**达西定律**接口,描述流体流动模型。

- 1 在模型开发器中单击三维模型下的达西定律 (dl) 节点 👒。
- 2 在设置窗口的域选择下,从选择列表中选择通道块。

流体和基体属性1

- 1 展开**达西定律** (dl) 节点,单击流体和基体属性 1 🍋。
 - ▲ 驠 达西定律: Darcy's Law 1 *(dl)*
 - 🔚 流体和基体属性: Fluid and Matrix Properties 1
 - 冒 无流动: No Flow 1
 - 🔚 初始值: Initial Values 1
- 2 在流体属性下,从密度 r 和动力粘度 m 列表中选择来自材料。

3 在**基体属性**下:

- 从**孔隙率 εp** 列表中,选择**用户定义**, 在相关文本框中输入 0.75。
- 从**渗透率** κ 列表中,选择**用户定义**, 在相关文本框中输入 3.3e-7。

边界条件即在整装反应器的入口和出口中指定。

•	基体属性
多孔	材料:
域	材料・
孔隙	率:
$\epsilon_{\rm p}$	用户定义
	0.75 1
渗透	率模型:
渗	透率
渗透	率:
κ	用户定义
	3.3e-7[m^2] m ²
	各向同性 🔻

 $\lambda \Box l$

- 1 在 达西定律 1 节点下单击入口 🕞。
- 2 在设置窗口的边界选择下,从选择列表中选择入口。
- 3 在入口栏的法向流入速度 U0 中, 输入 vrate/A。

压力1

- 1 在**物理场**工具栏中单击边界,选择压力 📄。
- 2 在**边界选择**列表中,选择出口。

出口1

3 移除不使用的出口1节点 ■,方法是右键单击该节点并选择删除 前。

这样就完成了反应流和传热模型的建立。**三维模型**下方的节点序列应与下图 相符。

进行数值求解之前,需要对几何结构进行网格离散。

网格

首先在反应器入口面创建非结构化网格,然后再沿着反应器的轴向扫掠网格, 以完成网格。

1 在**网格**工具栏,从**边界** 🛆 菜单下选择**自由三角形网格** 🔕 。

- 2 在自由三角形网格的设置窗口中,从边界选择下的列表中选择入口。
- 3 右键单击**自由三角形网格** 1 📐 , 并选择**大小** <u>▲</u>。
- 4 在大小的设置窗口:
 - 从选择列表中选择入口壁。
 - 在**单元大小**栏单击**定制**按钮。
 - 在**单元大小参数**栏选择**最大单元大小**复选框,然后在文本框中输入 2.2。 请注意长度单位为 mm。这是由**几何**节点控制的。
 - 选中狭窄区域分辨率复选框,并在文本框中输入 0.85。

▼ 单元大小参数	
☑ 最大单元大小:	
2.2	mm
■ 最小单元大小:	
6.48	mm
■ 最大单元増长率:	
1.5	
□ 曲率因子:	
0.6	
☑ 狭窄区域分辨率:	
0.85	

- 5 在**网格**工具栏中单击扫掠 🪲。
- 6 右键单击扫掠 1 🚲 , 并选择分布 🎹 。
 - ◢ 🛕 网格: Mesh 1
 - ▲ 大小: Size
 - 🔺 🗟 自由三角形网格: Free Triangular 1
 - A 大小: Size 1
 - ◢ 🖗 扫掠: Swept 1
 - I 分布: Distribution 1 □
- 7 在分布的设置窗口的单元数文本框中输入 20。

8 单击**全部构建**按钮 ■,然后单击图形工具栏中的缩放到窗口大小按钮 , 观察整个几何结构。

研究 2

现在,求解整装反应器模型。注意不应在空间相关的模型中计算**反应工程**接口,它只能在0维的模型中求解。因此保留默认的研究设置。

1 右键单击研究 2 并按计算 =。

结果 — 三维模型

根据以下步骤创建三维整装反应器模型结果,如图8、图9和图10所示。

三维绘图组7-转换

- 1 在模型开发器的结果下,单击展开三维绘图组 6 间。
- 2 在设置窗口的标签文本框中输入转换 3D 模型。
- 3 右键单击**切面**1 节点并选择**禁用** ⊘。

- 4 右键单击转换 3D 模型节点 间 ,并选择等值面 💓 。
- 5 在**设置**窗口中定位到表达式文本框,输入 (F_NO_in/vrate-cNO)/ (F_NO_in/vrate)。此绘图显示了反应器中的 NO 转换。

▼ 表达式	∎ •	4	•
表达式:			
(F_NO_in/vrate-cNO)/(F_NO_in/vrate)			
单位:			
1			•
□ 描述:			
(F_NO_in/vrate-cNO)/(F_NO_in/vrate)			

- 6 在总水平数文本框中输入 20。
- 7 在**图形**工具栏,单击**缩放到窗口大小** 뒢 按钮。
- 8 单击**绘制**按钮 💿 。

图形窗口中会显示图 8 所示的绘图。

温度 (htl)

- 1 单击展开温度(htl)节点 🛅。
- 2 在设置窗口的标签文本框中输入温度三维模型。
- 3 右键单击**表面**节点 🟹,并选择**禁用 ⊘**。
- 4 在**温度三维模型**工具栏上,单击**切面** 🗎 。
- 5 单击选中切面 1 🐚 节点。
- 6 在表达式栏,单击替换表达式 ↓ 按钮。从列表中选择三维模型 > 多孔介 质传热1 > 温度(T),或在表达式文本框中输入T。
- 7 在平面数据栏的平面数文本框中输入 10。
- 8 在**图形**工具栏,单击**缩放到窗口大小** 🔂 按钮。
- 9 单击**绘制**按钮 💿 。

图形窗口中会显示图 9 所示的绘图。

数据集

要生成选择性参数 S 的绘图, 首先定义将通道块切割成两半的镜像平面的 数据集。

1 在结果工具栏中单击**更多数据集**,选择**表面** ,

4 📗 数据集: 数据集

- 🎬 解: Study 1/Solution 1 *(sol1)*
- 🏢 解: Study 1/Parametric Solutions 1 *(sol2)*
- 🏢 解: Study 1/Kinetics *(sol9)*
- 🏢 解: Study 1/Nonisothermal *(sol22)*
- 篇解: Study 1/Nonisothermal 2 *(sol32)*
- [解: Study 2/Solution 36 *(sol36)*
- 🔄 表面: Surface 1
- 2 仅选择边界 6 和 15 (通道块上的顶部对称边界)。

二维绘图组 14 - 三维模型选择性

- 1 在**主屏幕**工具栏,单击**添加绘图组 📭**,并选择**二维绘图组 📕 。**
- 2 在已创建的二维绘图组 13 的设置窗口中,在标签文本框中输入:三维模型选择性。
- 3 在三维模型选择性的主屏幕工具栏单击表面 ■。
- 4 在设置窗口中,单击替换表达式按钮 ↓ · 。选择三维模型 > 定义 > 变量 > S-选择性 (或在表达式文本框中输入 S)。
- 5 右键单击**表面 1**,并选择高度表达式 **4**]。
 - ▲ 二维绘图组: Selectivity 3D Model ▲ ■ 表面: Surface 1 ▲ ■ 高度表达式: Height Expression 1
- 6 在**图形**工具栏,单击**缩放到窗口大小** 뒢 按钮。
- 7 单击**绘制**按钮 💿 。

图形窗口中会显示图 10 所示的绘图。

可以删除不使用的绘图组,方法是右键单击并选择删除 📺 。