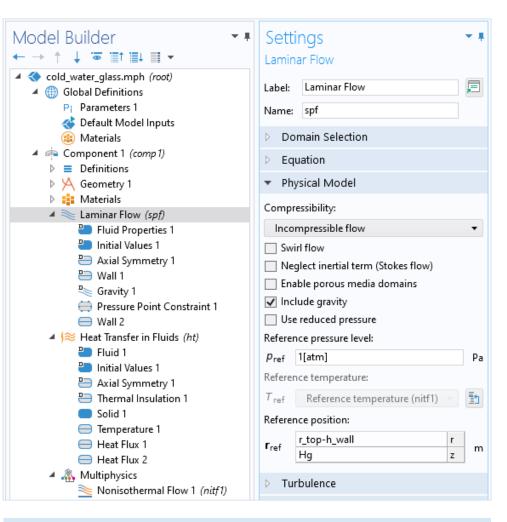

COMSOL Multiphysics[®] Conjugate Heat Transfer

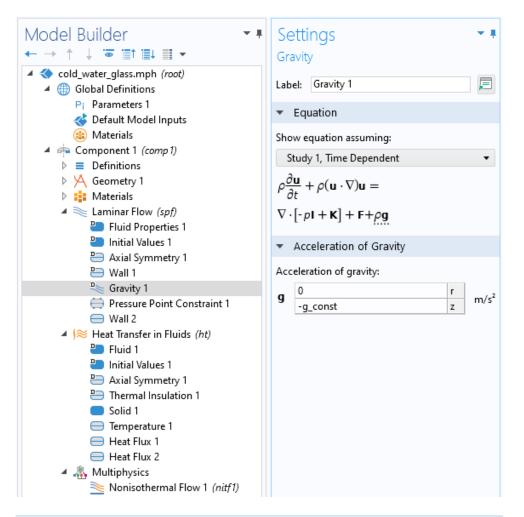
Flow Interfaces, Settings


- Incompressible flow: constant density
- Weakly compressible flow: density is computed at reference pressure but may otherwise depend on other variables
- Compressible flow: density may depend on pressure and of any other dependent variable

The laminar (shown above) and turbulent flow interfaces allow you to select compressibility option: Incompressible, weakly compressible, or compressible flow.

Gravity Property

- Includes a volume force on all domains,
 $F = \rho g$
- Boussinesq approximation for incompressible flow
- For weakly compressible and compressible flow, density varies in all instances in the flow equations
- For compressible flow, the full pressure field is used to describe density

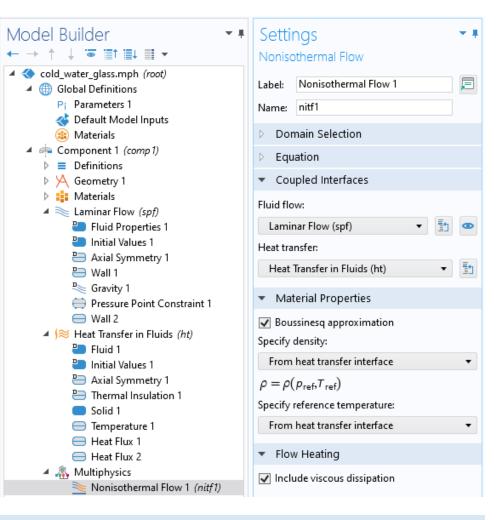


$$\rho = \rho_0 \left(1 - \alpha_p (T_0) (T - T_0) \right) \qquad \rho = f(T)$$

For incompressible flow, density variations are only included in the volume force term in the Navier-Stokes equations. These can be accounted for through a linearized expression (left). For weakly compressible and compressible flow, density variations are introduced in all the instances in the flow equations using a generical density function (right). Note that other variables can be used for density variations, for example composition. For compressible flow, density is also a function of pressure.

Gravity Property

- Includes a volume force on all domains,
 $F = \rho g$
- Boussinesq approximation for incompressible flow
- For weakly compressible and compressible flow, density varies in all instances in the flow equations
- For compressible flow, the full pressure field is used to describe density

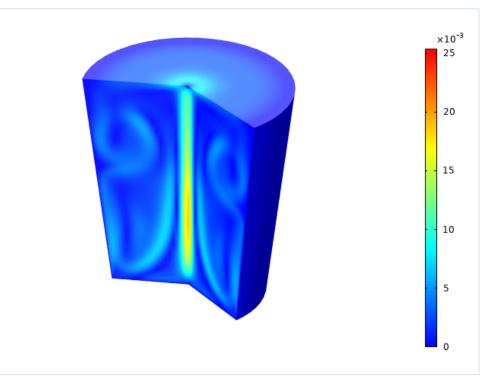


$$\rho = \rho_0 \left(1 - \alpha_p (T_0) (T - T_0) \right) \qquad \rho = f(T)$$

For incompressible flow, density variations are only included in the volume force term in the Navier-Stokes equations. These can be accounted for through a linearized expression (left). For weakly compressible and compressible flow, density variations are introduced in all the instances in the flow equations using a generical density function (right). Note that other variables can be used for density variations, for example composition. For compressible flow, density is also a function of pressure.

Gravity Property

- Includes a volume force on all domains,
 $F = \rho g$
- Boussinesq approximation for incompressible flow
- For weakly compressible and compressible flow, density varies in all instances in the flow equations
- For compressible flow, the full pressure field is used to describe density

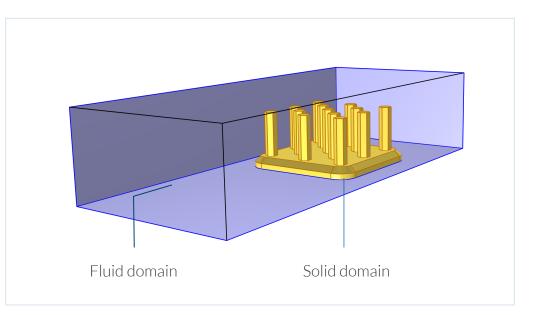

$$\rho = \rho_0 \left(1 - \alpha_p (T_0) (T - T_0) \right) \qquad \rho = f(T)$$

For incompressible flow, density variations are only included in the volume force term in the Navier-Stokes equations. These can be accounted for through a linearized expression (left). For weakly compressible and compressible flow, density variations are introduced in all the instances in the flow equations using a generical density function (right). Note that other variables can be used for density variations, for example composition. For compressible flow, density is also a function of pressure.

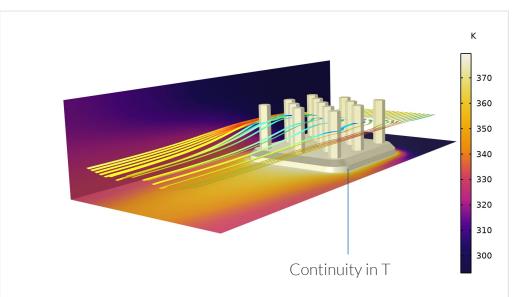
Incompressible Flow

- Introduces a volume force in the momentum equations:
 F = ρg
- Boussinesq approximation:

$$\rho = \rho_0 \left(1 - \alpha_p (T_0) (T - T_0) \right)$$



Free convection in a water glass solved using incompressible flow. This assumption is appropriate for small density variations.


Conjugate Heat Transfer

Conjugate Heat Transfer with Laminar Flow

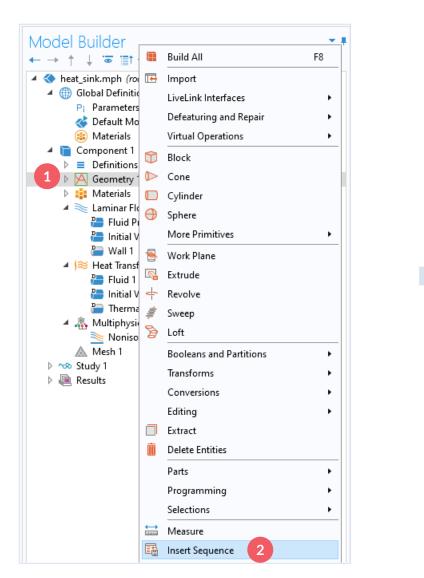
- Fluid flow, conduction, and convection in the fluid domain
- Conduction in the solid domain
- Heat transfer between fluid and solid domain:
 - No-slip condition gives continuity in heat flux and temperature at the fluid-solid interface

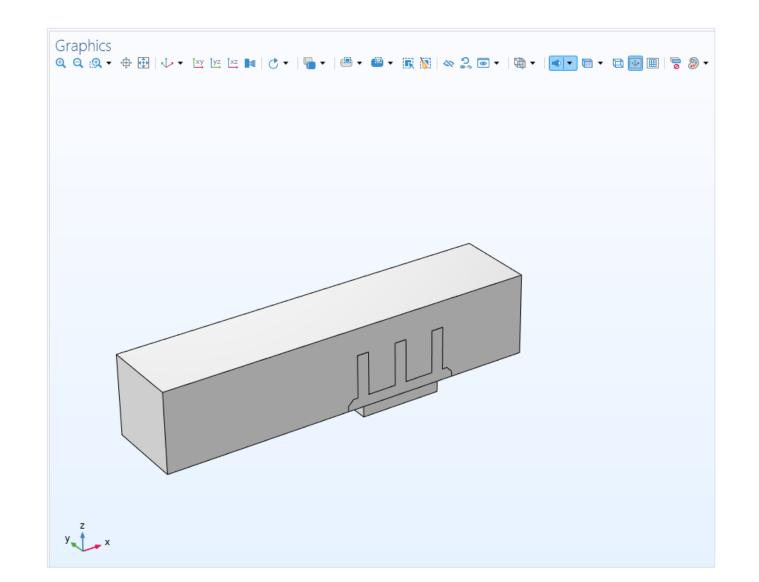
There is a continuity in temperature over the solid-fluid interface.

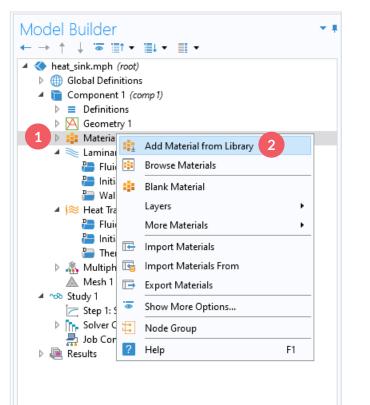
THE FIRST STEP The Model Wizard

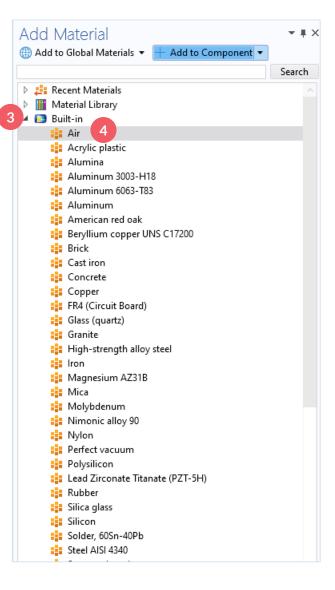
When creating a new model, the Model Wizard assists with selecting:

- Dimension (3D, 2D, 1D, or 0D)
- Physics interface(s) from the physics list
- Study for the physics interfaces

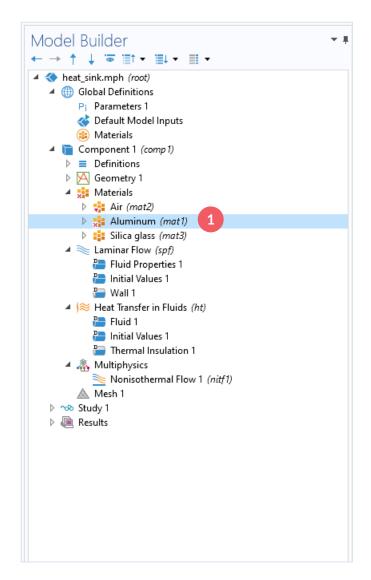

 Recently Used Joule Heating Transport of Concentrated Species (tcs) Laminar Flow (spf) Heat Transfer in Solids (ht) Radiation in Participating Media (rpm) AC/DC M) Acoustics Chemical Species Transport Electrochemistry Fluid Flow 	Search
 Joule Heating Transport of Concentrated Species (tcs) Laminar Flow (spf) Heat Transfer in Solids (ht) Radiation in Participating Media (rpm) AC/DC M Acoustics Chemical Species Transport Electrochemistry 	~
 Single-Phase Flow Multiphase Flow Porous Media and Subsurface Flow Nonisothermal Flow Laminar Flow Large Eddy Simulation Rotating Machinery, Nonisothermal Flow Nonisothermal Pipe Flow (nipfl) High Mach Number Flow Service Tracing 	
 Fluid-Structure Interaction Rarefied Flow Thin-Film Flow If Heat Transfer I 0 ptics Plasma 	
s holles e e	Add
Added physics interfaces:	
🗮 Laminar Flow (spf)	
 Image: Image: Im	

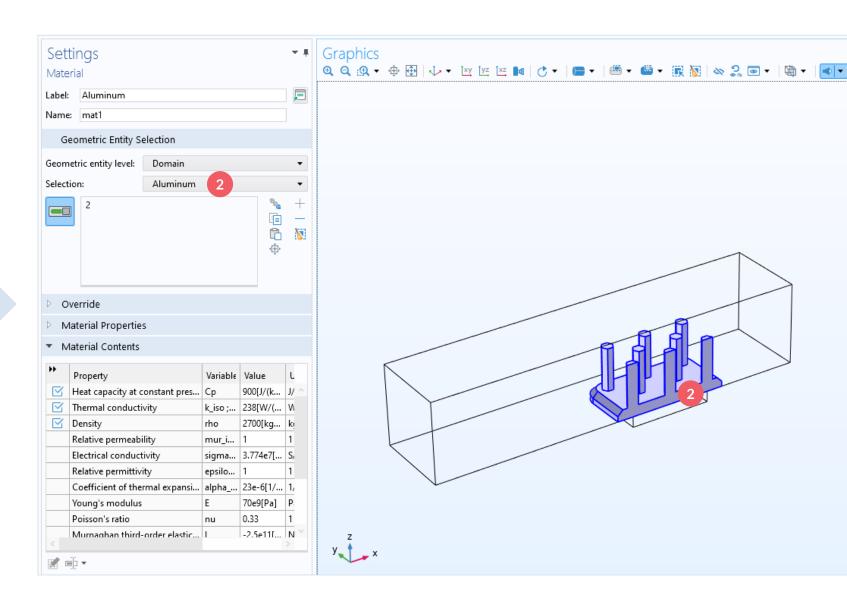

Select Study 🔺 General Studies 🔁 Stationary 🛝 Time Dependent vo Preset Studies for Selected Physics Interfaces \infty Heat Transfer in Fluids Preset Studies for Selected Multiphysics 🗁 Stationary, One-Way NITF 🛝 Time Dependent, One-Way NITF More Studies \infty Empty Study Added study: Stationary Added physics interfaces: 📚 Laminar Flow (spf) (≈ Heat Transfer in Fluids (ht) A 🍇 Multiphysics Nonisothermal Flow (nitf1)

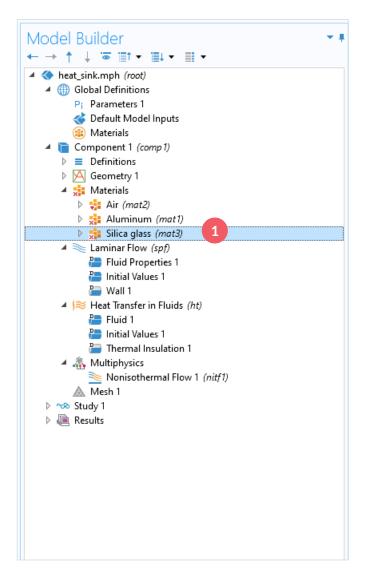

- 1. Select Model Wizard.
- 2. Select space dimension.
- 3. Select physics interfaces.
- 4. Select study.


Remove

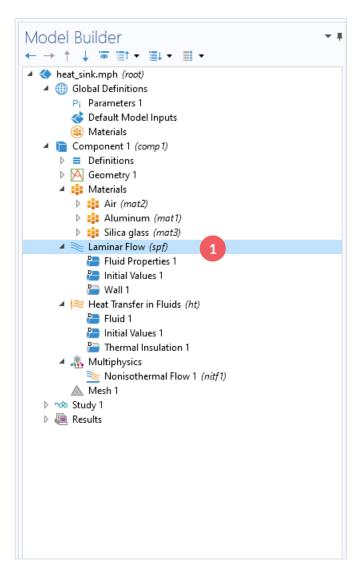
Geometry (right click) -> Insert Sequence -> "cht_laminar_demo" model

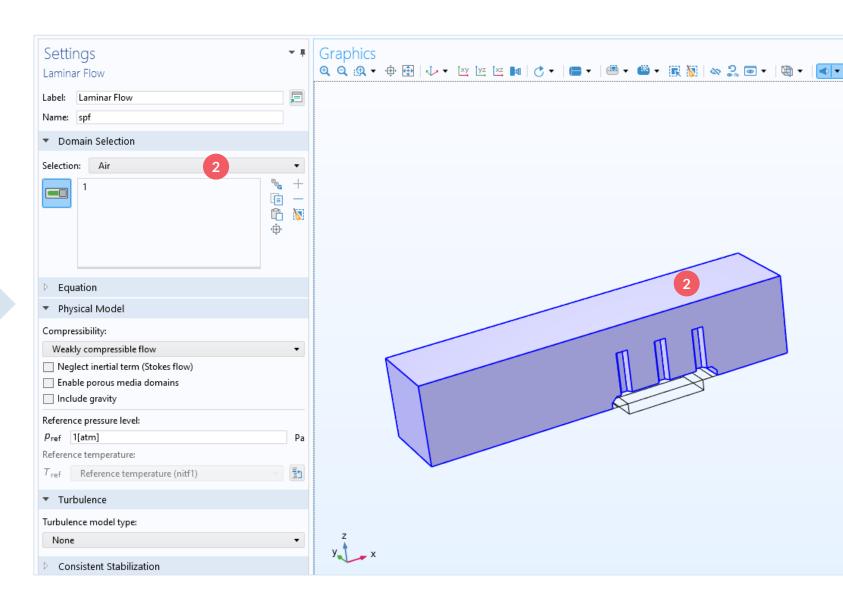


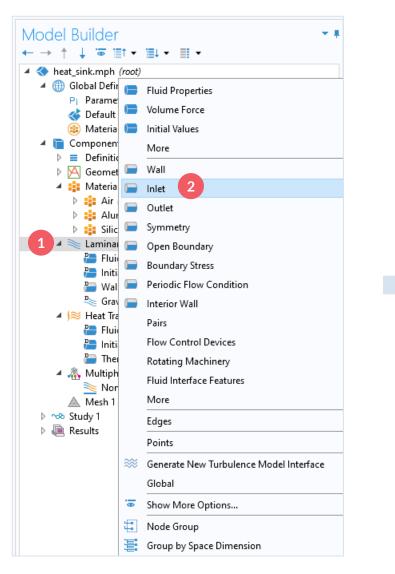


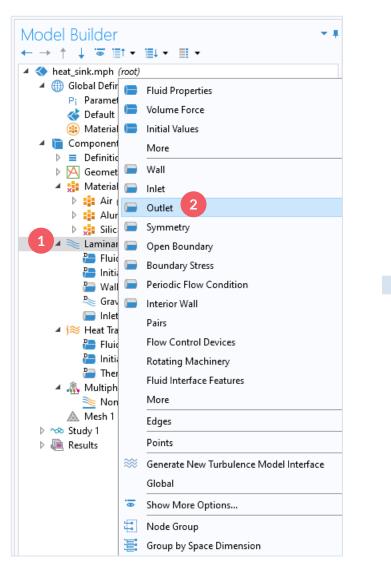

Also add Aluminum and Silica Glass Materials from Built-in Library

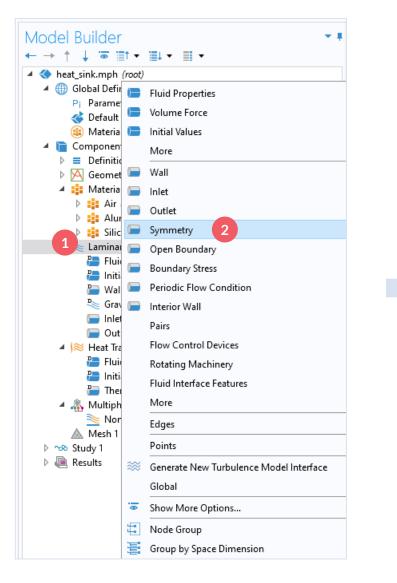
Aluminum -> Add to Component

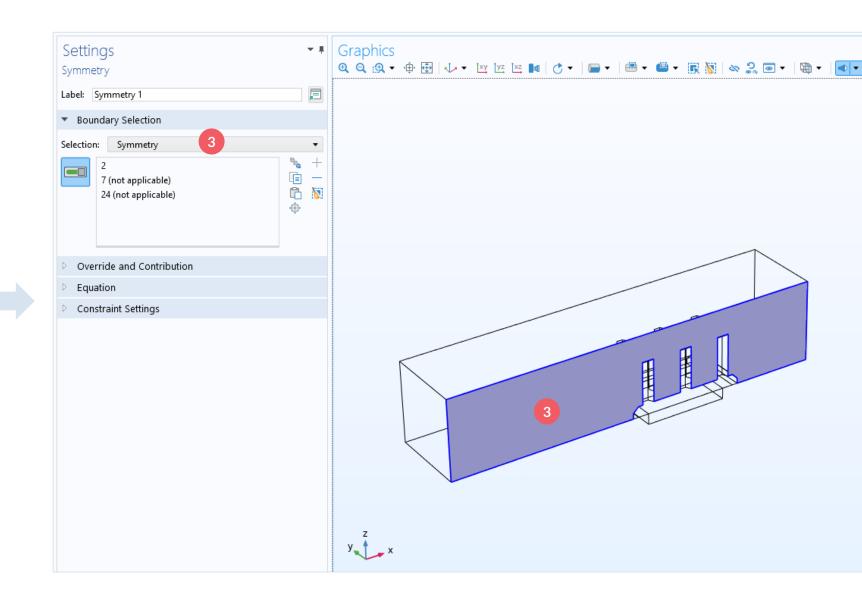

Silica Glass -> Add to Component



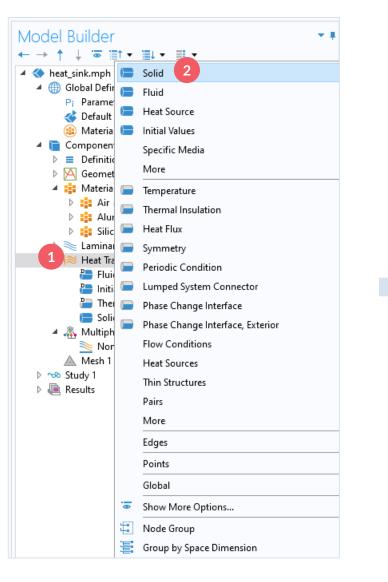


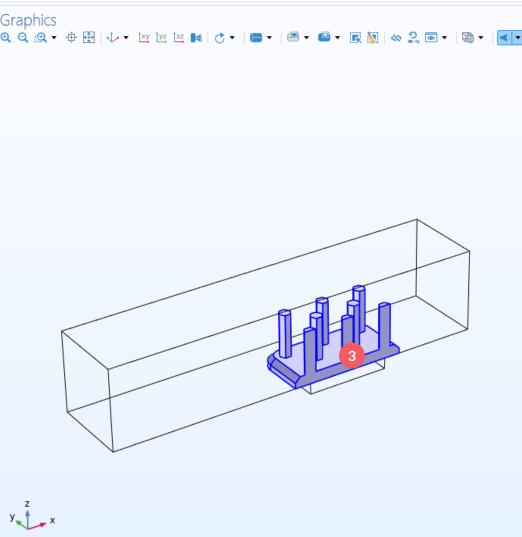

Mater				• •	Graphics ବ୍ର୍ବ୍ ଜ୍ୟ •	÷	↓•	xy yz	İxz	a C	• (•	.		• [1	20	ຽ	•	- 14	€ •	
	Silica glass																					
Name:	mat3																					
Ge	ometric Entity Selection																					
Geome	tric entity level: Domain			•																		
Selectio	on: Silica Glass	2		•																		
	3		÷	+ - 3												_	_	1		>	h	
> Ov	erride											/					_	+				
> Ma	aterial Properties								_							Ħ						
	aterial Contents											£	71	Ħ	ĥ	Lf	7	\frown				
	atenar contents												1	Ħł		L				>		
_	Property	Variable		L		\square			/		_		Ð	押		L.	Ł,	_	/			
	Heat capacity at constant pres		703[J/(k				\checkmark					R.		P	سر	\geq	r					
	Density	rho	2203[kg	_								0	\triangleleft	-		2						
	Thermal conductivity	k_iso ;		_			\perp															
	Relative permeability	mur_i		1		6				_												
	Electrical conductivity		1e-14[S/																			
			0.55e-6[$\backslash $															
	Relative permittivity	epsilo		1																		
	Young's modulus	E	73.1e9[P	P																		
	Poisson's ratio	nu	0.17	1																		
<	Refractive index real part	n iso '		1 ~	y z x																	
	[•				y x																	

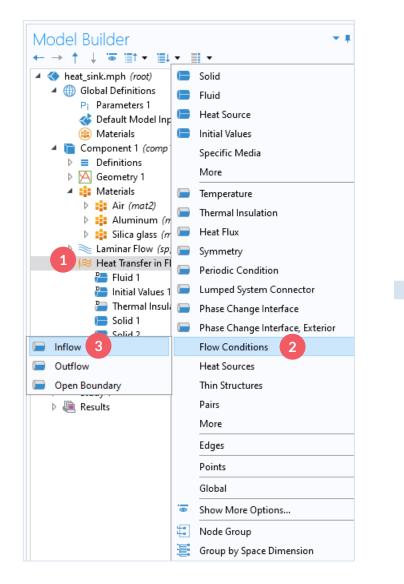




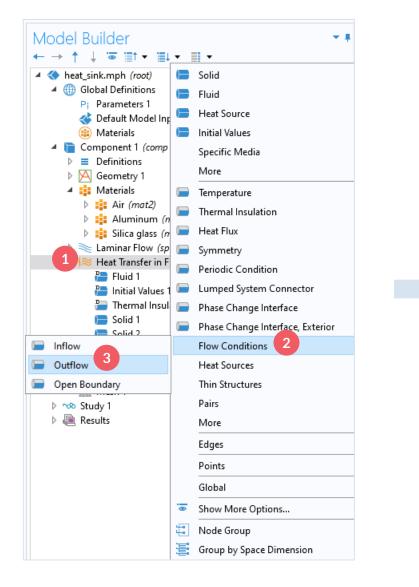

Settings Inlet	* #	Graphics Q Q ℜ ▼ ⊕ ⊕ ↓ ▼ ⊠ ⊵ ⊵ № ♂ ▼ ■ ▼ ≝ ▼ ⊜ ▼ ℝ 阪 ∞ 品 ■ ▼ ⊕ ▼ ●▼
Label: Inlet 1	F	
 Boundary Selection 		
Selection: Inlet 3	• • • •	
Override and Contribution		
Equation		
 Boundary Condition 		E 3
Fully developed flow 4 Image: Apply condition on each disjoint selection separately	• y	
 Fully Developed Flow 		
 Average velocity Flow rate Average pressure Average velocity: Uav U0 	m/s	
Constraint Settings		
		y z x

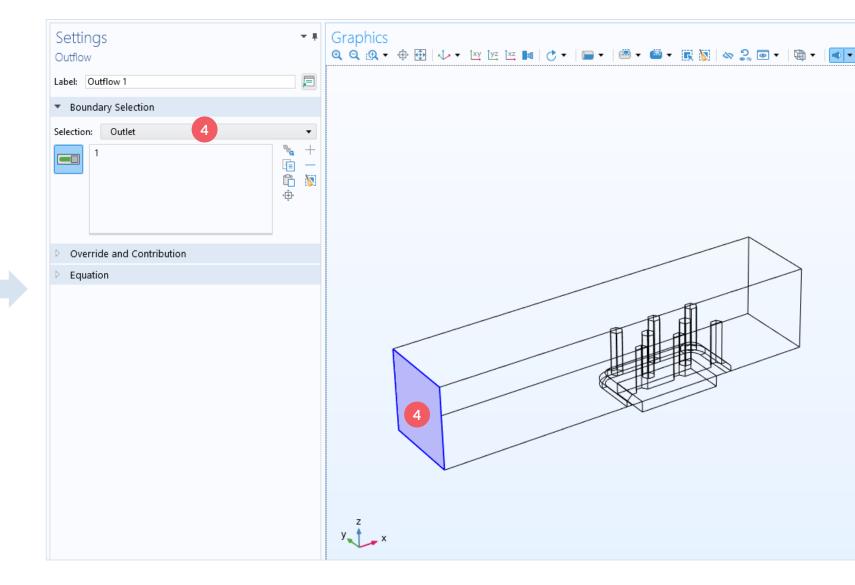

Settings Outlet Label: Outlet 1	• •	Graphics @
 Boundary Selection 		
Selection: Outlet	•	
1	+ - 🐹	
Override and Contribution		
Equation		
 Boundary Condition 		RT I
Pressure	•	
 Pressure Conditions P₀ 0 Normal flow Suppress backflow 	Pa	3
Constraint Settings		y ^z y ^z
		1

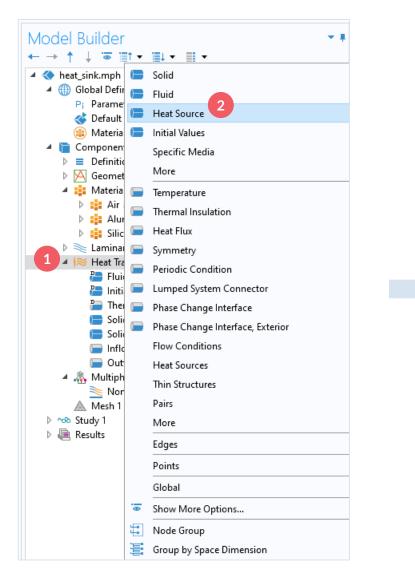


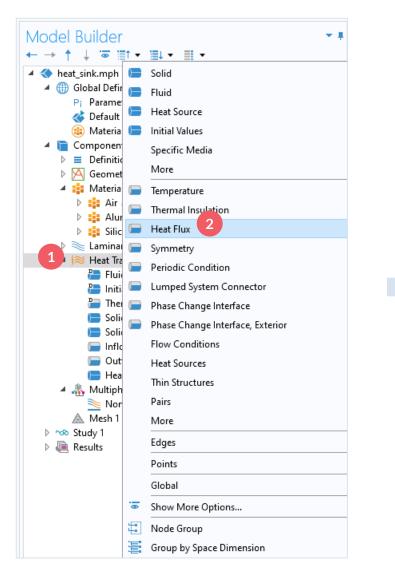


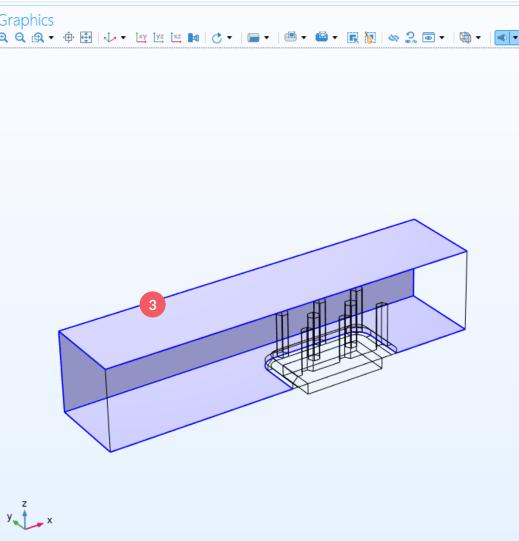
Settings ^{Solid}		* #	Graphics @ @ @ •	¢.		×y y	z txz) -			· 👜 •	R	X	an 5) ॄ @ ▼		
Label: Solid 2		F																
 Domain Selection 																		
Selection: Silica Glass 3		•																
3	÷	+ - 10														•		
Override and Contribution														_		$\left \right>$		
▷ Equation											/						\rightarrow	
 Model Input 									/				Æ	_		T		
Volume reference temperature:						/					~	Ħ	A	_P				
T ref Common model input ▼	Ē	#									11 .		THE REAL				\leq	
Temperature:	=.			\square		_			_				Ŧ	₹ \$	5			
T Temperature (ht) Absolute pressure:	Ē1				\searrow			/		¢			٣					
PA Absolute pressure (nitf1)	1									_	X		3					
 Coordinate System Selection 				$\left\langle \right\rangle$														
Coordinate system:						/												
Global coordinate system	•	=+]			ţ.													
 Heat Conduction, Solid 																		
Thermal conductivity:			y z x															
k From material		•																

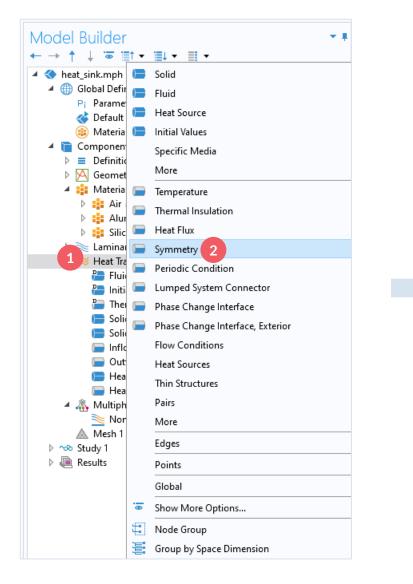


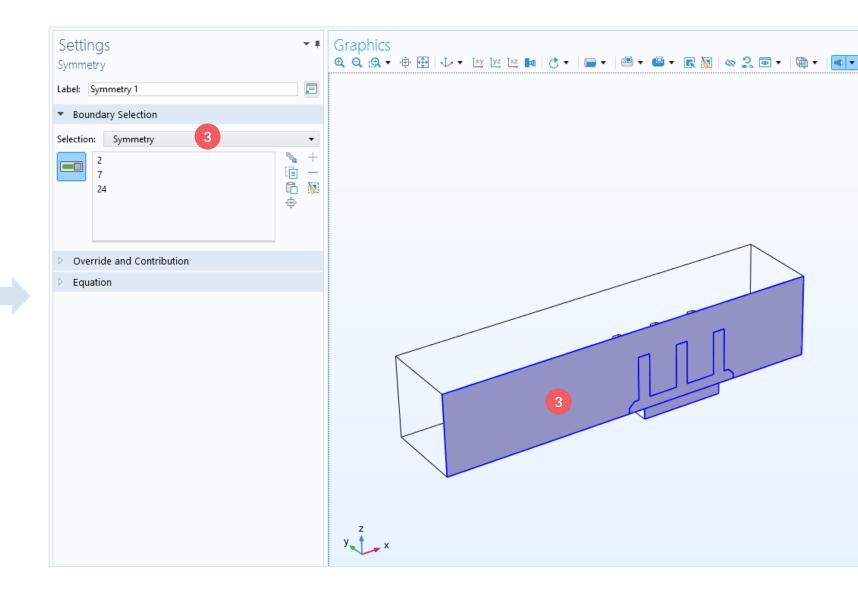

Settings ^{Solid}		* #	Grapl ବ୍ୟୁ ବ୍ୟୁ
Label: Solid 1		F	
 Domain Selection 			
Selection: Aluminum 3		•	
2	÷	+ - 5	
Override and Contribution			
Equation			
 Model input 			
Volume reference temperature:			
T _{ref} Common model input •	Ē	:	
Temperature:			
T Temperature (ht)	Ē1		
Absolute pressure:			
PA Absolute pressure (nitf1)	1		
 Coordinate System Selection 			
Coordinate system:			
Global coordinate system	•	Ē	
 Heat Conduction, Solid 			
Thermal conductivity:			z v 🌢
k From material		•	,

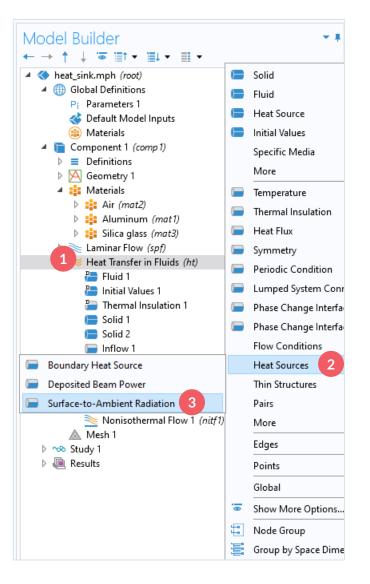



Settings - Inflow	Graphics ❹, Q, @, ▼ ⊕ ⊕ ↓→ ▼ ஊ ஊ ■ ♂ ▼ ■ ▼ ≝ ▼ ■ ▼ ℝ 阪 ∞ ⋧ ■ ▼ ആ ▼ ◀ ▼
Label: Inflow 1	
 Boundary Selection 	
Selection: Inlet 4	
77 78 6 6 6 6 6 6 6 6 6 6 6 7	
Override and Contribution	
Equation	
 Upstream Properties 	
Upstream temperature: T _{ustr} User defined	
Tustr User defined	
Specify upstream absolute pressure	
	y z x

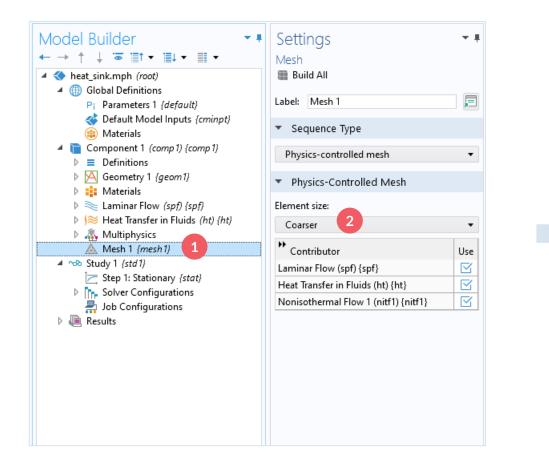


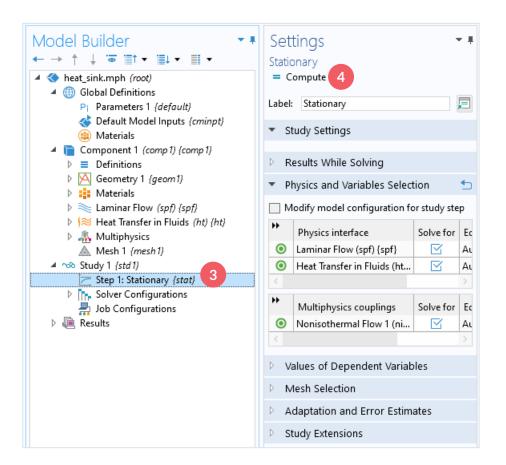


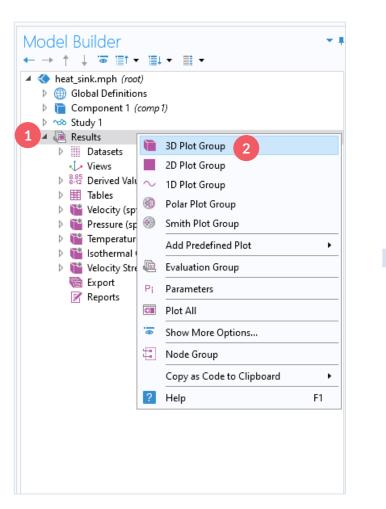

Settings Heat Source	* #	Graphics @, Q, ⊕, ▼ ⊕ ⊕ ↓ ▼ ⋈ ⋈ ⋈ ⋈ ∎ ▼ ■ ▼ ≝ ▼ ≝ ▼ ℝ 阪 ∞ 2 ⊡ ▼ ⊕ ▼ ■ ▼
abel: Heat Source 1	F	
 Domain Selection 		
Selection: Silica Glass 3	•	
3	+ - ×	
Override and Contribution		
Equation		
 Material Type 		
Material type:		
Solid	•	
 Heat Source 		
Heat source:		
Heat rate 4 P0 P0/2	• W	
10 FV/2		y ^z _x
		y X



Settings Heat Flux	* #	Grap
Label: Heat Flux 1		
 Boundary Selection 		
Selection: Exterior Walls 3	•	
3 4 5 6 (not applicable) 9 (not applicable) 10 (not applicable)	-	
Override and Contribution		
Equation		
 Material Type 		
Material type: Nonsolid	•	
▼ Heat Flux		
Flux type:		
Convective heat flux 4	•	
Heat transfer coefficient:		
User defined	•	
Heat transfer coefficient:		
h 5 5 W/(r	n²∙K)	
External temperature:		
T _{ext} User defined ▼	Ē	7
293.15[K] K		У

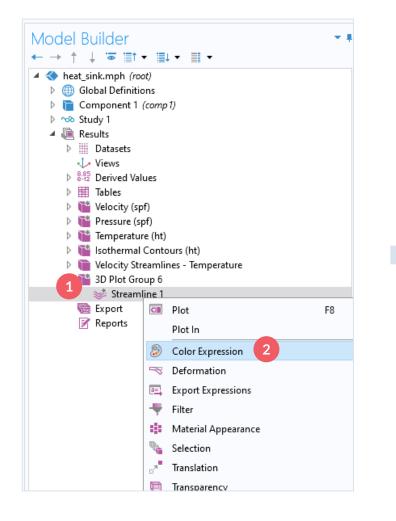


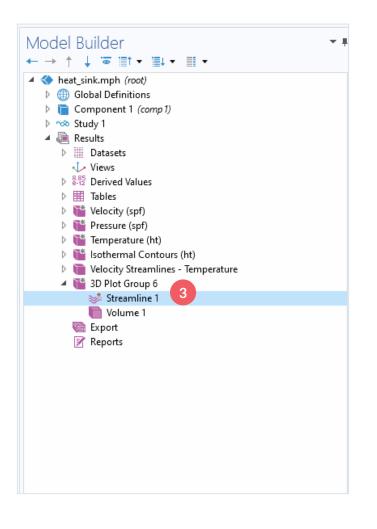


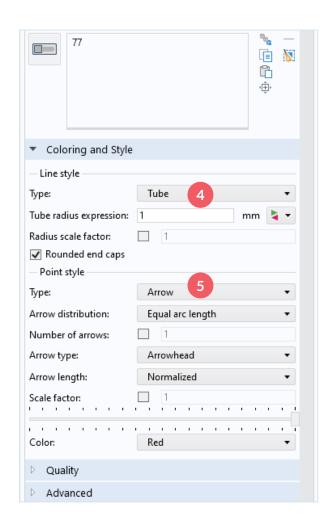


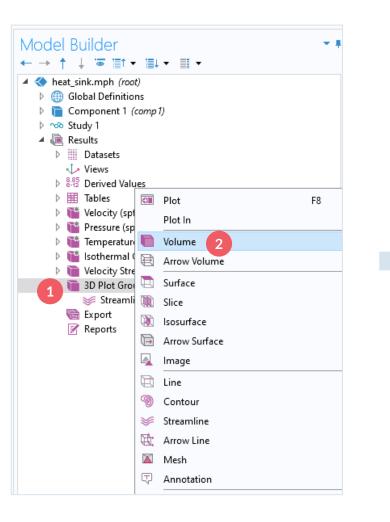
Surface-to-Ambient Radiation	• •	Graphics @
 Boundary Selection 		
Selection: Exterior Walls 4	•	
71	+ -	
Override and Contribution		
▷ Equation		
 Model Input 		
Radiation Settings		
 Surface-to-Ambient Radiation 		
Surface emissivity:		
ε User defined 5	•	
0.9] 1	
Ambient temperature:		
293.15[K]	к	y z x

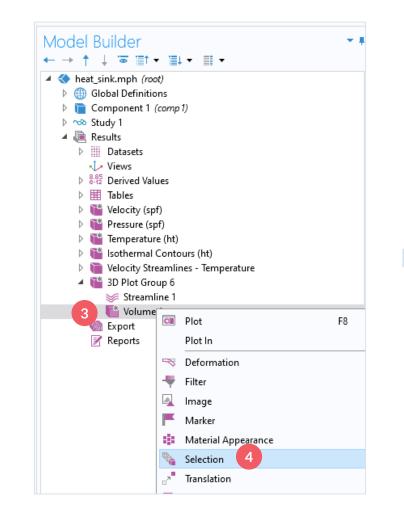
• -

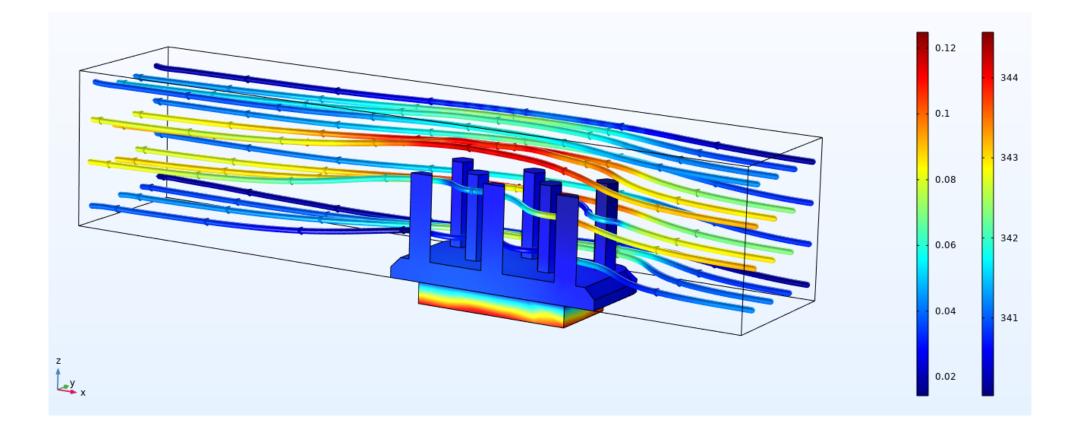


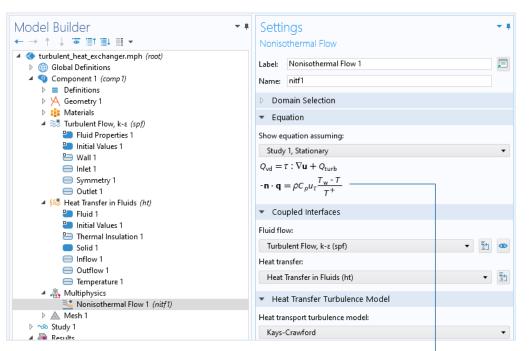




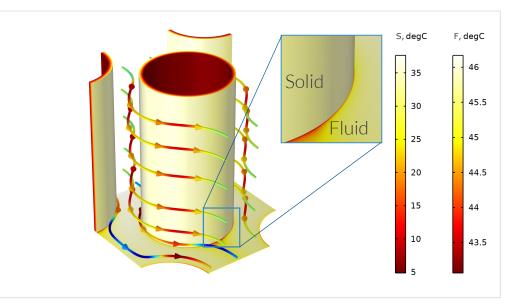

Model Builder	
← → ↑ ↓ 🐷 🗐 ▾ 🏼	↓ • ■ •
 Heat_sink.mph (root) Global Definitions Component 1 (com Study 1 Results Datasets Views Story Derived Values 	
▷ III Tables 🛛 🗔	Plot F8
Velocity (sp	Plot In
 Pressure (s) Temperatur 	Volume
Isothermal	
🔁 🎬 Velocity Str 🚬	
🔁 📄 3D Plot Gro 🕓 🐚 Export 🕅	
Reports	
	lmage
Ħ	Line
9	
×	
æ:	
	Mesh
	Annotation


Settings Streamline Plot	* #
Label: Streamline 1	
▷ Data	
▼ Expression +	• •
x-component:	
u	m/s
y-component:	m/s
z-component:	
w	m/s
Description: Velocity field	
▷ Title	
 Streamline Positioning 	
Positioning: On selected boundaries	•
Point distribution: Uniform	•
Number: 20 5	
 Selection 	
Selection: Inlet	•
77	·





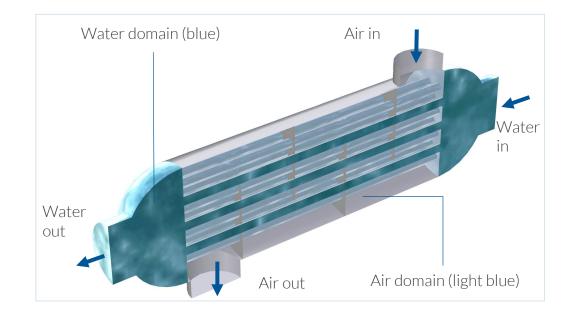
Plot variable "T" in domains 2 and 3

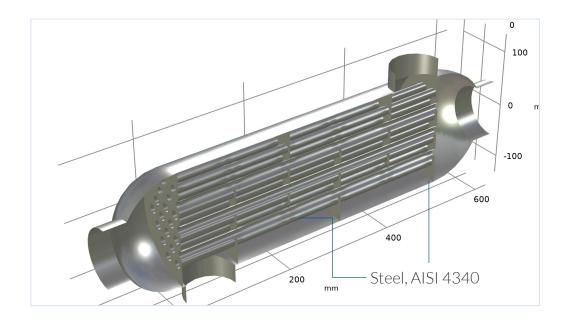


Conjugate Heat Transfer with Turbulent Flow

- Fluid flow, conduction, and convection in the fluid domain
- Turbulence diffusivity added to thermal conductivity in the fluid, *e.g.* Kays-Crawford
- Conduction in the solid domain
- Heat transfer over the fluid-solid interface:
 - For no-slip, low Re and algebraic turbulence models give continuity in temperature
 - Wall functions result in a discontinuity in temperature, since the boundary layer is not resolved
 - Both give continuity in heat flux

There is a discontinuity in temperature over the solid-fluid interface (T_w -T).

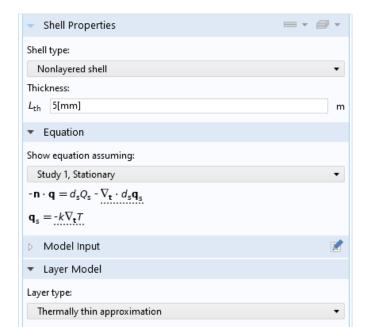


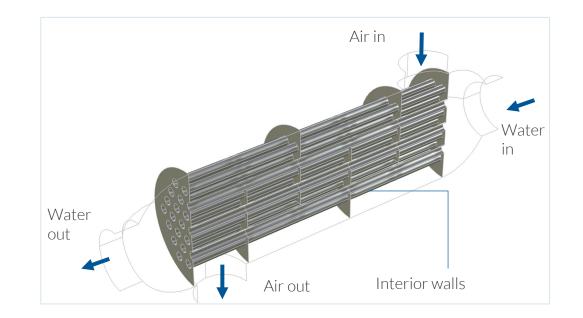

Demo

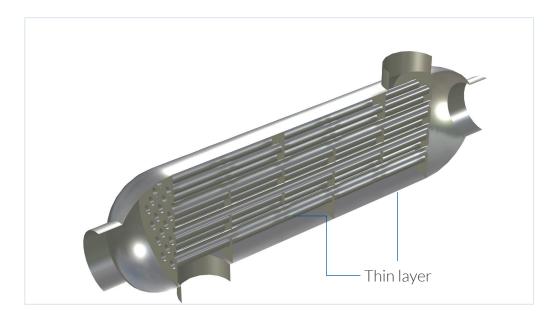
Shell & Tube Heat Exchanger

Problem Definition

- Conjugate heat transfer with turbulent flow where the solid domain is represented by shells
- Separated water and air domains
- Shells
 - Interior walls for flow separate the water and air domains
 - Thin layer for heat transfer defined on all shells
- Wall functions and heat transfer coefficients for turbulent flow:
 - Discontinuous temperature, since the boundary layer is not resolved

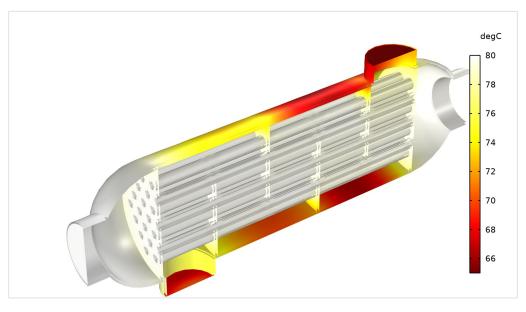




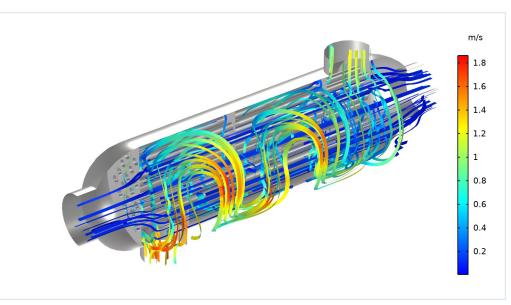

Problem Definition

Shells

- Interior walls for flow separate the water and air domains
- Thin layer for heat transfer defined on all shells


Results

Evaluation on up and down-side of the thin layer:


 Expression 	← → 📺 ▼ 🔰 ▼
Expression:	
ht.Tu	
Unit:	
degC	•
Description:	
Temperature	

 Expression 	← → 🗐 ▼ 🔰 ▼
Expression:	
ht.Td	
Unit:	
degC	•
Description:	
Temperature	

Temperature variable for up (top) and down-sides (bottom) of the thin layers.

Temperature on up (top) and down-sides (bottom) of the thin layers.

Velocity streamlines.