Modeling Exercise

Define the physics for a model of a busbar using the manual approach with predefined couplings

Introduction

- This model exercise demonstrates the concept of multiphysics modeling in COMSOL Multiphysics[®]
- Define the physics for the model using the manual approach with predefined couplings
 - Run a single physics simulation for the *Electric Currents* interface, followed by a multiphysics simulation including the *Heat Transfer in Solids* interface and *Electromagnetic Heating* multiphysics coupling for the resistive heating
 - Enables more quickly and easily locating and resolving any errors that may have been made in the definition of the physics phenomena involved before computing the full multiphysics model
- Important information for setting up the model can be found in the Model Specifications slide
 - Refer to this when building the model

Model Overview

- A voltage difference is applied between titanium bolts at opposite ends of a copper busbar
 - This is an unwanted mode of operation of the busbar and its effect is assessed
- The voltage difference induces a current flow, causing the temperature of the busbar to rise
 - An instance of the Joule heating effect
- The busbar is cooled via natural, or free, convection
 - Modeled using a *Heat Flux* boundary condition
- Results include the electric potential and temperature distribution
 - Plot of the current density of the busbar assembly is manually generated

Model Specifications

COMSOL

Manual with Predefined Couplings Approach

Define the physics for the model using predefined multiphysics couplings

Procedure:

- 1. Add the physics interface
- 2. Define the physics settings
- 3. Add multiphysics couplings
 - Only applicable when multiple physics interfaces have been added
- 4. Compute the study
- 5. Check the results
- 6. Repeat steps 1-4 for each subsequent combination of physics

Model Builder - II 🔶 🐷 📰 🖬 🖬 🔻 Intitled.mph (root) Global Definitions Component 1 (comp1) Definitions ⊳ Geometry 1 Materials Electric Currents (ec) Heat Transfer in Solids (ht) Multiphysics Electromagnetic Heating 1 (emh1) A Mesh 1 Study 1 - Electrical Analysis Study 2 - Electrical-Thermal Analysis A line Results Datasets 🕹 Views En Derived Values Tables 🔺 🗮 Electrical Electric Potential (ec) Electrical-Thermal Electric Potential (ec) 1 Temperature (ht) Isothermal Contours (ht) The model tree for the busbar tutorial Current Density model when the manual approach with Export predefined couplings has been used. Reports

Modeling Workflow

A general outline of the steps that can be used to set up, build, and compute this model to complete this modeling exercise is provided here.

Electrical Analysis

- 1. Set up the model
 - Add 3D model component
- 2. Import geometry
- 3. Assign materials
- 4. Define the physics
 - Add Electric Currents interface
- 5. Build the Mesh
- 6. Run the study
 - Add Stationary study
- 7. Check the results

Electrical-Thermal Analysis

- 1. Define the physics
 - Add Heat Transfer in Solids interface
 - Add Electromagnetic Heating multiphysics coupling
- 2. Run the study
 - Add Stationary study
- 3. Check the results