Modeling Exercise

Define the physics for a model of a busbar using the fully automatic approach

Introduction

- This model exercise demonstrates the concept of multiphysics modeling in COMSOL Multiphysics[®]
- Define the physics for the model using the fully automatic approach
 - Add the Joule Heating multiphysics interface
 - Completely streamlines defining the physics by automatically including the physics phenomena involved and the appropriate settings for the combination of physics phenomena involved
- Important information for setting up the model can be found in the Model Specifications slide
 - Refer to this when building the model

Model Overview

- A voltage difference is applied between titanium bolts at opposite ends of a copper busbar
 - This is an unwanted mode of operation of the busbar and its effect is assessed
- The voltage difference induces a current flow, causing the temperature of the busbar to rise
 - An instance of the Joule heating effect
- The busbar is cooled via natural, or free, convection
 - Modeled using a *Heat Flux* boundary condition
- Results include the electric potential and temperature distribution
 - Plot of the current density of the busbar assembly is manually generated

Model Specifications

COMSOL

Fully Automatic Approach

Define the physics for the model using a predefined multiphysics interface

Procedure:

- 1. Add the physics interface
- 2. Define the physics settings

- 1

Modeling Workflow

An outline of the steps used to set up, build, and compute this model to complete this modeling exercise is provided here.

- 1. Set up the model
- 2. Import geometry
- 3. Assign materials
- 4. Define the physics
 - Add Joule Heating multiphysics interface
- 5. Build the mesh
- 6. Run the study
- 7. Postprocess results

Model Setup

- Open the software
- Choose a Blank Model
- Add a 3D model component

Import Geometry

- Download the geometry file busbar.mphbin
- Import the geometry
- Build Form Union operation to finalize the geometry

The Import button used and the busbar model geometry.

Assign Materials

- Busbar
 - Apply Copper
- Bolts
 - Apply Titanium beta-21S

Busbar model with the Show Material Color and Texture option enabled.

Fully Automatic Approach

Define the physics for the model using a predefined multiphysics interface

Procedure:

- 1. Add the physics interface
 - Joule Heating multiphysics interface
- 2. Define the physics settings
 - Electric Currents interface
 - Heat Transfer in Solids interface
 - Electromagnetic Heating multiphysics coupling

the multiphysics interface has been added.

🕨 🔍 Results

Electric Currents

- Active in all domains
- Add Electric Potential boundary condition*
 - Defines an electric potential on the surface
- Add Ground boundary condition
 - Defines zero potential on the surface

* = Refer to model specifications for values

Geometry selection for the Electric Potential (left) and Ground (right) boundary conditions.

PHYSICS SETTINGS Heat Transfer in Solids

- Active in all domains
- Add Heat Flux boundary condition*
 - Convective heat flux
 - Defines heat transfer from the device to the surrounding air, naturally occurring

* = Refer to model specifications for values

COMSOL

Electromagnetic Heating

- Active in all domains
- Couples the Electric Currents and Heat Transfer in Solids physics interfaces
 - Electric Currents
 - Computes losses from passing electric current through the busbar
 - Heat Transfer in Solids
 - Incorporates resistive losses as a source of heat

Build the Mesh

Build the mesh using the default settings

The settings used to generate the mesh for the busbar model, also pictured.

Run the Study

- Add a *Stationary* study
- Compute the model

	Ас (+	dd Study Add Study	▼ ≢ ×	
		 Studies ▲ ∞ General Studies 		
		 Time Dependent Selected Physics Interfac 		
		 Frequency-Transient Frequency-Transient, One-Way Electron 		
		Preset Studies for Some Physics Interfaces of Frances Studies		
		Empty Study		
	Physics interfaces in study			
		Physics	Solve	
The Add Study window, wherein the Stationary study is selected to be added to the model.	+	Electric Currents (ec)		
		Heat Transfer in Solids (ht)		
	Multiphysics couplings in study			
		Multiphysics couplings	Solve	
		Electromagnetic Heating 1 (emh1)	V	

Postprocess Results

- Default plots generated by the software
 - Electric Potential
 - Temperature
- Create plot for the Current Density
 - Add a 3D Plot Group, rename it Current Density
 - Add a Surface plot
 - Use an expression that represents the current density norm
 - Use a Manual Color Range
 - Minimum = 0

COMSOL

• *Maximum* = 1e6

