The Story of Microstructure-Sensitive Corrosion Pit Growth and Mechanical Performance

SIDDIQ QIDWAI

US Naval Research Laboratory siddiq.qidwai@nrl.navy.mil

DISCLAIMER: The views presented herein are presenter's alone and do not reflect the views of the US Government or US Navy.

The Navy and Marine Corps Corporate Laboratory

US Naval Research Laboratory

THOMAS A. EDISON

"GOVERNMENT SHOULD MAINTAIN A GREAT RESEARCH LABORATORY TO DEVELOP GUNS, NEW EXPLOSIVES AND ALL THE TECHNIQUE OF MILITARY AND NAVAL PROGRESSION WITHOUT ANY VAST EXPENSE."

> THE NEW YORK TIMES MAGAZINE SUNDAY, MAY 30, 1915

- Idea followed the sinking of the Lusitania in 1915.
- Secretary Josephus Daniels Established Naval Consulting Board with Thomas Edison as Chair: October 7, 1915.
- August 29, 1916 Congress appropriates funds.
- Delayed by WW-I, Assistant Secretary of the Navy, Theodore Roosevelt, Jr. commissions the lab on July 2, 1923.

The MULTIPHYSICS Laboratory

The MULTIPHYSICS Laboratory

Objective & Context

Pitting in Saline environment

Objective: Determine the effect of microstructure, specifically crystallographic orientation, on stable pit growth by incorporating actual 3D microstructure in computational models.

Corrosion is Everyone's Problem

National Research Council, National Academy of Sciences Report Research Opportunities in Corrosion Science and Engineering (2010)

"Lack of a **fundamental knowledge** about corrosion and its application to practice is directly reflected in the **high societal cost** of corrosion (2-4 percent of the U.S. gross national product)."

Corrosion Fatigue

Incident: Aloha Airlines 243 (1988) **Credit:** Associated Press library photo.

Incident: Prestige Tanker Oil Spill (2002) **Credit:** dpa-info.com

Pitting Corrosion

Incident: Guadalajara Sewer Explosion (1992) **Credit:** José M. Malo, Electrical Research Institute, Mexico

Corrosion Research Grand Challenges (CRGC):

- CRGC I: Corrosion-resistant materials and coatings
 - Understanding the nature of protective films/scales, including structure.
 - Complete and comprehensive understanding of electrochemistry from the electronic to microscale-level.
- CRGC II: High-fidelity modeling for prediction
 - Development of a better understanding of corrosion mechanisms.

Credit: Paul Natishan, Center for Corrosion Science & Engineering (NRL)

Corrosion: NAVY's #1 Maintenance Problem

COMSOL Conference 2013

Pitting: What Does It Look Like?

Examples of Pitting in Stainless Steel*

Deep

Shallow

Deep and Closely Spaced

Variations in Pit Shapes Due to Metallurgical and Environmental Conditions*

Intergranular Growth

***Source:** D. A. Jones, *Principles and Prevention of Corrosion*, Macmillan Publishing Company, New York, NY, 1992.

Pit growth and shape are related to microstructure.

COMSOL Conference 2013

Microstructural Influences In-situ Experimental Evaluation is not Easy

Micro-Pit Density Variation with Crystal Orientation in 316LVM Steel

Source: A. Shahryari, et al., Corrosion Science, 51, 677-682, 2009.

Metastable and Stable Pitting at MnS Inclusion in 304 SS

Source: T. Suter, et al., *Journal of the Electrochemical Society*, 148(5), B174-B185, 2001.

Intergranular and Pitting Corrosion in AA5083 due to b-Phase at Grain Boundaries and Grain Aspect Ratio

Source: S. Jain et al., Corrosion Science, 59, 136-147, 2012.

Features of Interest

- Crystallographic orientation
- Grain shape (aspect ratio)
- Molar concentration variations:
 - Constituent migrations (precipitates)
 - Secondary particles or phases
- Grain boundaries

The Physics and Math of Pitting Corrosion

Dissolution and Diffusion in the Stable Pit: The Fully Coupled Phenomenon

Species, c_i : Fe²⁺, FeOH⁺, Cr³⁺, CrOH²⁺, OH⁻, H⁺, Cl⁻, Na⁺, ... Potential: φ

NOTE: There is no diffusion in the solid!

- Electrochemical reactions at the corrosion front and chemical reactions throughout the pit.
- Species available for reactions are being transported throughout the pit.
- Corrosion front moving outward due to dissolution of metal.
- Mechanical loading takes place concurrently to pitting.

Balance of Species:
$$\frac{\partial c_i}{\partial t} = -\nabla \cdot \mathbf{J}_i + R_i$$
Ionic Flux: $\mathbf{J}_i = D_i \nabla c_i + z_i \frac{D_i}{RT} F(c_i \nabla \phi) + c_i \mathbf{v}$ Transport: diffusionelectro- convection
migrationSpecies Generation: $R_i := -k_i^f c_{reactants} + k_i^b c_{products}$ Charge Neutrality: $c_i z_i = 0$ Interface Condition: $\{||\mathbf{J}_i^I|| - ||c_i||\mathbf{V}^I\} \cdot \mathbf{N} = 0$

Research Approach Take Baby Steps!

- Material: 316 Stainless steel.
- Incorporate actual microstructure from Orientation Image Microscopy data.
- Use Comsol to simulate and analyze stable pitting at the microstructural scale: Multiphysics capability.
- Track corrosion front movement through advanced ALE meshing technique.

(Good Practice) Strategy

- **# 1: Benchmark** implementation against existing, simpler numerical studies!
- # 2: Perform modeling from simpler to complex coupling with front movement:
 - Laplace equation (maximum corrosion rate),
 - Mass transport (activation/diffusioncontrolled),
 - Decoupled mechanical analysis,
 - Electrochemical-mass transport,
 - Electrochemical-mass-transport-mechanical

o 3D?!

Galvanic Corrosion (Laplace Eq.): Benchmarking ALE Meshing

• Reduced physics \rightarrow Solve for potential distribution in the electrolyte:

$$\frac{\partial c_i}{\partial t} = -\nabla \cdot \left(D_i \nabla c_i + z_i \frac{D_i}{RT} F(c_i \nabla \varphi) + c_i \mathbf{v} \right) + R_i \qquad \qquad \nabla^2 \varphi = 0$$

• Corrosion front velocity (~dissolution rate) is obtained through Faraday's Law: $V_n = \frac{M}{n} \nabla \varphi \cdot \mathbf{n}$ Simpler problem from the literature (based on COMSOL) to gain confidence and verify the implementation of ALE meshing technique.

Source: Deshpande KB. Corrosion Science 2010;52:3514.

What Did We Learn?

- Scary flexibility of Comsol!
- Nuances of ALE meshing "art": mesh relaxation, remeshing, coarse vs. fine mesh, solver settings.
- ALE meshing strategy GOT us the solution we wanted, but was it the right one?
- Experimental validation is the key!

Pit Growth in the Microstructure: Boundary Conditions and Constraints

 $V_n = \frac{i(\eta_a)}{z_{\text{metal}}Fc_{\text{metal}}}$

 $\eta_a = V_{\rm app} - V_{\rm corr} - \varphi$

$$i(\eta_a) := \overline{z}FA_{diss} \exp\left[\frac{zF(V_{corr} + \alpha\eta_a)}{R_gT}\right]$$

- Pit front velocity is a function of corrosion potential.
- **Corrosion potential** is a function of crystal orientation.

What is Needed at the **Moving Pit Front**

- Corrosion potential value at each nodal point.
- Crystal orientation at each nodal point.

Pit initialized with a

semi circular geometry.

Unrealistic pit growth due to relatively high potential at the corners!

segment near vertex.

There is no active

conditions horizontally.

physics in the solid!

Microstructure-Sensitive Corrosion Potential

Polarization Behavior of Al Single Crystal Oriented in Principal Directions

Source: G. Treacy & C. Breslin, *Electrochimica*, 43(12-13), 1715-1720, 1998.

Variation of Pitting Corrosion for Aluminum

Material	Orientation	$p{ m H}$	$E_{ m pit}$	
			$\mathrm{mV}_{\mathrm{SCE}}$	σ, mV
Al	{001}	6.5	-700	16
Al	{011}	6.5	-724	6
Al	{111}	6.5	-739	15

Source: M. Yasuda et al., J. Electrochem. Soc., 137(12), 3708-3715, 1990.

Assumption 1: The corrosion behavior of 316 SS is similar to that of 304 SS in 1M NaCl solution.

Assumption 2: Corrosion potential of FCC 316 SS varies the same way as that of FCC Aluminum.

Corrosion Potential Variation w.r.t Orientations

Incorporation of Microstructure Not as Straightforward

2D OIM-Based Reconstruction of 316 Stainless Steel (383 μm x 286 μm)

Indirect Method

- Direct Method (Solid Mesh):
 - TIFF (raster format) \rightarrow DXF (vector format)
 - Import DXF into COMSOL
 - Domain identification for properties?
- Indirect Method I (Functional Form):
 - Image \rightarrow Grain identifier data on grid (Matlab)
 - COMSOL interpolates on the grid
 - Subsequent operations for corrosion potential determination made it costly
- Indirect Method II (Matlab):
 - COMSOL-Matlab integration
 - Single Matlab function to determine corrosion potential at pit location
 - o Successful and fast!

What Did We Learn?

- Neither imported mesh nor internal grain boundaries amenable to ALE meshing!
- Lots of effort spent ... but
- We do not need a mesh in the solid!

Effect of Microstructure on Evolution of Pit

Potential Distribution and Shape of the Pit

Growth in Microstructure

Growth in Homogeneous Medium

COMSOL Conference 2013

Pit Shapes

Progress Toward Validation Modeling Driving Experiments

Even though the (new-found) modeling capability is driving the experimental effort, it is quite incomplete (to say the least) without experimental validation.

Selective Masking by Photolithography (SMP)

- Polish Specimen down to 0.05 colloidal silica for EBSD characterization
- Laser-machine grid on specimen surface
- Characterize surface microstructure of individual cells using EBSD
- Use Photo-Resist coating to cover specimen
- Use laser lithography techniques to expose specific cells
- Cure photo-resist to isolate individual cells during electro-chemical testing

In-situ Material Dissolution Video

Grain Interiors

Decoupled Stress-Corrosion Analysis

Goal: Link pitting to mechanical performance based on bounds on maximum stress around the pit and identify the characteristics length scale for nonlocal effects.

Pit Tortuosity and Stress Concentration

- Use tortuosity measures to quantify the irregularity of pit shapes.
- Investigate the correlation between tortuosity measures and bounds of maximum stress.

$$\tau_{\kappa} := \int_{s_i}^{s_f} |\kappa(s)| ds,$$

$$\tau_{\kappa}^{norm} := \frac{\tau_k}{p}; \qquad p = \int_{s_o}^{s_f} s \, ds,$$

COMSOL Conference 2013

Numerical Improvements Mind them!

Growth in Microstructure

COMSOL Conference 2013

Capabilities, Accomplishments and Directions

- Microstructure-sensitive corrosion growth modeling capability
 - Actual or synthetic microstructure can be incorporated,
 - Corrosion front movement is explicitly tracked with ALE meshing,
 - No limit on type of corrosion phenomena or multiphysics coupling.
 - Demonstrated strong effect of the crystallographic orientation on pit shapes and growth.
 - Small variation in corrosion potential \rightarrow complex shape evolution,
 - Tortuous shapes \rightarrow stress concentrations.
 - Simulated diffusion- and activation-controlled mechanisms.
 - Performed decoupled stress-corrosion simulations.
 - A work in progress ... with evolving objectives.
 - Microscale experimental data and verification is needed.
 - Coupled electrochemical-mass transport formulation is under way.
 - 3D fully-coupled predictive capability is the ultimate goal!

About the Force

- COMSOL is a very powerful, *evolving* tool:
 - Modelers should gradually move from simpler to complex problems leading to the target problem,
 - They should benchmark their results with existing (analogous) examples from the literature along the way,
 - Should they learn both their Math and Physics then *voila*!
 - Use COMSOL support resources: community portal, Q&A, case studies, and technical staff,
 - With power comes responsibility (of V&V), use the tool wisely!

Acknowledgements

• Team Members:

- Dr. Virginia DeGiorgi: Modeling, corrosion applications
- Dr. Nithyanand Kota: Modeling (Matlab wizardry, workhorse)
- Dr. Alexis Lewis: Microstructural characterization
- Dr. Andrew Geltmacher and Dr. Steve Policastro: Experimental characterization
- Corrosion goals and Naval cost: Dr. Paul Natishan, Center for Corrosion Science and Engineering, NRL.
- NRL history: Dr. Peter Matic, Superintendent, Materials Science & Technology Division, NRL.

Credit: Rust Never Sleeps, album by Neil Young and Crazy Horse, 1979.