COMSOL Multiphysics

Application Programming Guide

6.4

e

Y8 COMSOL

Application Programming Guide

© 1998-2025 COMSOL

Protected by patents listed on www.comsol.com/patents, or see Help > About COMSOL Multiphysics on the File
menu in the COMSOL Desktop for less detailed lists of U.S. Patents that may apply. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/sla) and may be used or copied only under the terms of the license agreement.

COMSOL, the COMSOL logo, COMSOL Muttiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server,
and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property
of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by,
sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/
trademarks.

Version: COMSOL 6.4

Contact Information

Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries or
search for an address and phone number. You can also visit the Worldwide Sales Offices page at

www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located on the COMSOL Access page
at www.comsol.com/support/case. Useful links:

* Support Center: www.comsol.com/support

* Product Download: www.comsol.com/product-download

* Product Updates: www.comsol.com/product-update

+ COMSOL Blog: www.comsol.com/blogs

* Discussion Forum: www.comsol.com/forum

» Events: www.comsol.com/events

+ COMSOL Video Gallery: www.comsol.com/videos

* Support Knowledge Base: www.comsol.com/support/knowledgebase

* Learning Center: www.comsol.com/support/learing-center

Part number: CM020012

https://www.comsol.com/contact/
https://www.comsol.com/contact/offices/
https://www.comsol.com/support/case/
https://www.comsol.com/support/
https://www.comsol.com/product-download/
https://www.comsol.com/product-update
https://www.comsol.com/blogs/
https://www.comsol.com/forum/
https://www.comsol.com/events/
https://www.comsol.com/videos/
https://www.comsol.com/support/knowledgebase/
https://www.comsol.com/support/learning-center
www.comsol.com/patents/
https://www.comsol.com/sla/
https://www.comsol.com/trademarks/
https://www.comsol.com/trademarks/

Contents

Introduction o 7
Syntax Primer. ... 8
Data TYPeS. .o oottt 8
Declarations. . ..o 16
Built-in Elementary Math Functions. |7
Control Flow Statements. ...t 18
Important Programming Tools. 21
Ctrl+Space for Code Completion 21
Recording Code 23
Model Methods and Application Methods 26
Global Methods, Form Methods, and Local Methods 27
Method Names. 27
The Java Shell and Data Viewer Windows 28
The Chatbot Windowo 32
Chatbot Functionality in the Method Editor............. 37
Introduction to the Model Object........................ 39
Model Object Tags.o 39
Creatinga Model Object. 41
Creating Model Components and Model Object Nodes . .42
Get and Set Methods for Accessing Properties 43
Parameters and Variables., 50
Unary and Binary Operators in the Model Object. 52
Geometry. . ..o 54
Mesh . 55

StUY. 60
RESURS v 65
MURIPRYSICS . o v 68
Working with Model Objects.................. 69
The Model Object Class Structure. 75
The Application Object ... 78
Shortcuts 78
Accessing the Application Object...................... 80
The Name of User Interface Components.............. 80
Important Classes. 80
Get and Set Methods for the Color of a Form Object. ... 8l
General Properties 82
The Main Application Methods. 84
Main Windowo 85
FOrmM . 86
Form Objecto 88
e o N
Data Source and Declaration 12
AppEvent Class. 122
AppEventHandler Class. 123
Method Class ... 124
Form, Form Object, and Item List Methods [25
The Built-in Method Library for the Application Builder. 126
Model Utility Methodst 126
License Methods. 128
File Methods oo 131

Operating System Methods., 139

Email Methods. ... o [42

Email Class Methods.oo oo, 142
GUI-Related Methods ... 146
GUI Command Methods. ...t 158
Debug Methods ... 160
Methods for External C Libraries 160
Progress Methods. oo i it 162
Date and Time Methods oot |68
Conversion Methods ... 171
Array Methods 173
StringMethods i 181
Collection Methods ... 182
Model Builder Methods for Use in Add-ins............. 185
Programming Examples. oo |87
Running the Exampleso o oo |87
Visualization Without Solution Data: Grid Datasets. 187
Visualization of Points, Curves, and Surfaces............ 189
Reading and Writing Datato File..................... 199
Converting Interpolation Curve Data. 223
Plotting Points on a Parametric Surface................ 226
Defining a Parametric Sweep. 227
Using Selections 230
Measuring Model Quantities 244
Using Numerical Results in a Model or Application. 249
Getting Numerical Data. ...t 249
Recursion and Recursively Defined Geometry Objects. . .284
Mesh Information and Statistics., 288
Accessing Higher-Order Finite Element Nodes 289

| 5

6|

Accessing System Matrices and Vectors 292

Data Validation 297
Using Selections in Add-ins.t 309
Using Built-In Methods from an External Java Library315
Measuring the Java Heap Space Memory 316
Time-Limited and Hardware-Locked Applications. 316
Get and Set of 3D Camera Parameters 321
Index 325

Introduction

This book is a guide to writing code for COMSOL® models and applications
using the Method Editor. The Method Editor is an important part of the
Application Builder and is available in the COMSOL Desktop® environment in
the Windows® version of COMSOL Multiphysics. For an introduction to using
the Application Builder and its Form Editor and Method Editor, see the book
Introduction to the Application Builder.

Writing a method is needed when an action is not already available in the standard
run commands associated with functionality in the model tree nodes of the Model
Builder. A method may, for example, contain loops, process inputs and outputs,
and send messages and alerts to the user of the application.

In the Model Builder, the model tree is a graphical representation of the data
structure that represents a model. This data structure is called the model object
and stores the state of the underlying COMSOL Multiphysics model that is
embedded in an application.

The contents of the application tree in the Application Builder is accessed through
the application object, which is an important part of the model object. You can
write code using the Method Editor to directly access and change the user
interface of a running application, for example, to update button text, icons,
colors, and fonts.

In the COMSOL Multiphysics environment, you use the Java® programming
language to write methods, which means that you can utilize the extensive
collection of Java® libraries. In addition to the Java® libraries, the Application
Builder includes a built-in library for building applications and modifying the
model object. A number of tools and resources are available to help you
automatically create code for methods. For more information on autogeneration
of code, sce the book Introduction to the Application Builder.

This book assumes no prior knowledge of the Java® programming language.
However, some familiarity with a programming language is helpful.

Syntax Primer

If you are not familiar with the Java® programming language, read this section to
quickly get up to speed with its syntax. When creating applications, it is useful to
know the basics of Java such as how to use the if, for, and while control
statements. The more advanced aspects of Java will not be covered in this book.
For more detail, see any dedicated book on Java programming or one of the many
online resources. You can also learn a lot by reviewing the methods in the example
applications available in the Application Libraries. Note that the Method Editor
supports Java 11 syntax.

Data Types

PRIMITIVE DATA TYPES

Java contains eight primitive data types, listed in the table below.

DATA TYPE DESCRIPTION NUMBER OF BYTES EXAMPLE
byte Integer between -127 and 128 I byte b=33;
char Unicode character; integer between 2 char c='a’;
0 and 65535 (0 and 2! -1) char c=97;
short Integer between -32768 and 32767 2 short s=-1025;
(2" 1and 2>-1)
int Integer between -23| and 23|—| 4 inti=15;
long Integer between 283 and 293 8 long I=15;
float 32-bit floating point number 4 float f =4.67f,
double 64-bit floating point number 8 double d=4.67,
boolean Boolean with values false or true N/A boolean b=true;

Other data types such as strings are classes, which are also referred to as composite
data types.

In methods, you can use any of the primitive or composite data types available in
Java and the Java libraries. Many of the Application Builder built-in methods make
use of primitive or composite data types. For example, the timeStamp () method

provides a long integer as its output.

8|

ASSIGNMENTS AND LITERALS

A few examples of using literals in assignments are:

int i=5; // initialize i and assign the value 5

double d=5.0;

boolean b=true;

// initialize d and assign the value 5.0
// initialize b and assign the value true

The constants 5, 5.0, and true are literals. Java distinguishes between the literals
5 and 5.0, where 5 is an integer and 5.0 is a double (or float).

UNARY AND BINARY OPERATORS IN METHODS (JAVA SYNTAX)

You can perform calculations and operations using primitive data types just like
with many other programming languages. The table below describes some of the
most common unary and binary operators used in Java code.

PRECEDENCE LEVEL SYMBOL DESCRIPTION

I ++ -- unary: postfix addition and subtraction

2 ++ -- + - unary: addition, subtraction, positive sign,
negative sign, logical not

3 * | % binary: multiplication, division, modulus

4 + - binary: addition, subtraction

5 ! Logical NOT

6 < <= > >= comparisons: less than, less than or equal,
greater than, greater than or equal

7 == |= comparisons: equal, not equal

8 && binary: logical AND

9 || binary: logical OR

10 ?: conditional ternary

I = += -= *= [= assignments

%= >>= <<= &=
12 element separator in lists

TyPeE CONVERSIONS AND TYPE CASTING

When programming in Java, conversion between data types is automatic in many

cases. For example, the following lines convert from an integer to a double:

int i; // initialize i
double d; //initialize d

i=41;

d=i; // the integer i is assigned to the double d and d is 41.0

| 9

However, the opposite will not work automatically (you will get a compilation
error). Instead you can use explicit type casting as follows:

int i; // initialize i

double d; //initialize d

d=41.0;

i=(int) d; // the double d is assigned to the integer i and i is 41
You can convert between integers and doubles within arithmetic statements in
various ways, however you will need to keep track of when the automatic type
conversions are made. For example:

int i; // initialize i

double d; //initialize d

i=41;

d=14/i; // d is O
In the last line, 14 is seen as an integer literal and the automatic conversion to a
double is happening after the integer division 14/41, which results in 0.

Compare with:

int i; // initialize i

double d; //initialize d

i=41;

d=14.0/i; // d is 0.3414...
In the last line, 14.0 is seen as a double literal and the automatic conversion to a
double is happening before the division and is equivalent to 14.0/41.0.

You can take charge over the type conversions with explicit casting by using the
syntax (int) or (double):

int i; // initialize i

double d,e; //initialize d and e

i=41;

d=((int) 14.0)/i; // d is O

e=14/((double) i); // e is 0.3414...

STRINGS AND JAVA OBJECTS
The String data type is a Java object. This is an example of how to declare a string
variable:

String a="string A";
When declaring a string variable, the first letter of the data type is capitalized. This
is a convention for composite data types (or object-oriented classes).
After you have declared a string variable, a number of methods are automatically
made available that can operate on the string in various ways. Two such methods
are concat and equals as described below, but there are many more methods
available in the String class. See the online Java documentation for more
information.

10|

Concatenating Strings
To concatenate strings, you can use the method concat as follows:

String a = "string A";

String b = " and string B";

a.concat(b);
The resulting string a is "string A and string B". From an object-oriented
perspective, the variable a is an instance of an object of the class String. The
method concat is defined in the String class and available using the a.concat ()
syntax.
Alternatively, you can use the + operator as follows:

a=a+ by
which is equivalent to:

a = "string A" + " and string B";
and equivalent to:

a = "string A" + " " + "and string B";

where the middle string is a string with a single whitespace character.

Comparing Strings
Comparing string values in Java is done with the equals method and not with the
== operator. This is due to the fact that the == operator compares whether the
strings are the same when viewed as class objects and does not consider their
values. The code below demonstrates string comparisons:

boolean streq = false;

String a = "string A";

String b = "string B";

streq = a.equals(b);

// In this case streq == false

streq = (a == b);
// In this case streq == false

b = "string A";

streq = a.equals(b);

// In this case streq == true
Special Characters

If you would like to store, for example, a double quotation mark or a new line
character in a string you need to use special character syntax preceded by a

backslash (\). The table below summarizes some of the most important special
characters.

SPECIAL CHARACTER DESCRIPTION

\' Single quotation mark
\" Double quotation mark
\\ Backslash

\t Tab

\b Backspace

\r Carriage retumn

\f Form feed

\n Newline

Note that in Windows the new line character is the composite \r\n whereas in
Linux and macOS \n is used.

The example below shows how to create a string in Windows that you later on
intend to write to file and that consists of several lines.
String contents = "# Created by me\r\n"

+"# Version 1.0 of this file format \r\n"

+"# Body follows\r\n"

+"0 1 \r\n"

+"2 3\r\n"

+"4 5\r\n";

The string is here broken up into several lines in the code for readability. However,
the above is equivalent to the following;:

String contents = "# Created by me\r\n# Version 1.0 of this file format \r\n#
Body follows\r\nO 1 \r\n2 3\r\n4 5\r\n";

which is clearly less readable.

Some Useful String Methods

The following table contains some of the most commonly used built-in methods
for the String class:

METHOD DESCRIPTION
int length()

Returns the length of the string, for example:
int len=str.length();

boolean equals(Object obj) Compares two strings for equality, for

example:
boolean streq = a.equals(b)

12|

METHOD

DESCRIPTION

boolean equalsIgnoreCase(String
anotherString)

boolean startsWith(String prefix)

boolean endsWith(String suffix)

int indexOf (String str)

int lastIndexOf(String str)

String substring(int beginIndex)

String substring(int beginIndex, int
endIndex)

String strip()

String stripLeading()
String stripTrailing()
String concat(String str)
boolean isEmpty ()

boolean isBlank()

Compares two strings, ignoring case
differences, for example:
boolean streq = a.equalsIgnoreCase(b)

Checks if a string starts with a specified prefix,
for example:
boolean stw = a.startsWith(b)

Checks if a string ends with a specified suffix

Returns the index of the first occurrence of a
specified substring

Returns the index of the last occurrence of a
specified substring

Returns a substring from the specified index
to the end

Returns a substring within a specified range

Removes leading and trailing whitespace
Removes leading whitespace

Removes trailing whitespace

Concatenates a string

Checks if the string is empty (length() == 0)

Checks if the string is empty or contains only
whitespace

In addition, the following string conversion methods are built-in to the COMSOL

API:

METHOD

DESCRIPTION

boolean toBoolean(String str)
int toInt(String str)

double toDouble(str)

String toString(boolean b)
String toString(int i)

String toString(double d)

Converts a string to a boolean
Converts a string to an int
Converts a string to a double
Converts a boolean to a string
Converts an int to a string

Converts a double to a string

Note that in Java, you can convert a string to a double using the standard double
parseDouble (String s) method. However, the toDouble method provided by the
COMSOL API offers additional functionality. Specifically, it can handle

arithmetic expressions that evaluate to constants. These expressions can include:

113

e Built-in numerical constants: eps, i, j, inf, Inf, NaN, nan, pi.
* Elementary functions such as sin, exp, gamma, max, min.

» Certain operators that make sense in a constant-evaluation context, such as
error, if, isinf, isnan, nif, realdot.

ARRAYS

In the application tree, the Declarations node directly supports 1D and 2D arrays
of type string (String), integer (int), Boolean (boolean), or double (double). A
1D array may be referred to as a vector and a 2D array referred to as a matrix,
provided that the array is rectangular. A nonrectangular array is called jagged or
ragged. In methods, you can define higher-dimensional arrays as well as arrays of
data types other than string, integer, Boolean, or double.

ID Arrays

If you choose not to use the Declarations node to declare an array, then you can
use the following syntax in a method:
double dv[] = new double[12];

This declares a double array of length 12.

The previous line is equivalent to the following two lines:

double dv[];
dv = new double[12];

When a double vector has been declared in this way, the value of each element in
the array will be zero.

To access elements in an array you use the following syntax:

double e;
e = dv[3]; // e is 0.0

Arrays are indexed starting from 0. This means that dv[0] is the first element of
the array in the examples above, and dv[11] is the last element.
You can simultaneously declare and initialize the values of an array by using curly
braces:

double dv[] = {4.1, 3.2, 2.93, 1.3, 1.52};
In a similar way you can create an array of strings as follows:

String sv[] = {"Alice", "Bob", "Charles", "David", "Emma"};

2D Arrays
2D rectangular arrays can be declared as follows:
double dm[][] = new double[2][3];

This corresponds to a matrix of doubles with 2 rows and 3 columns. The row
index comes first.

14 |

You can simultaneously declare and initialize a 2D array as follows:
double dm[][] = {{1.32, 2.11, 3.43},{4.14, 5.16, 6.12}};
where the value of, for example, dn[1][0] is 4.14. This array is a matrix since it is

rectangular (it has same number of columns for each row). You can declare a
ragged array as follows:

double dm[][] = {{1.32, 2.11}, {4.14, 5.16, 6.12, 3.43}};

where the value of, for example, dm[1][3] is 3.43.

Copying Arrays
Note that when copying arrays, this code:

for (int i1 = 0; i1 <= 11; it1++) {
for (int i2 = 0; i2 <= 2; i2++) {
input_array[i1][i2] = init_input_array[il1][i2];
}
}

is not equivalent to:
input_array = init_input_array;

The latter only assigns the same reference, meaning both variables will point to the
exact same array in memory.

Instead, you can use the copy method:
input_table = copy(init_input_table);

This call creates a new array under the hood and then copies the values into it.

| 15

Declarations

Variables defined in the Declarations node in the application tree are directly
available as global variables in a method and need no further declarations.

v [&] helical_static_mixer.mph (root)
ﬁ Inputs
% Themes
¥ D Main Window
> [Forms
Events
v = Declarations
abe String 1 {string 1}
8.5 Double 1 {double1}
& Boolean 1 {boolean}
<> Mumber of Blades List {numberOf8ladesChoicelist]
,@ Shortcuts
¥ % Methods
» [Libraries

Settings v (53 5
String
Label: String

Mame: string1

List of Variables

' MName Initial value Description

activePlot temperature Active graphics plot tab
solutionState | nosolution State of solution
emailTo Email address

tiE-25- 0@

Variables declared in methods will have local scope unless you specify otherwise.
The Declarations node directly supports integers (int), doubles (double), and
Booleans (boolean). In addition, strings are supported (see “Strings and Java
Objects” on page 10). In the Declarations node, variables can be scalars, 1D arrays,
and 2D arrays.

To simplify referencing form objects as well as menu, ribbon, and toolbar items by
name, you can create shortcuts with a custom name. These names are available in
the Declarations node under Shortcuts. They are directly available in methods along
with the other global variables defined under Declarations. For more information
on shortcuts, see “Shortcuts” on page 78.

In addition, under the Declarations node, you can add declarations for: Choice List,
File, Unit Set, File Type, and Graphics Data. For more information on these types of
declarations, see also the Introduction to the Application Builder.

16|

FORM DECLARATIONS

Variables can also be defined as Form Declarations under each respective form node
in the application tree.

~ [Forms

v D form1

w

= Declarations

=5 Double

D form2
D form3

Events

Form declarations can be of the types Scalar, Array 1D, Array 2D, and Choice List.
Global declarations are exposed to all user-interface components of the application
whereas form declarations are only exposed to the form that they are defined in
and the form objects within that form. Form declarations are used to limit the

scope of variables and thereby logically separate the different parts of an

application.

Built-in Elementary Math Functions

Elementary math functions for use in methods are available in the Java math
examples:

library. Some

double
double
double
double
double
double
double
double
double

a =

o
1}

X TJTQ +hd QO
1}

Math.
Math.
Math.
Math.

Math

PI; // the mathematical constant pi
sin(3*a); // trigonometric sine function
cos(4*a); // trigonometric cosine function

random(); //

log(1+e); // natural base e logarithm

pow(10,3);
log10(2.5);
sqrt(81.0);

// power function
// base 10 logarithm
// square root

random number uniformly distributed in [0,1)
.exp(2*a); // exponential function
Math.
Math.
Math.
Math.

There are several more math functions available in the Java math library. For
additional information, see any Java book or online resource.

| 17

Control Flow Statements

Java supports the usual control flow statements if-else, for, and while. You can
use the Language Elements tool to insert template code corresponding to a number
of control flow, of or block, statements.

Settings Language Elements X

~ language constructs
> Array operations (for double, int, boolean, string)
v Block statements
Do-while
For-N
For-each
If
If-else
Instanceof expression
Multiline comment
Switch
Try-catch
While
With
Conversions
Server file handling utilities
External and utility libraries
Model Builder
User interface
Utility functions
Variables

oW W W W W

The following examples illustrate some of the most common uses of control flow
statements.

THE IF-ELSE STATEMENT

This is an example of a general if-else statement:

if (a < b) {
alert("Value too small.");
} else {
alert("Value is just right.");

}
Between curly braces {} you can include multiple lines of code, each terminated
with a semicolon. If you only need one line of code, such as in the example above,
this shortened syntax is available:

if (a < b)
alert("Value too small.");
else

alert("Value is just right.");

18]

THE FOR STATEMENT

Java supports several different types of for statements. This example uses the
perhaps most conventional syntax:
// Iterate i from 1 to N:
int N = 10;
for (int i = 1; 1 <= N; i++) {
// Do something

}
In an alternative syntax, shown in the example on page 89, the loop is over all form
objects in a list of form objects:
for (FormObject formObject : app.form("formi").formObject()) {
if ("Button".equals(formObject.getType())) {
formObject.set("enabled", false);
}
}
where the local iteration variable looped over is formobject of the type, or class,
FormObject. The collection of objects, in this case
app.form("form1").formObject(), can be an array or other types of lists of
objects. Using this syntax, the iteration variable loops over all entries in the
collection, from start to finish. Another example can be found on page 125.

THE WHILE STATEMENT

This example shows a while statement.

double t = 0, h = 0.1, tend = 10;
while(t < tend) {
// do something with t
t=1t+h;
}
For a more advanced example of a while statement, see “Creating and Removing
Model Tree Nodes” on page 58.

Note that Java also supports do-while statements.

THE WITH STATEMENT

When writing methods in the Method Editor, in addition to the standard Java
control flow statement, there is also an optional with statement, specific to the
Method Editor, that can be used to make Application Builder code more compact
and easier to read (you enable this in File > Preferences). A simple example is shown
below:

// Set the global parameter L to a fixed value

with(model.param());

set("L", "10[cm]");
endwith();

119

The code above is equivalent to:
model.param().set("L", "10[cm]");

In this case using the with statement has limited value since just one parameter is
assigned but for multiple assignments readability increases. See “Parameters and
Variables” on page 50 for an example with multiple assignments.

Note that the with statement is only available when writing code in the Method
Editor. It is not available when using the COMSOL API for use with Java®. You
can turn off the use of with statements in the section for Methods in Preferences.

The method descr returns the variable description for the last parameter or
variable in a with statement:
with(model.param());
set("L", "10[cm]");
String ds = descr("L");
endwith();
Assuming that the parameter description of the parameter L is Length. The string
ds will have the value Length.

EXCEPTION HANDLING

An exception is an error that occurs at runtime. The Java® programming language
has a sophisticated machinery for handling exceptions and each exception
generates an object of an exception class. The most common way to handle
exceptions is by using try and catch, as in the example below.

double d[][] = new double[2][15];
try {

d = readMatrixFromFile("common:///my_file.txt");
} catch (Exception e) {

error("Cannot find the file my_file.txt.");

}

where an error dialog is shown in case the file my_file.txt is not found in the
application file folder common.

To inform the user of the underlying cause you can use an additional input
argument to the error method, as shown in the example below.

double d[][] = new double[2][15];
try {

d = readMatrixFromFile("common:///my_file.txt");
} catch (Exception e) {

error("Cannot find the file my_file.txt.",e);

}

This can be used to “wrap” native COMSOL Multiphysics error messages with
custom error messages. See the Java® documentation for more information about
using try and catch.

20 |

Important Programming Tools

The Application Builder includes several tools for automatically generating code
as well as debugging. These tools include code completion, Record Method, Record
Code, Convert to New Method, Editor Tools, Language Elements, Copy as Code to
Clipboard, Call Stack, and Variables, and are described in the book Introduction to
the Application Builder. These utilities allow you to quickly get up and running
with programming tasks even if you are not familiar with the syntax.

The following sections describes two of the most important tools: code
completion using Ctrl+Space and Record Code. Using these tools will make you
more productive, for example, by allowing you to copy-paste or autogenerate
blocks of code.

Ctrl+Space for Code Completion

While typing code in the Method Editor, the Application Builder can provide
suggestions for code completions. The list of possible completions are shown in a
separate completion list that opens while typing. In some situations, detailed
information appears in a separate window when an entry is selected in the list.
Code completion can always be requested with the keyboard shortcut Ctrl+Space.
Alternatively Ctrl+/ can be used to request code completion, which is useful if
Ctrl+Space is in use by the Windows operating system such as for certain
languages. When accessing parts of the model object, you will get a list of possible
completions, as shown in the figure below:

@ Preview methodl X

1 model.m
massProp() Returns all mass properties.
massProp(String tag)
material() Returns: ProbeFeaturelist
material(String tag) List of mass properties
mesh()
mesh(5tring tag)
methodCall()
methodCall{String tag)

e aee

model(])

Select a completion by using the arrow keys to choose an entry in the list and
double-click, or press the Tab or Enter key, to confirm the selection.

If the list is long, you can filter by typing the first few characters of the completion
you are looking for.

| 21

For example, if you enter the first few characters of a variable or method name,
and press Ctrl+Space, the possible completions are shown:

@ Preview methodl X
int ival, iva2, iva3;
2 iy
M ival
& ival
& iva3

In the example above, only variables that match the string iv are shown. This
example shows that variables local to the method also appear in the completion
suggestions.

You can also use Ctrl+Space to learn about the syntax for the built-in methods that
are not directly related to the model object. Type the name of the command and
use Ctrl+Space to open a window with information on the various calling
signatures available.

@ Preview D form1

1 play_Sound|

@ playSound(String name) Tries to play a sound file on the client. At least .wav files are s

@ playSound(double hz, int milliseconds)
Parameters:
name MName representing the sound file to play.

Additional information is also available in the form of tool tips that are displayed
when hovering over the different parts of the code.

The Method Editor also supports code completion for properties, including listing
the properties that are available for a given model object feature node, and
providing a list of allowed values that are available for a given property.

The figure below shows an example of code completion for the mesh element size
property, where a list of the allowed values for the predefined element sizes is
presented.

model.mesh("meshl").feature("size").set(hauto”, |)
[
o 2"
o "3
o Fine
[N
"
&
o "9

COMSOL Multiphysics and its add-on modules contain thousands of physics
features that you can learn about by using, for example, Record Code, Save as >

22 |

Model File for Java, and code completion. The figure below shows code completion
for a particular feature in the Electric Currents interface.

@ Preview highlightTopMenultem highlightSubMenultem

updateCpwBackplane X

/** \pdates the Coplanar waveguide geometry sequence to include or exclude the backplane. */

-l if (!isCpwBackplane) {
model.param().set("bp_cpu", "8");
model.physics(“ec4”).selection().set(1l, 2, 4);
model.physics("ec4").feature("gnd2").active(false);
model.mesh("meshd").Feature("bl2").active(false);

¥

-l else {
model.param().set("bp_cp
model.physics("e

12 model.physics(

model.mesh("mes

» 1My
c4").selection().set(2, 4);
4"y . Feature("").active(true);

). featur ["cucnl" {Current Conservation 1}

¥ . ["ein1" {Electric Insulation 1}
J/ The input data has change@ “init" {Initial Values 1}
setInputChanged();

["dcont1" {Continuity 1}

(% "cucn2" {Current Conservation 2}
(%3] "pot1" {Electric Potential 1}

(] "gnd1" {Ground 1}

(3] "gnd2" {Ground 2}

Recording Code

Current conservation equation for domains.,

Click the Record Code button in the Code section of the Method Editor ribbon to
record a sequence of operations that you perform using the model tree, as shown

in the figure below.

=ec| Language Elements [aBC)

[E11 Model Expressions

Check Goto | Record Use
=@ Record Method Syntax Mode | Code | Shortcut
Code

e g @

Create Local
Variable

Certain operations in the application tree can also be recorded, for example, code
that changes the color of a text label in a running application may be generated.

To record a new method, click the Record Method button in the Main section of

the Home tab.

"5 Data Access = settings
Mew E‘. Record Method Editor Tools

Method v €8 Compiler

Main

| 23

While recording code, the COMSOL Desktop windows are surrounded by a red

frame:

e De B 9. . B B B M E S busbarmph - COMSOL Muttiphysics - X
Ml Wome oeions Geomeiy Maerds Prsks Mesh Sudy Resus Devdoper a
£ e e Newthetod | b @ & \ _
A g} i) [® C a= oF
Application Test Applcation Stop Recording yetnog Run R st Break Jva Shos Addin Refresh Clear Data Compare Compare
e G e v o ol frotll oo bt
Model Builder Settings Graphics CH]
- St B N size /A ¢ H et ¢y @ E-ErBE S2F R-Craad E@A T 0-ad
o buseucd @ sttt
T o o
« 4 busungh o0 e
© & G btanors . o
o fment s
& Dl e s
& Denuk ot Cabateor
comtpsc = _
> T 0%
O Pedeed il ’ AR o
@ Custom - ‘ s
i v R
B e Tt S) (e
3 Mukiphyss e | e
v - o
s Miimum dement
e o demer s
.- e E |
£ St tons rimum dmer roh e |
, iy S Conpatrs
Yo | a0
83 Derivd Vobues |
< \ame o ormm ¢
e =
8 B Pt) |
& b ra o ‘
@ o0
| S o
|
L .
e o

153820068

e 0w Q> v X BB S busbar.mph - COMSOL Multiphysics - o X
File Home Method
* & | 2 B % O aoc i AmyiDe o ™ » Test Application ok m
Model Model | New New (% B Applcation Scolar HE ATy 2D - D more Main Apply Changes Compare Compare | View
Bider Maneger | Fom Method~ oy T VoreDedotons+ | [OIS WO (0 1 s windmed |
Workspace vain samin g dens Decrtions Ubraries | Main Window Test compare
[Preview & (3] methodt X 5~ Settings
nodel
ol Method
@ "'”:Ei Name: method!
fioeiiie Show in Model Bulder
S model
& « Inputs and Output
nputs
® Name | Type Default Description
> [Libraries
T
Output: | None .
oo v

24

2556827168

To stop recording code, click one of the Stop Recording buttons in the ribbon of
either the Model Builder or the Application Builder.

File Home Method

V. - = "2 Data Access Settings
@ B [0 B i B
New New

= ; bee
Model Model EI Stop Recording Editor Tools
Builder Manager Form v Method v @3 Compiler

Waorkspace Main

By using Data Access, you selectively access various settings in the Model Builder,
from the Application Builder. For example, you can set the values of the Heat
transfer coefficient and the External temperature properties of the busbar tutorial
model used in the documents Introduction to COMSOL Multiphysics and
Introduction to the Application Builder.

A "5 Data Access New Method L“ @ E

P Test Application Eﬁ Record Method Method

Application Run Run Stop Break Ja
Builder Call ~ Method ~ - Sk
Application Create Methods Method Calls Run Code
Model Builder Settings @B
-~ = St~ i W Heat Flux
Type filter text c Label: Heat Flux 1 ,E_,
~ & busbar.mph (root)
~ (7 Global Definitions > Boundary Selection

Pi Parameters 1 - buti
. arameters > Override and Contribution
£ Default Model Inputs

) Materials > Equation

~ [l Component 1 {comp1)
> Definitions > Material Type
> |4 Geometry 1 « Heat Flux
> izi Materials
> % Electric Currents (=c) Flux type:
~ IE Heat Transfer in Solids (ht) l:‘ Convective heat flux -
&= Solid1 .
D= |nitial Values 1 Heat transfer coefficient:
D5 Thermal Insulation 1 l:‘ User defined -
. ; lHe;t F.qu 1 Heat transfer coefficient:
¥ ulti sics R
> .E Meshp1 g h hte W/ (m*K)
> ~dd Study 1 External temperature:
> [El Results Tex l:‘ User defined -

283.15[K] K
To generate similar code using Record Code (Data Access is not used when

recording code), follow these steps:

+ Create a simple application based on the busbar model (MPH file).

| 25

* In the Model Builder window, in the Developer tab, click Record Method, or
with the Method Editor open, click Record Code.

+ Change the value of the Heat transfer coefficient to 5.
» Change the value of the External temperature to 300[K].
* Click Stop Recording.

» Ifitis not already open, open the method with the recorded code.

The resulting code is listed below:
model.component("comp1").physics("ht").feature("hf1").set("h", 5);
model.component("comp1").physics("ht").feature("hf1").set("Text",
"300[K]");

To generate code corresponding to changes to the application object, use Record

Code or Record Method, then go to the Form Editor, and, for example, change the

appearance of a form object. The following code corresponds to changing the

color of a text label from the default Inherit to Blue:
app.form("formi1").formObject("textlabell").set("foreground", "blue");

Built-in methods that changes the application object are only available when
running applications and not when running methods from the Model Builder.

Use the tools for recording code to quickly learn how to interact with the model
object or the application object. The autogenerated code shows you the names of
properties, parameters, and variables. Use strings and string-number conversions
to assign new parameter values in model properties. By using Data Access while
recording, you can, for example, extract a parameter value using get, process its
value in a method, and save it back into the model object using set. For more
information on Data Access, sce the Introduction to the Application Builder.

Model Methods and Application Methods

Methods called from the Model Builder are referred to as model methods, while
those called from an application are referred to as application methods. When the
context is clear, this distinction is often omitted, and they are simply called
methods. Model methods directly modify the model object represented in the
Model Builder during the current session and are typically used to automate
modeling tasks that would otherwise involve several manual steps. Application
methods, on the other hand, modify the embedded model within the application.
When you click Test Application, the methods executed by the application do not
modify the model currently seen in the Model Builder, but instead operate on a
copy of the model—the embedded model of the application.

26 |

For example, a typical use of a model method is to solve multiple studies in
sequence. In a model with several studies, you can record code that first computes
Study 1, then Study 2, which may depend on the results of Study 1, and so on.
This recorded method can then be called to automate the entire process.

To organize a customized workflow in the Model Builder you can create an add-
in based on methods by using a Method Call, Settings Form, or a ribbon tab. For an
introductory example of using methods from the Model Builder and for
information on how to create add-ins, see Introduction to the Application
Builder.
You can learn how to write methods to manipulate the model object by reading
the method code in the add-ins that are available in the Add-in Libraries. To load
an MPH file from these libraries, browse to the addins folder in the installation
folder. This is typically located at:

C:\Program Files\COMSOL\COMSOL64\COMSOL_Multiphysics\addins

In these examples you can learn how to identify a model component, how to check
the spatial dimension of a model component, how to work with selections, and
more.

Global Methods, Form Methods, and Local Methods

There are global methods, form methods, and local methods. Global methods are
displayed in the application tree and are accessible from all methods and form
objects. Form methods are displayed in the application tree as child nodes to the
form it belongs to. A local method is associated with a form object or event and
can be opened from the corresponding Settings window.

Global methods are exposed to all components of the application whereas form
methods are only exposed to the form that they are defined in and the form objects
within that form. You can use form methods to provide a logical separation of the
different parts of an application.

Method Names

A method name has to be a text string without spaces. The string can contain
letters, numbers, and underscores. Java® programming language keywords
cannot be used. The name must not begin by a number (this is also true for the
name of a form object, variable, and method).

| 27

A global method cannot have the same name as a form method and vice versa. In
addition, the following names are reserved since they are used as names of local
methods:

* onActivate

¢ onClick

¢ onClose

* onDataChange

* onEvent

¢ onFocusGained

¢ onFocusLost

¢ onLoad

e onPickingChanged
¢ onStartup

e onShutdown

The Java Shell and Data Viewer Windows

The Java Shell window is an interactive environment that provides a command
prompt for running Java code, supporting all the features of the Method Editor
such as code completion, syntax highlighting, and more. This functionality can be
used to quickly modify a model through the COMSOL API for Java, without
needing to create a method first. It can be used to, for example, prototype code
for methods, bulk create features, inspect properties, or change declaration
variables. It is also useful for debugging methods, allowing you to perform code
evaluations while stopped at a breakpoint.

The Java Shell window can be accessed from the Model Builder, Application
Builder, and Model Manager, by selecting it from the Windows menu in the Home

28 |

tab. The figure below shows the Java Shell window used to debug the
buildGeometry method in the Transmission Line Calculator tutorial app.

DB ER» S - XEEE 0 EER S crmsonieckisonmh- COMOL Mtiphsics - o

Application Builder
tizea.

3063131668

The Data Viewer window is used to display and edit parameters, declarations, and
Java variables when stopped at a breakpoint. The Data Viewer window is always
accessible, including in the Model Builder workspace, allowing for quick viewing
and updating of parameters and declarations no matter where you are in the user
interface. The window also shows Java variables from the Java Shell window. The
Java Shell window can also be used to define temporary Java variables, as
illustrated in the figure below where the temporary integer variables a and b are
initialized and used.

Java Shell
a- | Bt

geom

abc gegm ==> "geoml"
visualizationState

abe yisualizationState ==> "geometry™
int a = 5;

123 g ==» 5
int b = a+l;

1232 b ==> 6
>
»Run = t °

| 29

This functionality can be helpful when debugging code. Note that all Application
Builder variables as well as temporary Java Shell window variables are displayed in
the Data Viewer window, as shown in the figure below.

At the top and bottom of the Java Shell window are two toolbars used to access
different features.

Java Shell oAt b= Al
a= | =t FE LWy om 123 b ==> 6
>
gEom
> Run = ¢ o

abc gepm ==> “"geoml"

These toolbars contain the following buttons:

* Go to Node: Jumps to the corresponding node in the model tree.

* Show in Data Viewer: Opens the Data Viewer window.

* Collapse All: Collapses all content.

+ Expand All: Expands all content.

 Only List Input: Displays only the input commands in the output area.

* Display Session Content: Displays the entire session content in the output area.

¢ Clear Output Area: Clears all content from the output area; however, no shell
variables are removed.

30 |

* Reset Session: Clears all content from the output area and removes shell
variables.

» Stop: Stops code execution.

* Run: Runs code entered at the command prompt. Alternatively, you can
press Enter.

¢ Multiline Input: Makes it possible to add and then run multiple lines of
commands. To run the code you can click the Run button or press Ctrl+
Enter.

* Previous in History: Moves up in the command history.

* Next in History: Moves down in the command history.

* Record Code: Records code to the Java Shell window

Note that you get additional options by right-clicking the output area.

The Java Shell session is reset when you open or start a new model and no content
is saved between sessions. To make persistent changes, you need to change the
model object and then save the model or use declarations in the Application
Builder.

To interact with the model tree, commands should begin with model. and
continue with the appropriate methods. Code completion is available as a tooltip,
suggesting possible completions. For example, if you type model.bas, the tooltip
displays model.baseSystem() and model.baseSystem(String name) as options.
You can also activate code completion using Ctrl+Space.
For instance, if you enter

model.baseSystem("mpa");

and run the command, the Unit System in the root node updates from SI to MPa.

The Java Shell automatically generates local shell variables for output associated
with the model object. By default, these variables have the same names as the tags
of the model object. For example, if you type:

model.geom().create("geomi",3)

you will see the following output:
geom1 ==> Geometry 1

A local variable named geom1 is created in the shell, allowing you to use:
geomi.angularUnit("deg")

instead of:

model.geom("geom1").angularUnit("deg")

from that point forward. To remove a shell variable from the current Java Shell
session, it can be deleted by right-clicking it in the Data Viewer window and
selecting Delete From Session.

| 31

You can select text in a message, then right-click and choose Copy (or press Ctrl+
C) to copy the text. To copy the content of any output from that input, select Copy
Children. You can also right-click to delete it from the output area by choosing
Delete (or press Delete).

To re-run code, right-click and select Run. Additionally, you can send the message
content to the input area or the Chatbot window by choosing Send to Input or Send
to Chatbot, respectively. For a detailed view, right-click and select Details to open
the message in a separate window that can be resized. The Details window supports
both inputs and outputs. Input code is displayed with syntax highlighting and
search functionality is provided in a panel that you open by pressing Ctrl+F.
If you encounter errors, sending them to the Chatbot window can help you get
improved code suggestions. Note that when writing to standard output or
standard error in the Java Shell window, the output appears in the same window.
For example:

System.out.println("Foo");

However, this behavior differs when running a method created in the Method
Editor. In this case, standard output and standard error are directed to the Debug
Log window.

The Chatbot Window

From the Windows menu on the Home toolbar, select Chatbot to open a window
for communicating with an OpenAl, Azure OpenAl , or OpenAl API-compatible
model. This feature assists with generating and correcting COMSOL API for
Java® code directly within COMSOL Multiphysics, as well as answering modeling
questions related to the software. Using the Chatbot window can help with both
programming tasks using the COMSOL API for Java and general modeling tasks
within the COMSOL Desktop. The Chatbot window is available in both the
Model Builder and Application Builder workspaces.

The Chatbot window is only available with the Windows version of the COMSOL
Desktop. The COMSOL software must also be installed with the CHATBOT
feature included in the installation and enabled using the Enable Chatbot checkbox
on the Chatbot page in the Preferences window.

The Chatbot window requires authentication details for your selected provider, for
example, an API key or connection settings for OpenAl, Azure OpenAl, or
another OpenAl API-compatible service.

The first time that you use the Chatbot window you need to configure a chatbot
provider. In the Chatbot window, click Configure Chatbot Provider, which opens the
Preferences window. Choose a Provider and Model and enter your key in the API

32 |

key field and click OK. If you are using Azure OpenAl, also enter an endpoint URL
in the Endpoint field and a model deployment name in the Deployment name field.
For the OpenAl API-compatible option, instead enter a Base URL and Model id.

If enabled, the Tool calling option allows the Chatbot to browse the COMSOL
documentation for information.

Once configured, you can start a chatbot conversation. Note that obtaining an
API key typically requires signing up for an API key payment plan. For more
information, see the Reference Manual.

The Chatbot window functionality connects to an external Al system. A
subscription agreement with the Al system host is needed to obtain an API
key. COMSOL is not a party in this agreement, and use of the external Al
system may be subject to additional fees.

It is your responsibility to ensure that your use of the Al system is in
accordance with laws and policies that may apply. It is also your
responsibility to review the suitability of any suggestions made by the Al
system.

The following Chatbot window examples use various models from
OpenAl. The output may vary depending on the selected provider and
model, and due to the nature of large language models (LLMs), some
random variation between responses is expected.

The Chatbot window includes a set of toolbar buttons and menus, as shown in the
figure below. In addition, information on the number of tokens used is displayed
in the Chatbot window’s top-right corner, next to Tokens used:

Messages Progress Log Java Shell Chatbot X ~Qah
Programming ~ + W |

Conversation: MNew conversation * Tokensused: 0|0
i

| 33

From the list in the top-left corner of the Chatbot window, you can select a subject:
General, Programming, and Modeling, as shown in the figure below.

Programming « +m)
LE,‘ General ion
~ Programming

@ Modeling

The selected subject influences how the chatbot interprets your prompts. The
chatbot understands Java syntax but not all aspects of the COMSOL API.
However, you can guide the chatbot to help you write code by using the Record
Code functionality of the Method Editor.

For example, let us use the Chatbot window to add annotations to the Pacemaker
Electrode tutorial model which is available in the Application Libraries under
COMSOL Multiphysics>Electromagnetics with the filename
pacemaker_electrode.mph.

If we open this model and record the creation of one annotation feature for the

Electric Potential plot, then the following code is produced:
model.result("pg1").create("anni1", "Annotation");
model.result("pg1").feature("ann1").set("posxexpr", 0.001);
model.result("pgl1").feature("anni1").set("posyexpr", 0.002);
model.result("pg1").feature("ann1").set("poszexpr", 0.003);
model.result("pg1").feature("anni1").set("text", "eval(V)");

Say that you would like to create 10 such annotations along a line. While having
the Programming subject selected, the following prompt will then guide the
chatbot to write functional code:

This is how you create an annotation in COMSOL Multiphysics:

model.result("pg1").create("anni1", "Annotation");

model.result("pg1").feature("ann1").set("posxexpr", 0.001);
model.result("pg1").feature("ann1").set("posyexpr", 0.002);
model.result("pg1").feature("ann1").set("poszexpr", 0.003);
model.result("pg1").feature("annt1").set("text", "eval(V)");

Can you create a for loop that places these annotations at 10 locations along
a line from (x,y,z)=(0,0,-0.02) to (x,y,z)=(0,0,0).

34 |

The figure below shows the resulting output from the Chatbot window, which can
be used to automate this task by entering the code in a method or in the Java Shell
window.

Messages Progress Log Java Shell Chatbot X =R
9 + 0%
Conversation: This is how you create an anno... (Oct 10, 2024, 8:14:12 PM) * Tokensused: 313|1K

; This is how you create an annotation in COMSOL Multiphysics:

model.result{"pg1").create("ann1”, "Annotation”);
model.result{"pg1").feature("ann1").set("poskcexpr”, 0.001);
model.result{"pg1").feature("ann1").set("posyexpr”, 0.002);
model.result{"pg1") feature("ann1").set{"poszexpr”, 0.003);
model.result{"pg1") feature("ann1").set{"text”, "eval(V)");

Can you create a for loop that places these annotations at 10 locations along a line from (x,y,2)=(0,0,-0.02) to (x,y,z)=(0,0,0).

for (int 1 = 8; i < 18; i++) {
double z = -8.82 + 1 * ©.882; // Calculate z position
String tag = "ann™ + (i + 1); // Create unique tag for each annotation
model.result("pgl™).createitag, "Annotation");
model.result("pgl™).feature(tag).set("posxexpr”, 8.8);
model.result("pgl™).feature(tag).set("posyexpr", 8.8);
model.result("pgl™).feature(tag).set("poszexpr", z);
model.result("pgl™).feature(tag).set{"text™, "eval(V)");

@

To run the code in the Java Shell window, right-click in the output area and select
Send to Java Shell. Alternatively, you can click the Send to Java Shell button in the
toolbar.

for (int i = @; i < 18; i++) {
double z = -8.82 + i * 8.802; // Calculate z posit [SendtoJava Shell

String tag = "ann™ + (i + 1); // Create unigque tag .
model.result("pgl™).createitag, "Annotation"); El Copy Ctri+C
model.result("pgl™).feature(tag).set("posxexpr", @
model.result("pgl™).feature(tag).set("posyexpr", @
model.result("pgl™).feature(tag).set("poszexpr", z);
model.result("pgl™).feature(tag).set{"text™, "eval(V)");

= Details

|35

Then, in the Java Shell window, click Run. The result is shown in the figure below.

B DB QB > 5k B0 E D RN R S pacemabercecvodempn ~ o x
Fle Home Defiiions Geometry Materials Physics Mesh Swdy Resuts Developer Electic Potential (ec) a
= % @ Volume W Sice 15 tine. 'i EI. fuai]
bt pior | B Amowohume O sosuface @ Contour More it mage Animation

I D [ArowSurace 3 Steamine Abdes o 5
saarn opon

Model Builder <=t Settings -5+ Graphics
ot yEm Sie @e Amotation @Ay @ v lyislsk

@t

Ubet Bonotsion o)
s

R &l
~ Amnotation

Tt) s

3 Prepend the osition
Ouw

[ram—
Geometsyleel

~ postton
0 m b s~
¥ o B
= o0 m L e

> Tite
> Advanced
~ Coloring and style

I Show pint Messages Progress log Javashell X Chatbot
Poi = —

NORE

Fromtheme

None
[Uppereit
Orienation Horortal

®
@
@
@
@
@
@
@
@
e
»
Expo
Repor

0 Show frame

> nhert style

32168345 68

For more details about the Chatbot window, see the Reference Manual.

ATTACHING MODEL HISTORY, MODEL TREE NODES, OR IMAGES

You can attach the entire model history, represented as a Model File for Java, to a
Chatbot prompt:

+ Right-click the root node in the model tree.
« Sclect Send to Chatbot > Model History.

 In the Chatbot window, enter a prompt, for example:
Can you find any issues with this model setup

36 |

s Dwoa B S B S lase hesting watermph - COMSOL Maltphysic
File Home Defintions Geometry Materials Physics Mesh Study Resuts Developer a
B = et s Ay B / = = B E
A -] £ LT Y] A = > =
Appc ou . Add et Ak Add Buld Meh | Compue Sudy Add e Uindon: e
e A putpis | M mSoidse P Mathenaics | Meh 1v v sy e
Gaomaty vtanst e e suey Lot
v
® E-0-RE 28 8- SHe-
i o
~ Used products
[—
« Uit system o0
s >
o
~ presentation
1 02
y 1 sa0tm
002
001
o
001 .
002

o thi model seup?

Clesr

Setfrom Graphics Window | Load from File

Buit, computed and pltted data
32168134268

When prompted to compact the model history, choose Yes to remove redundant

steps, unless you specifically want to include them.
X

Compact History
Compact model history before sending to Chatbot?

Yes No

You can also attach a specific model tree node:

» Right-click any part of the model tree.
* Sclect Send to Chatbot > Node or Send to Chatbot > Node and Children to submit

only that portion of the setup.
To attach images or screenshots:
+ DPaste an image directly into the Chatbot window.
* Enter your prompt along with the image attachment.

Chatbot Functionality in the Method Editor

The Method Editor includes certain chatbot functionality that can be useful for
programming or debugging purposes. You can right-click in a method window
137

and, from the Send to Chatbot submenu, choose one of the following options
(assuming we are working with a method named method1):

¢ Code: Attach the method to a prompt in the Chatbot window and then ask

about some aspect of the method.

* Find Bugs in methodl: Attach the method to a prompt in the Chatbot window
with a suitable text for getting help with debugging.

* Suggest Improvements to methodl: Attach the method to a prompt with a
suitable text for getting suggestions for improvements.

The figure below shows these menu options for a method named compute.

@ Preview

55 if (isSendEmail &% (emailT-

38 |

changelnput

compute X

= Computes the solution, updates the solutionsState

alert("Speci
return;

¥

/ Temporary change
solutionState = o

/1 Solve, pl
model. study ("

solutionState = “solu

if (isSendEmail) {

model. result().report("r

sendReportByEmail();
T

if (isPlayTada) {

playSound("success_1.ua

T

nd set so
crun();
Grophics(model.result("”
raphics(model.result(
useGraphics(model.result(
useGraphics(model.result(

U = -

(TR

i

mmAAy r

Go to Mode
Go to Method

3 Undo

Zoom 100%

Cut

Copy

Paste

Delete

Select All

Indent and Format
Create Local Variable
Toggle Comment
Toggle Folding Expansion
Send to Chatbot

variable, and plots the solution

F11);

Ctrl+Alt+Double-click

Ctrl+Z

Ctrl+X

Ctrl+C

Chrl+v

Del

Chrl+A

Tab

Ctrl+1

Ctrl+7

Ctrl+Shift+-

v

= Find Bugs in compute

Code - compute

|5 Suggest Improvemnents to compute

Introduction to the Model Object

The model object is the data structure that stores the state of the COMSOL
Multiphysics model. The model object contents are reflected in the COMSOL
Desktop user interface by the structure of the Model Builder and its model tree.
The model object is associated with a large number of methods for setting up and
running sequences of operations such as geometry sequences, mesh sequences,
and study steps. As an alternative to using the Model Builder, you can write
programs in the Method Editor that directly access and change the contents of the
model object.

The model object methods are structured in a tree-like way, similar to the nodes
in the model tree. The top-level methods just return references that support
further methods. At a certain level the methods perform actions, such as adding
data to the model object, performing computations, or returning data.

For a complete list of methods used to edit the model object, see the
Programming Reference Manual. For an introduction to using the Model
Builder, see the book Introduction to COMSOL Multiphysics.

The contents of the application tree in the Application Builder are accessed
through the application object, which is an important part of the model object.
You can write code using the Method Editor to alter, for example, button text,
icons, colors, and fonts in the user interface of a running application.

This section gives an overview of the model object. The section “The Application
Object” on page 78 gives an overview of the application object.

Model Object Tags

In the model tree and when working with the model object from methods, tags
are used as handles to different parts of the model object. These tags can also be
made visible in the Model Builder by first clicking the Model Builder toolbar
menu Model Tree Node Text and then choosing Tag, as shown in the figure below.

Model Builder

P T Etv Elv Hv @~
" MName
~ & busbar.mph (root) v Tag

v () Global Definitions
Fi Parameters 1 {default, .
4% Default Model Inputs == Reset Labels to Default

Materials

| 39

The figures below show an example of a model tree without tags shown in the left

figure and with tags shown in the right figure.

Model Builder

- TEte E- =

~ 4 busbar.mph (root)
~ () Global Definitions
Pi Pararneters 1
(Q' Default Model Inputs
&) Materials
~ [l Component 1 {comp1)
» Definitions
Geometry 1
& WorkPlane 1 fwp1)
[E] Extrude 1 (ext?)
= Waork Plane 2 (wp2)
[5) Extrude 2 (extd)
E Work Plane 3 (wp3)
[E] Extrude 3 (ext3)
Form Union (fin)

i Materials

»

ir 1]

-

<
e

. Electric Currents (ec)
0% Current Conservation 1
5= Electric Insulation 1
o= Initial Values 1
w Electric Potential 1
w Ground 1
~ |[F Heat Transfer in Sclids (ht)
B Selid1
0= Initial Values 1
5= Thermal Insulation 1
s Heat Flux 1
> Multiphysics
5 /5 Mesh1
> ~db Study 1
~ {E Results
% Datasets
Derived Values
> HH Tables
> i Electric Potential (ec)
> i Electric Field (ec)
> | Temperature (ht)
Current Density
Export
[# Reports

Model Builder

T =t

~ & busbar.mph (roct)

~ (i) Global Definitions
P Parameters 1 {defoult}
4% Default Model Inputs {eminpt}
i) Materials
~ i@ Component 1 (comp1) {comp 1}
> Definitions
Geometry 1 {geom 1}
{8 Work Plane 1 (wp 1) fwp 1}
[E] Extrude 1 {ext?) {extT)
= Work Plane 2 (wp2) {wp2)
o Extrude 2 (ext2) {ext2}
= Work Plane 3 (wp3) {wp3)
(5} Extrude 3 (ext3) fext3}
Form Union (fin) {fin}
> 5gE Materials
w }7 Electric Currents {ec) {ec/

>

mh Bl

B Current Conservation 1 feuen 1}
S Electric Insulation 1 {ein 1}
= Initial Values 1 {init 1}
= Electric Potential 1 {pot1}
= Ground 1{gnd1}
~ |[E] Heat Transfer in Solids (ht) {ht}
% Solid 1 {solid1}
B2 Initial Values 1 {init 1}
5@ Thermal Insulation 1 fins 1}
w Heat Flux 1 {hf1}
> .fﬁ:‘, Multiphysics
> A Mesh 1 {meshl}
5~ Study 1 fstd 1}
v @ Results
HE Datasets
Derived Values
> H Tables
> i Electric Potential (ec) {pg 1}
> Wi Electric Field (ec) {pg2}
> il Temperature (ht] {og3)
Current Density {pg4}
Export
Reports

In code, the tags are referenced using double quotes. For example, in the
following line

model.geom("geom1").create("r1", "Rectangle");

geom1 is a tag for a geometry object and r1 is a tag for a rectangle object. The
following sections contain multiple examples of using tags to create and edit parts
of a model object.

The option Name, available in the Model Tree Node Text menu in the Model Builder
toolbar, represents the name used for scoping. The scope names are used to access
the different parts of the model object. This is important, for example, when

working with global variables for defining the constraints and objective functions

40 |

for an optimization study. In the figure below, the variables mass and maxStress
are referenced by scope names: comp1.mass and comp1.maxStress, respectively.

Settings

mi. on

= Compute Continue

Label: Optimization

]

> Optimization Solver

~ Objective Function + - =R
L3 = -
Expression Description Evaluate for
compl.mass Bracket mass Stationary {ref2} "o
Eigenfrequency {ref} =
Type:

Minimization
Multiple objectives:

Sum of objectives
Solution:

Use first
Objective scaling:

MNone

> Control Variables and Parameters

~ Constraints

+ e
& Expression Lower bound | Upper bound | Evaluate for

real(freq) minFreg Eigenfrequency {ref} ~
compl.max5tress/maxStressLimit 1 Stationary {ref2} =
d_0_Cmp 3[mm] Eigenfrequency {ref} ~

-

Enforce design constraints strictly

Using scope names avoids name collisions in cases where there are multiple model
components or multiple physics interfaces with identical variable names.

Creating a Model Object

If you create an application using the Model Builder and the Application Builder,
then a model object model is automatically created the first time you enter the

| 41

Model Builder. This is then available as a reserved variable name. When using the
Model Wizard, the creation of the model tag is automatically handled.

You can create additional model objects with calls to the createModel method.
Such additional model objects will not be visible in the Model Builder (only model
is).

For more information on working with several model objects, see the section
“Working with Model Objects” on page 69.

Creating Model Components and Model Object Nodes

A model contains one or more model components. You can create a model
component using the following command:
model.modelNode().create("compi1", true);

The second argument is a boolean that determines whether separate geometry,
mesh, material, and spatial frames should be created. If unsure whether these
frames will be needed, it is recommended to set this value to true to ensure they
are included.

The component is given a definite spatial dimension when you create a geometry
node:

model.geom().create("geomi", 2);
where the second argument can be 0, 1, 2, or 3, depending on the spatial
dimension. In the example above, the spatial dimension is 2.
In addition to creating model components and geometry nodes, there are create
methods for many of the nodes in the model tree.
Whether the geometry should be interpreted as being axisymmetric or not is
determined by a Boolean property that you can assign as follows:

boolean makeaxi = true;
model.geom("geom1").axisymmetric (makeaxi);

The axisymmetric property is only applicable to models of spatial dimension 1 or
2.

42 |

Using the Model Wizard, if you first create a Blank Model and then add a
component using the Model Builder, you will be prompted to choose the
space dimension of the component. This operation will, in addition to
creating a component, also create a Geometry and Mesh node. For example,
creating a 2D component corresponds to the following lines of code:

model.component().create("compil", true);

model.component("comp1").geom().create("geoml", 2);
model.component ("comp1").mesh().create("meshi");

Get and Set Methods for Accessing Properties

The get and set methods are used to access and assign, respectively, property
values in the different parts of the model object. To assign individual elements of
a vector or matrix, the setIndex method is used. The property values can be of the
basic data types: String, int, double, and boolean, as well as vectors or matrices

of these types (1D or 2D arrays).

The get, set, and create methods (described in the previous section) are also
accessible from the model tree by right-clicking and selecting Copy as Code to

Clipboard.

> igi Materials

» B2 Solid Mechanics (solid)

~ I[F Heat Transfer in Solids (ht)
= Solid 1

8= Initial Values 1

w

3% Thermal Insulation 1
D5 Continuity 1
= Fluid 1

{& Heat Source 1

W v W v

mw Heat Flux 1

ST Equati Load Group »
> %y Multiphys
5 E Meshp‘l v Copy as Code to Clipboard Y

> ~do Study 1 Send to Chathot »

@& R:‘ESUH:S t Move Up Ctrl+Up gq

> 4ob Configura v
Datasets E] Copy Ctrl+C fo

- Views [5] Duplicate Ctrl+Shift+D

There are two options for copying set methods:

Create

Get

Set All Modified Settings
Set All Displayed Settings

+ Set All Modified Settings — copy only properties with nondefault values

 Set All Displayed Settings — copy all available properties

| 43

THE GET METHODS

The family of get methods is used to retrieve the values of properties. For example,
the getDouble method can be used to retrieve the value of the predefined element
size property hauto for a mesh and store it in a variable hv:

double hv = model.mesh("mesh1").feature("size").getDouble("hauto");

See the section “Example Code” on page 48 for more information on the property
hauto.

The syntax for the family of get methods for the basic data types is summarized in

the following table:

TYPE

SYNTAX

String

String array
String matrix
Integer
Integer array
Integer matrix
Double
Double array
Double matrix
Boolean
Boolean array

Boolean matrix

getString(String name)
getStringArray(String name)
getStringMatrix (String name)
getInt(String name)
getIntArray(String name)
getIntMatrix(String name)
getDouble(String name)
getDoubleArray(String name)
getDoubleMatrix (String name)
getBoolean(String name)
getBooleanArray(String name)

getBooleanMatrix(String name)

All arrays are returned as copies of the data; writing to a retrieved array does not
change the data in the model object. To change the contents of an array in the
model object, use one of the methods set or setIndex.

Automatic type conversion is attempted from the property type to the requested
return type.

THE SET METHOD

The syntax for assignment using the set method is exemplified by this line of code,
which sets the title of a plot group pg1:

model.result("pgl1").set("title", "Temperature T in Kelvin");

44 |

The first argument is a string with the name of the property, in the above example
"title". The second argument is the value and can be a basic type as indicated by
the table below.

TYPE SYNTAX

String set(String name,String vall)

String array set(String name,new String[]{"valtl","val2"})

String matrix set(String name,new String[]1[]{{"1","2"},{"3","4"}})
Integer set(String name,17)

Integer array set(String name,new int[]1{1,2})

Integer matrix set(String name,new int[][]{{1,2},{3,4}})

Double set(String name,1.3)

Double array set(String name,new double[]{1.3,2.3})

Double matrix set(String name,new double[][]{{1.3,2.3},{3.3,4.3}})

Boolean set(String name,true)
Boolean array set(String name,new boolean[]{true,false})
Boolean matrix set(String name,new boolean[][]{{true, false},{false, false}})

Using the set method for an object returns the object itself. This allows you to
append multiple calls to set as follows:

model.result("pg1").set("edgecolor", "black").set("edges", "on");
The previous line of code assigns values to both the edgecolor and edges
properties of the plot group pg1 and is equivalent to the two lines:

model.result("pg1").set("edgecolor", "black");
model.result("pgl1").set("edges", "on");

In this case, the set method returns a plot group object.

Yet another equivalent way is illustrated by the following example, which stores a
reference to the plot group object in pg1, an instance of the ResultFeature class.
To automatically determine and insert the correct type, you can click on a line of
code such as:

model.result("pg1").set("edgecolor", "black").set("edges", "on");

and then press Ctrl+1. This will automatically refactor the code to:

ResultFeature pg1 = model.result("pg1");
pg1l.set("edgecolor", "black").set("edges", "on");

This approach may improve readability and avoids repeated lookups of "pg1" in
the model.

| 45

The same technique of chaining multiple calls to the set method also applies to

other parts of the model object. For example, to set multiple properties for a circle

in a single statement, you can write:
model.geom("geomi").create("c1","Circle").set("pos", new
double[]{0,1}).set("r", 5);

Alternatively, you can store the circle in a PropFeature object:

PropFeature circ1 = model.geom("'geomi").create("c1", "Circle").set("pos",
new double[]{0,1}).set("r", 5);

To make a model parametric using a parameter defined under Global Definitions,

use the following string-array syntax:
model.geom("geomi").create("c1","Circle").set("pos", new
String[]{"0","b"}).set("r", 5);

Here, b is a global parameter. This is the recommended syntax if you intend to

perform a parametric sweep using a study.

Note that this syntax differ from the double-array syntax:
model.geom("geomi").create("c1","Circle").set("pos", new
double[]{0,c}).set("r", 5);

In this case, c is interpreted as a Java variable. The expression double[]1{0, c} is

evaluated numerically (for example, to {0, 1.3} if ¢ is 1.3), which means the

reference to c is lost and cannot be used for the built-in parametric sweep.

However, if you are making the model parametric purely through Java code rather

than using the built-in parametric sweep functionality, then this syntax works as

intended.

Automatic type conversion is attempted from the input value type to the property

type. For example, consider a model parameter a that is just a decimal number

with no unit. Its value can be set with the statement:

model.param().set("a", "7.54");

where the value "7.54" is a string. In this case, the following syntax is also valid:
model.param().set("a",7.54);

THE SETINDEX METHOD

The setIndex method is used to assign a value to a 1D or 2D array element at a
position given by one or two indices (starting from index 0).

The following line illustrates using setIndex with one index:
model.physics("c").feature("cfeql").setIndex("f", "2.5", 0);

The following line illustrates using setIndex with two indices:
model.physics("c").feature("cfeql").setIndex("c", "-0.1", 0, 1);

46 |

For the setIndex method in general, use one of these alternatives to set the value
of a single element:
setIndex(String name,String value,int index);
setIndex(String name,String value,int index1,int index2);
The name argument is a string with the name of the property. The value argument
is a string representation of the value. The indices start at 0, for example:
setIndex(name,value,2);

sets the third element of the property name to value.

The setIndex method returns an object of the same type, which means that
setIndex methods can be appended just like the set method.
If the index points beyond the current size of the array, then the array is extended
as needed before the element at index is set. The values of any newly created
intermediate elements are undefined.
The method setIndex and set can both be used to assign values in ragged arrays.
For example, consider a ragged array with 2 rows. The code statements:
setIndex(name,new String[]{"1","2","3"},0);
setIndex(name,new String[]{"4","5"},1);
sets the first and second row of the array and are equivalent to the single statement:
set("name”,new String[][1{{"1","2","3"},{"4","5"}});

See the section “Example Code” below for examples of using setIndex.

METHODS ASSOCIATED WITH SET AND GET METHODS

For object types for which the set, setIndex, and get methods can be used, the
following additional methods are available, exemplified by the case of a Heat
Transfer in Solids physics interface:

// String[] properties();

String[] props =

model.component ("comp1").physics("ht").feature("solid1").properties();
returns the names of all available properties,

// boolean hasProperty(String name);

boolean b =

model.component("comp1").physics("ht").feature("solid1").hasProperty("k_mat");
returns true if the feature has the named property,

// String[] getAllowedPropertyValues(String name);
String[] vals =
model.component ("comp1").physics("ht").feature("solid1").getAllowedPropertyValu
es("k_mat");
returns the allowed values for named properties, if it is a finite set. The figure
below illustrates how to use the Java Shell window to retrieve these properties and

| 47

values. This example assumes that a heat transfer model is open in the user
interface.

Messages Progress Log Chatbot Java Shell x

String[] props = model.component(”compl”).physics({"ht").feature(”solidl").properties();

28: props ==» {"hasPhaseChange”, "Solid_material®, "k_mat", "k, “rho_mat", "rho",
"Cp_mat™, "Cp", "u_prime_src", "u_prime", "pref_src", "pref",
"minput_strainreferencetemperature_src”, "minput_strainreferencetemperature”,
"editModelInputs™, “"crosswind", "streamline", "dfltopaque”, "thermalConductivityModel”,
"coordinateSystem”, "minput_temperature_src”, “"minput_temperature”,
"minput_wvelocity_src”, "minput_velocity", "minput_pressure_src”, "minput_pressure”,
"minput_relativehumidity_src", "minput_relativehumidity”, "minput_concentration_src”,
"minput_concentration”, "minput_electricfield src”, "minput_electricfield”,
"minput_magneticfield_src”, "minput_magneticfield”, "minput_magneticfluxdensity_src”,
"minput_magneticfluxdensity”, "minput_frequency_src”, "minput_freguency”,
"minput_stress_src", "minput_stress", "minput_effectiveplasticstrain_src”,
"minput_effectiveplasticstrain™, "minput_numberdensity_src”, "minput_numberdensity"”,
"minput_currentdensity_src”, "minput_currentdensity™, "minput_shifted..

¥ string[] vals = model.component(™compl™).physics("ht").feature
("solidl").getAllowedPropertyValues("k_mat™);
2B vals ==> {"from_mat", "userdef"}
>
»Run & ¢ .

ExAMPLE CODE

The following code can be used to warn an application’s user of excessive
simulation times based on the element size:

if (model.mesh("mesh1").feature("size").getDouble("hauto") <= 3) {
exp_time = "Solution times may be more than 10 minutes for finer element
sizes.";
}
In the above example, getDouble is used to retrieve the value of the property
hauto, which corresponds to the Element Size parameter Predefined in the Settings
window of the Size node under the Mesh node. This setting is available when the
Sequence type is sct to User-controlled mesh, in the Settings window of the Mesh
node.

The following code retrieves an array of strings corresponding to the legends of a
1D point graph.

String[] legends =
model.results("pg3").feature("ptgri1").getStringArray("legends");

48 |

The figure below shows an example of a vector of legends in the Settings window
of the corresponding Point Graph.

¥ legends

V| Show legends

Legends: | Manual -

" Legends
a=0.02 m
a=0.025m
a=0.03 m
a=0.035m
a=0.04 m

The following code sets the Dataset dset1 for the Plot Group pg1:
model.result("pgl").set("data", "dset1");

The following code set the anisotropic diftfusion coefficient for a Poisson’s
equation problem on a block geometry.

model.geom("geom1").create("blk1", "Block");

with(model.geom("geom1").feature("blk1"));
set("size", new String[]{"10", "1", "1"});

endwith();

model.geom("geom1").run();

with(model.physics("c").feature("cfeql"));

setIndex("c", "-0.1", 0, 1);

setIndex("c", "-0.2", 0, 6);

setIndex("f", "2.5", 0);
endwith();

The 3-by-3 diffusion coefficient matrix indices follow column-first ordering.

The following code sets the global parameter L to a fixed value.
model.param().set("L", "10[cm]");

The following code sets the material link index to the string variable alloy,

defined under the Declarations node.
model.material("matlnk1").set("1link", alloy);

The following code sets the coordinates of a cut point dataset cpti to the values
of the 1D array samplecoords]].

with(model.result().dataset("cpti1"));
set("pointx", samplecoords[0]);
set("pointy", samplecoords[1]);
set("pointz", samplecoords[2]);
endwith();

The following code sets the components of a deformation plot, applied to a
volume plot, to the contents of the strings uStr, vStr, and wStr.

| 49

model.result("pg1").feature("voll").feature("def").setIndex("expr", uStr,
0).setIndex("expr", vStr, 1).setIndex("expr", wStr, 2);
The code below sets the title and color legend of a plot group pg2 and then
regenerates the plot.

with(model.result("pg2"));
set("titletype", "auto");

endwith();

with(model.result("pg2").feature("surfi1"));
set("colorlegend", "on");

endwith();

model.result("pg2").run();

Parameters and Variables

This code defines a global parameter L with Expression 0.5[m] and Description
Length:
model.param().set("L", "0.5[m]");
model.param().descr("L", "Length");
There is an alternative syntax using three input arguments:
model.param().set("L", "0.5[m]", "Length");

You can also use the with syntax to set the Expression and Description for several
parameters, for example:

with(model.param());
set("L", "0.5[m]");
descr("L", "Length");
set("wd", "10[cm]");
descr("wd", "Width");
set("T0", "500[K]");
descr("T0", "Temperature");

endwith();

50 |

which corresponds to the following Settings window for Global Definitions >
Parameters:
Settings

aramet

Label: Parameters 1 E

v~ Parameters

4 MName Expression Value Description
L 0.5[m] 0.5m Length
wd 10[cm] 0.1m Width
TO 500[K] 500 K Temperature

Note the with syntax is not supported in the Java Shell window.

ACCESSING A GLOBAL PARAMETER

You would typically use the Editor Tools window for generating code for setting
the value of a global parameter. While in the Method Editor, right-click the
parameter and select Set.
To set the value of the global parameter L to 10 cm:

model.param().set("L", "10[cm]");
To get the global parameter L and store it in a double variable Length:

double Length = model.param().evaluate("L");
Note that if you have multiple parameter nodes, the syntax for evaluation is still
the same. For example, this code sets the parameter L2 in a Parameters 2 node,
with tag par2:

model.param("par2").set("L2", "5[cm]");
To get the parameter L2 and store it in a double variable Length2:

double Length2 = model.param().evaluate("L2");

without any reference to the tag par2.

The evaluation is in these cases with respect to the base Unit System defined in the
model tree root node.

To return the unit of the parameter L, it any, use:

String Lunit=model.param().evaluateUnit("L");

To write the value of a model expression to a global parameter, you typically need
to convert it to a string. The reason is that model expressions may contain units.

Multiply the value of the variable Length with 2 and write the result to the
parameter L including the unit of cm.

|51

Length = 2*Length;
model.param().set("L", toString(Length) + "[cm]");

To return the value of a parameter in a different unit than the base Unit System,
use:

double Length_real = model.param().evaluate("L","cm");
For the case where the parameter is complex valued, the real and imaginary parts
can be returned as a double vector of length 2:

double[] realImag = model.param().evaluateComplex("Ex", "V/m");
For parameters that are numbers without units, you can use a version of the set
method that accepts a double instead of a string. For example, the lines

double a_double = 7.65;
model.param().set("a_param", a_double);

assigns the value 7.65 to the parameter a_param.

VARIABLES
The syntax for accessing and assigning variables is similar to that of parameters.
For example, the code:

with(model.variable("vari"));
set("F", "150[N]");
descr("F", "Force");
endwith();

assigns the Expression 150[N] to the variable with Name F.

The following code assigns a model expression to the variable f:

with(model.variable("vari"));
set("f", "(1 - alpha)~2/(alpha”3 + epsilon) + 1");
endwith();

and the following code stores the model expression for the same variable in a string
fs.

String fs = model.variable("vari").get("f");

Unary and Binary Operators in the Model Object

The table below describes the unary and binary operators that can be used when
accessing a model object, such as the model expressions used when defining

52 |

parameters, variables, material properties, and boundary conditions, as well as in
expressions used in results for postprocessing and visualization.

PRECEDENCE LEVEL SYMBOL DESCRIPTION

| () {} . grouping, lists, scope

2 ” power

3 -+ unary: logical not, minus, plus

4 [] unit

5 * binary: multiplication, division

6 + - binary: addition, subtraction

7 < <= > >= comparisons: less-than, less-than or equal,
greater-than, greater-than or equal

8 == I= comparisons: equal, not equal

9 && logical and

10 || logical or

[, element separator in lists

The following example code creates a variable to indicate whether the effective von
Mises stress exceeds 200 MPa by using the inequality solid.mises>200[MPa]:

model.variable().create("vari");
model.variable("var1").model("comp1");
model.variable("vari").set("hi_stress", "solid.mises>200[MPa]");

The following code demonstrates using this variable in a surface plot:
model.result().create("pg3", "PlotGroup3D");

model.result("pg3").create("surfi1", "Surface");

with(model.result("pg3").feature("surfi1"));
set("expr", "hi_stress");

endwith();

model.result("pg3").run();

The same plot can be created by directly using the inequality expression in the
surface plot expression as follows:
with(model.result("pg3").feature("surfi1"));
set("expr", "solid.mises > 200[MPa]");
endwith();
model.result("pg3").run();

| 53

Geometry

Once the Geometry node is created (see “Creating Model Components and Model

Object Nodes” on page 42) you can add geometric features to the node. For

example, add a square using default position (0, 0) and default size 1:
model.geom("geom1").create("sql", "Square");

The first input argument "sq1" to the create method is a tag, a handle, to the
square. The second argument "Square" is the type of geometry object.

Add another square with a different position and size:

model.geom("geom1").create("sg2", "Square");

with(model.geom("geomi1").feature("sq2"));
set("pos", new String[]{"0.5", "0.5"});
set("size", "0.9");

endwith();

The with statement in the above example is used to make the code more compact
and, without using with, the code statements above are equivalent to:

model.geom("geomi").feature("sq2").set("pos", new String[]{"0.5", "0.5"});
model.geom("geom1").feature("sg2").set("size", "0.9");

Take the set difference between the first and second square:

model.geom("geom1").create("dif1", "Difference");

with(model.geom("geom1").feature("dif1").selection("input"));
set(new String[]{"sq1"});

endwith();

with(model.geom("geomi1").feature("dif1").selection("input2"));
set(new String[]{"sq2"});

endwith();

To build the entire geometry, you call the method run for the Geometry node:
model.geom("geom1").run();

The above example corresponds to the following Geometry node settings:

~) Component 1 {comp1)
» = Definitions
v Geometry 1
71 square1(sq)
71 square 2 (sq2)
Difference 1 (dif1)

Form Union (fin)

In this way, you have access to the functionality that is available in the geometry
node of the model tree. Use Record Code or any of the other tools for automatic
generation of code to learn more about the syntax and methods for other
geometry operations.

54 |

REMOVING MODEL TREE NODES

You can remove geometry objects using the remove method:
model.geom("geom1").feature().remove("sqg2");

Remove a series of geometry objects (circles) with tags c1, c2, ..., c10:

for (int n =1; n <= 10; n = n+1) {
model.geom("geom1").feature().remove("c"+n);

}

The syntax "c¢"+n automatically converts the integer n to a string before
concatenating it to the string "c".

To remove all geometry objects:

for (String tag : model.geom("geoml").feature().tags()) {
model.geom("geom1").feature().remove(tag);

}
However, the same can be achieved with the shorter:
model.geom("geom1").feature().clear();

In a similar way, you can remove other model tree nodes.

Mesh

The following line adds a Mesh node, with tag mesh1, linked to the geometry with
tag geom1:
model.mesh().create("mesh1", "geomi");
You can control the mesh element size either by a preconfigured set of sizes or by
giving low-level input arguments to the meshing algorithm.
The following line:
model.mesh("mesh1").autoMeshSize (6);
corresponds to a mesh with Element size sct to Coarse. The argument to the
method autoMeshSize ranges from 1-9, where 1 is Extremely fine and 9 is Extremely
coarse.
To generate the mesh, you call the run method for the Mesh node:
model.mesh("mesh1").run();

Use Record Code to generate code for other mesh operations.

The code below shows an example where the global mesh parameters have been
changed.

model.mesh("mesh1").automatic(false); // Turn off Physics-controlled mesh
with(model.mesh("mesh1").feature("size"));
set("custom", "on"); // Use custom element size

| 55

set("hmax", "0.09"); // Maximum element size
set("hmin", "3.0E-3"); // Minimum element size
set("hgrad", "1.2"); // Maximum element growth rate
set("hcurve", "0.35"); // Curvature factor
set("hnarrow", "1.5"); // Resolution of narrow regions
endwith();
model.mesh("mesh1").run();

The above example corresponds to the following Mesh node settings:

Model Builder Settings
«— s Et~ iy W~ Size
I = Build Selected [E§ Build All
v & Untitled.mph (root) Label: Size =5
v () Global Definitions
Pi Parameters 1 Element Size
= Materials

v € Component 1 (comp 1) Calibrate for:

» = Definitions General physics -
~ Geometry 1
71 square1(sq)
71 square 2 (sq2) @® Custom
Difference 1 (dif1)
Form Union (fin)

() Predefined Mormal

~ Element Size Parameters

= Materials Maximum element size:
~ A Mesh 1 0.09 m
Free Triangular 1 Minimum element size:
» x@ Results Je-3 m
Maximum element growth rate:
1.2
Curvature factor:
0.35

Resolution of narrow regions:

1.5

Note that you can also set local element size properties for individual points,
edges, faces, and domains. Use Record Code or any of the other tools for automatic
generation of code to learn more about the syntax and methods for other mesh
operations.

Physics

Consider analyzing stationary heat transfer in the solid rectangular geometry
shown earlier. To create a physics interface, for Heat Transfer in Solids, use:
model.physics().create("ht", "HeatTransfer", "geomi");

56 |

The first input argument to the create method is a physics interface tag that is
used as a handle to this physics interface. The second input argument is the type
of physics interface. The third input argument is the tag of the geometry to which
the physics interface is assigned.

To set a fixed temperature boundary condition on a boundary, you first create a
TemperatureBoundary feature using the following syntax:
model.physics("ht").create("temp1", "TemperatureBoundary", 1);

The first input argument to create is a feature tag that is used as a handle to this
boundary condition. The second input argument is the type of boundary
condition. The third input argument is the spatial dimension for the geometric
entity that this boundary condition should be assigned to. Building on the
previous example of creating a 2D rectangle, the input argument being 1 means
that the dimension of this boundary is 1 (that is, an edge boundary in 2D).

The next step is to define which selection of boundaries this boundary condition
should be assigned to. To assign it to boundary 1 use:

model.physics("ht").feature("temp1").selection().set(new int[]{1});

To assign it to multiple boundaries, for example 1 and 3, use:
model.physics("ht").feature("temp1").selection().set(new int[]{1, 3});

To set the temperature on the boundary to a fixed value of 400 K, use:
model.physics("ht").feature("temp1").set("T0", "400[K]");

The following lines of code show how to define a second boundary condition for
a spatially varying temperature, varying linearly with the coordinate y:
model.physics("ht").create("temp2", "TemperatureBoundary", 1);

model.physics("ht").feature("temp2").selection().set(new int[]1{4});
model.physics("ht").feature("temp2").set("T0", " (300 + 10[1/m]*y)[K]");

The resulting model tree structure is shown in the figure below.

2= Materials

4 | I8 Heat Transfer in Solids (ht) {ht}
o Solid 1 {solid2}
o Initial Values 1 {init1}
25 Thermal Insulation 1 {ins1}
= Temnperature 1 {temp1}
= Temperature 2 {temp2}

5 Mesh 1 {mesh1}

Use Record Code or any of the other tools for automatic generation of code to learn
more about the syntax and methods for other physics interface features and other
physics interfaces.

| 57

CREATING AND REMOVING MODEL TREE NODES

Below is a larger block of code that removes, creates, and accesses physics interface
feature nodes. It uses the Iterator class and methods available in the java.util
package. For more information, see the Java® documentation.

String[] flowrate = columni;
String[] Mw = column2;
java.util.Iterator<PhysicsFeature> iterator =
model.physics("pfl").feature().iterator();
while (iterator.hasNext()) {
if (iterator.next().getType().equals("Inlet"))
iterator.remove();

}
if (flowrate != null) {
for (int i = 0; i < flowrate.length; i++) {
if (flowrate[i].length() > 0) {
if (Mw[i].length() > 0) {
int d =1 + 1i;

model.physics("pfl").create("inl" + d, "Inlet");

() -
model.physics("pfl").feature("inl" + d).setIndex("spec", "3", 0);
model.physics("pfl").feature("inl" + d).set("qgsccm0", flowrate[i])
model.physics("pfl").feature("inl" + d).set("Mn", Mw[i]);
model.physics("pfl").feature("inl" + d).selection().set(new int[]{d});
}
}
}

}

The need to remove and create model tree nodes is fundamental when writing
methods because the state of the model object is changing each time a model tree
node is run. In the method above, the number of physics feature nodes are
dynamically changing depending on user inputs. Each time the simulation is run,
old nodes are removed first and then new nodes are added.

RETRIEVING THE TYPE OF A PHYSICS FEATURE

The Model Builder always shows the label for the model tree nodes. To get more
information about each node, in the Model Builder toolbar click Model Tree Node
Text. Then select any combination of options from the list: Name, Tag, and Type.

* Name: The descriptive, human-readable label shown in the user interface to
help you identify and distinguish it.

* Tag: The unique internal identifier (an alphanumeric string) used in method
code and model files to reference that feature programmatically.

e Type: The class of a feature, which determines its available settings, behavior,
and applicable operations.

Since the Name can be changed by the user, and thereby vary from model to model

even if the physics is identical, it is not very useful when programming using the

API. Instead, the Tag is most frequently used, as in many of the previous examples.

58 |

However, sometimes the Type is also useful. It gives a human-readable description
of a feature that cannot be changed by the user. For example, in the case of a
Temperature boundary condition for a Heat Transfer in Solids interface, a call to

model.component("comp1").physics("ht").feature("hs1").getType();

will return the string HeatSource, regardless of which Name is displayed in the
Model Builder.

Material

A material, represented in the Model Builder by a Materials node, is a collection of
property groups, where each property group defines a set of material properties,
material functions, and model inputs that can be used to define, for example, a
temperature-dependent material property. A property group usually defines
properties used by a particular material model to compute a fundamental quantity.

To create a Materials node:
model.material().create("mat1", "Common", "compi");

You can give the material a name, for example, Aluminum, as follows:
model.material("mat1").label("Aluminum");

The following lines of code shows how to create a basic material property group
for heat transfer:

with(model.material("mat1").propertyGroup("def"));
set("thermalconductivity", new String[]{"238[W/(m*K)]"});
set("density", new String[]{"2700[kg/m~3]"});
set("heatcapacity", new String[]{"900[J/(kg*K)]1"});
endwith();

The built-in property groups have a read-only tag. In the above example, the tag
def represents the property group Basic in the model tree.

¥ Geometry 1
v igE Materials
v Cig Structural steel (mat1)

- Basic (def)
=i Young's modulus and Poisson's ratio (Enu)
=i Murnaghan (Mumaghan)
= Lamé parameters (Lamé)

v =2 Solid Mechanics (solid)

| 59

The resulting model tree and Material node settings are shown in the figure below.

Model Builder Settings
— = Bt b R A4 Basic
¢ Label: Basic =
v & Uptitled.mph (root) Name |def
~ () Global Definitions
P Parameters 1 ~ Output Properties
i Materials
pa [
v @ Compenent 1 (comp1) Property Variable Expression Unit Size | Info
» = Definitions = = " " ;
Thermal conductivity | k_iso ; kii.. | 238[W/(m*K)] Wi (m-K) 3x3
> Geometry 1 5 :)
~ &5 Materials Density rho 2700[kg/m*3] kg/m 1x1
~ i Aluminum (mat1) Heat capacity at const.. | Cp G000/ (kg*K)] 17 (kg-K) 1x1
& Basic (def)
> |8 Heat Transfer in Solids (ht)
A5 Mesh 1
> B Results

Note that some physics interfaces do not require a material to be defined. Instead,
the corresponding properties can be accessed directly in the physics interface. This
is also the case if the physics model settings are changed from From material to User
defined. For example, for the Heat Transfer in Solids interface, this setting can be
found in the Settings window of the subnode Solid, in the sections Heat Conduction,
Solid and Thermodynamics, Solid, as shown in the figure below.

~ Heat Conduction, Solid

Thermal conductivity:

k User defined -
0 0 0

0 0 0 W/ (m-K)
0 0 0

Full - | (=

~ Thermodynamics, Solid

Density:
P From material -
Heat capacity at constant pressure:

Cp From material -

Use Record Code or any of the other tools for automatic generation of code to learn
more about the syntax and methods for materials.

Study

The Study node in the model tree contains one or more study steps, instructions
that are used to set up solvers and solve for the dependent variables. The settings

60 |

for the Study and the Solver Configurations nodes can be quite complicated.
Consider the simplest case for which you just need to create a study, add a study
step, and run it.

Building on the example from the previous sections regarding stationary heat
transfer, add a Stationary study step.

model.study().create("std1"); // Study with tag stdi

model.study("std1").create("stat", "Stationary");

model.study("std1").run();
The call to the method run automatically generates a solver sequence in a data
structure model.sol and then runs the corresponding solver. The settings for the
solver are automatically configured by the combination of physics interfaces you
have chosen. You can manually change these settings, as shown later in this
section. The data structure model.sol roughly corresponds to the contents of the
Solver Configurations node under the Study node in the model tree.

All low-level solver settings are available in model.sol. The structure model.study
is used as a high-level instruction indicating which settings should be created in
model.sol when a new solver sequence is created.

For backward compatibility, the low-level settings in model.sol can be
automatically generated when using Record Code. This behavior is controlled by
the Store complete solver history checkbox, available in the Settings window of the
each Study node.

Settings
Study

= Compute ' Update Solution
Label: Study 1 =

~ Study Settings

Generate default plots

Generate convergence plots

[] Store solution for all intermediate study steps

[] Generate default plots for intermediately stored solutions
[T] Plot the location of undefined values

Store complete solver history

The example below shows a slightly more detailed approach to programming a
study setup, based on the stationary heat transfer example shown earlier. These
instructions more closely reflect the autogenerated output produced when Record
Code is enabled and Store complete solver history is selected.

First, create instances of the Study node (with tag std1) and a Stationary study step
subnode:

model.study().create("std1");
model.study("std1").create("stat", "Stationary");

|61

The actual settings that determine how the study is run are contained in a
sequence of operations in the Solution data structure, with tag sol1, which is linked
to the study:

model.sol().create("soll1");

model.sol("sol1").study("std1");
The following code defines the sequence of operations contained in sol1.
First, create a Compile Equations node under the Solution node to determine which
study and study step will be used:

model.sol("sol1").create("st1", "StudyStep");
model.sol("sol1").feature("st1").set("study", "std1");
model.sol("sol1").feature("st1").set("studystep", "stat");
Next, create a Dependent Variables node, which controls the scaling and initial
values of the dependent variables and determines how to handle variables that are
not solved for:

model.sol("sol1").create("v1", "Variables");

Now create a Stationary Solver node. The Stationary Solver contains the
instructions that are used to solve the system of equations and compute the values
of the dependent variables.

model.sol("sol1").create("s1", "Stationary");
Add subnodes to the Stationary Solver node to choose specific solver types. In this
example, use an Iterative solver:

model.sol("sol1").feature("s1").create("i1", "Iterative");

Add a Multigrid preconditioner subnode:
model.sol("sol1").feature("s1").feature("i1").create("mg1", "Multigrid");

You can have multiple Solution data structures in a study node (such as sol1, sol2,
and so on) defining different sequences of operations. The process of notifying the
study of which one to use is done by “attaching” the Solution data structure sol1
with study std1:

model.sol("sol1").attach("std1");
The attachment step determines which Solution data structure sequence of

operations should be run when selecting Compute in the COMSOL Desktop user
interface.

Finally, run the study, which is equivalent to running the Solution data structure
solt:

model.sol("sol1").runAll();

The resulting Study node structure is shown in the figure below. Note that there
are several additional nodes added automatically. These are default nodes and you

62 |

can edit each of these nodes by explicit method calls. You can edit any of the nodes
while using Record Code to sce the corresponding methods and syntax used.

Model Builder

- S Etv Elv Siv -

‘il

~ & Untitled.mph (root)
v () Global Definitions
Fi Parameters 1 {defoult}
=) Materials

= Definitions
Geometry 1 {geom1}
22 Materials
5] Heat Transfer in Solids (ht) {ht}
A5 Mesh 1 {mesh1)
v oo Study 1 {std 7}
[= Step 1: Stationary {stat}
~ [Tt Solver Configurations
~ [Solution 1 (sol1) {sol1}
5 Compile Equations: Stationary {st1}

~) Component 1 (comp 1) {comp 1}
>
>
>
>

v ok Dependent Variables 1 {v1}
Ufp Temperature (comp1.T) {comp 1_T}
v |7 Stationary Solver 1 {s7}
Direct {dDef}
== Fully Coupled {fcDef}
}. Advanced {aDef}
v [N Iterative 1 i1}
Incomplete LU {ilDef}
v [Multigrid 1 {mg 1}
v % Presmoother {pr}
& SOR fsoDef?
v % Postsmoother {po}
5l SOR fsoDef}
v % Coarse Solver {cs}
Direct {dDef}
> @, Results

Quick WAY oF USING A STUDY
An alternative for quickly using a study in method code is to use:

model.study(studyTag).createAutoSequences("all");

where studyTag equals "std1", or similar, depending on the model’s
configuration.

This will generate the solver sequence automatically.
To run the study, you can use:

model.study(studyTag).run();

For example, in a model with a study that has the study tag std1, the
corresponding code would be:
model.study("std1").createAutoSequences("all");

| 63

model.study("std1").run();

In a typical case, when Record Code or Record Method is enabled and Store complete
solver history is disabled, the recorded code will appear as follows:

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/ht", true);
model.study("std1").createAutoSequences("all");
model.sol("sol1").runAll();
The line calling setSolveFor is used to specify whether a particular physics
interface should be included in the computation. In this example, setSolveFor("/
physics/ht", true) ensures that the Heat Transfer interface is enabled in the
study.

MODIFYING LOW-LEVEL SOLVER SETTINGS

To illustrate how some of the low-level solver settings can be modified, consider
a case where the settings for the Fully Coupled node are modified. This subnode
controls the type of nonlinear solver used.

The first line below may not be needed depending on whether the Fully Coupled
subnode has already been generated or not (it could have been automatically
generated by code similar to what was shown above).

model.sol("sol1").feature("s1").create("fc1", "FullyCoupled");
SolverFeature fc1 = model.sol("sol1").feature("s1").feature("fc1");

fcl.set("dtech", "auto"); // Nonlinear method (Newton solver)
fcl.set("initstep", "0.01"); // Initial damping factor
fctl.set("minstep", "1.0E-6"); // Minimum damping factor
fcl.set("rstep", "10"); // Restriction for step-sized update
fc1.set("useminsteprecovery", "auto"); // Use recovery damping factor
fcl.set("minsteprecovery", "0.75"); // Recovery damping factor
fc1.set("ntermauto", "tol"); // Termination technique
fcil.set("maxiter", "50"); // Maximum number of iterations
fcil.set("ntolfact", "1"); // Tolerance factor
fci.set("termonres", "auto"); // Termination criterion
fctl.set("reserrfact", "1000"); // Residual factor

For more information on the meaning of these and other low-level solver settings,
see the Solver section of the Programming Reference Manual.

Changing the low-level solver settings requires that model.sol has first been
created. It is always created the first time you compute a study, however, you can
trigger the automatic generation of model.sol as follows:

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").showAutoSequences("sol");

where the call to showAutoSequences corresponds to the option Show Default
Solver, which is available when right-clicking the Study node in the model tree.

64 |

This can be used if you do not want to take manual control over the settings in
model.sol (the solver sequence) and are prepared to rely on the physics interfaces
to generate the solver settings. If your application makes use of the automatically
generated solver settings, then updates and improvements to the solvers in future
versions are automatically included. Alternatively, the automatically generated
model.sol can be useful as a starting point for your own edits to the low-level
solver settings.

CHECKING IF A SOLUTION EXISTS

When creating an application it is often useful to keep track of whether a solution
exists or not. The method model.sol("so0l1").isEmpty () returnsa boolean and is
true if the solution structure sol1 is empty. Consider an application where the
solution state is stored in a string solutionState. The following code sets the state
depending on the output from the isEmpty method:

if (model.sol("sol1").isEmpty()) {

solutionState = "noSolution";
}
else {

solutionState = "solutionExists";
}

Alternatively, solutionState can be initialized to noSolution and the following
code is used to indicate a state change corresponding to the input values having
changed:

if (solutionState.equals("solutionExists")) {
solutionState = "inputChanged";

}

Almost all of the example applications in the Application Libraries use this
technique.

Results

The Results node contains nodes for Datasets, Derived Values, Tables, Plot Groups,
Export, and Reports. As soon as a solution is obtained, a set of Plot Group nodes
are automatically created. In the example of Heat Transfer in Solids, when setting
up such an analysis in the Model Builder, two Plot Group nodes are added
automatically. The first one is a Surface plot of the Temperature and the second one
is a Contour plot showing the isothermal contours. Below you will see how to set
up the corresponding plots manually.

First create a 2D plot group with tag pg1:
model.result().create("pg1", "PlotGroup2D");

| 65

Change the Label of the Plot Group:
model.result("pg1").label("Temperature (ht)");

Use the dataset dset1 for the Plot Group:
model.result("pg1").set("data", "dset1");

Create a Surface plot for pg1 with settings for the color table used, the intra-
element interpolation scheme, and the dataset referring to the parent of the Surface
plot node, which is the pg1 node:

ResultFeature rf = model.result().create("pgl", "PlotGroup2D");

rf.create("surfi1", "Surface");

rf.label("Surface");

ResultFeature surfi = model.result("pgl").feature("surfi1");

surfi.set("colortable", "ThermallLight");

surfi.set("smooth", "internal");

surfi.set("data", "parent");
If you want to define a variable such as rf and surf1, you don’t need to know its
type in advance. Simply write the code you want to assign to a variable, for
example:

model.result().create("pg1", "PlotGroup2D");

Then press Ctrl+1, which will replace the line with something like:
ResultFeature vari = model.result().create("pg1", "PlotGroup2D");

You can then rename the autogenerated vari to, for example, rf.

Now create a second 2D plot group with contours for the isotherms:

model.result().create("pg2", "PlotGroup2D");
model.result("pg2").label("Isothermal Contours (ht)");
ResultFeature pg2 = model.result("pg2");
pg2.set("data", "dset1");

pg2.feature().create("cont1", "Contour");
pg2.feature("con1").label("Contour");

ResultFeature con1 = pg2.feature("conl");
coni.set("colortable", "ThermallLight");
coni.set("smooth", "internal");

coni.set("data", "parent");

Finally, generate the plot for the Plot Group pg1:
model.result("pg1").run();
or, alternatively, using the variable defined earlier:

rf.run();

To find the maximum temperature, add a Surface Maximum subnode to the Derived
Values node as follows:

First create the Surface Maximum node with tag max1:
model.result().numerical().create("max1", "MaxSurface");

66 |

Note that in this context the method corresponding to the Derived Values node is
called numerical.

Next, specify the selection. In this case there is only one domain 1:
model.result().numerical("max1").selection().set(new int[]{1});

Create a Table node to hold the numerical result and write the output from max1
to the Table:

model.result().table().create("tbl1", "Table");
model.result().table("tbl1").comments("Surface Maximum 1 {max1} (T)");
model.result().numerical("max1").set("table", "tbl1");
model.result().numerical("max1").setResult();
Use Record Code or any of the other tools for automatic generation of code to learn
more about the syntax and methods for Results.

Using Parameterized Solutions in Results

The code below changes the visualization of a plot group pg1 by setting the
property looplevel, which controls the solution parameter, to the string variable
svar.
model.result("pg1").set("looplevel”, new String[]{svar});
model.result("pg1").run();
The property looplevel has a central role in accessing parameterized solutions. Its
argument is a 1D string array with one index per “loop level” in a study. The
different loop levels correspond to the different nested parameters in a parametric
sweep with multiple parameters. Again, use Record Code or Record Method for a
parametric model to learn more about this syntax.

Loading Data to Tables

By using the loadFile method you can import data into a table and then display
it using a results table form object or a table surface plot. The example below
demonstrates loading data from an Excel file into a table and visualizing the
contents using a table surface plot. The file in this example is assumed to be
imported, in an application, using a file import form object with a file declaration
file1 as the File Destination.

model.result().table("tbl1").loadFile("upload:///file1", "", cells);

*
/ The string variable cells contains the spreadsheet selection to be
imported, for example A1:J7.

The following code creates a plot group pgl with a table surface plot.
This code is not needed if the embedded model already contains a table
and a table surface plot.

*/

model.result().create("pgl", 2);
model.result("pg1").create("tbls1", "TableSurface");

| 67

model.result("pgl1").feature("tbls1").set("table", "tbl1");
model.result("pg1").feature("tbls1").set("dataformat", "cells");
model.result("pgl1").feature("tbls1").create("hght1", "TableHeight");
model.result("pg1").feature("tbls1").feature("hght1").set("view",
"viewl");

ViewFeature cam = model.view("viewl1").camera();

cam.set("viewscaletype", "manual");
cam.set("xscale", "1");
cam.set("yscale", "1");
cam.set("zscale", "1");

// The following line is needed to update the plot
model.result("pg1").run();

Similar to before, you can use Ctrl+1 to automatically generate the variable cam of
the type ViewFeature.

Multiphysics

Some of the physics interfaces define a multiphysics analysis by themselves without
being coupled to any other interface. This is the case when the physics interface is
used for a coupling that is so strong that it does not easily lend itself to be
separated into several physics interfaces. In other cases, a set of single physics
interfaces, typically two, can be combined by the use of the Multiphysics node. For
example, a Joule Heating analysis is defined as the combination of an Electric
Currents interface and a Heat Transfer in Solids interface with an additional
Electromagnetic Heat Source node under the Multiphysics node. The following lines
of code illustrate the corresponding method calls, in a 2D case.

model.physics().create("ec", "ConductiveMedia", "geomi");
model.physics().create("ht", "HeatTransfer", "geomi");
model.multiphysics().create("emh1", "ElectromagneticHeatSource",
"geoml", 2);

model.multiphysics("emh1").selection().all();
model.multiphysics("emh1").set("EMHeat_physics", "ec");
model.multiphysics("emh1").set("Heat_physics", "ht");

For a 3D case, change "geom1",2) to "geom1",3).

When using the Model Builder to set up a Joule Heating analysis, nodes in addition
to those shown above will be created corresponding to Joule heating in thin shells,
should they exist in the model, and temperature couplings if there are multiple
field variables for electric potential and temperature.

68 |

Working with Model Objects

When using the Model Builder in the COMSOL Desktop interface, an embedded
model with variable name model is automatically created. The embedded model
has a special status. For example, the automatic code generation tools only
consider the embedded model. In addition, when you save to or load from an
MPH file, only the embedded model is saved or loaded. General tools include the
Save Application As command in the Application Builder and File > Save As, from
the File menu of the COMSOL Desktop environment.
However, in an application you are allowed to create and edit multiple models.
Saving and loading such models is done by using the built-in methods saveModel
and loadModel. An MPH file can only contain a single embedded model object.
If you need to create model objects, in addition to the embedded model, use the
built-in method createModel.
To create a new model you use:

Model extmodel = createModel();
A unique model tag is created automatically and assigned to the model. If you
want to explicitly control the model tag, use a syntax like:

Model extmodel = createModel("My_model_1");
where My_model_1 is a unique tag. It is recommended that you do not use the
names Model1, Model2, Model3, and so on, since these names are used by the
mechanism that automatically generates model tags for the embedded model
when loading and saving MPH files.
The following example retrieves the model tag of the embedded model:

String my_modeltag = model.tag();

however, you rarely need to use the model tag of the embedded model object.

Instead of creating and building up the contents of a model from scratch, you can
load an existing model and edit it.
For example in the Windows operating system, load a model my_model.mph from
the folder C:\COMSOL_Work, by using the built-in method loadModel:

Model extmodel = loadModel("C:\\COMSOL_Work\\my_model.mph");
A unique model tag is created automatically and is assigned to the model upon

load. Note the double-backslash syntax in the filename. Backslash (\) is a special
character in Java and the double backslash is needed in this case.

To make your application portable, you can use the file scheme syntax available in
the Application Builder. Assuming you stored the MPH file in the common folder,
the call to loadModel should be:

Model extmodel = loadModel("My_Model_1", "common:///my_model.mph");

| 69

In this example, the tag My_Model_1 is important because it is used to reference the
model from other methods. Once loaded, the model object extmodel exists in the
workspace of the current COMSOL Multiphysics or COMSOL Server session.
Note that an MPH file can only contain a single embedded model object, so there
is no ambiguity about which model is being referenced when loading an MPH file.
Assume that you, in one method, have loaded the model extmodel with the tag
My_Model_1, such as in the example above. The model variable extmodel is not
available in other methods. In order to retrieve the model from another method
use:

Model mymodel = getModel("MyModel_1");
The contents of mymodel and extmodel are the same, but these variables exist in the
variable space of two different methods.
The tag My_Model_1 uniquely identified and retrieved the model object from the
current COMSOL Multiphysics or COMSOL Server session.
To reset your model before running a model method, call the built-in clearModel
method. For example:

clearModel (model);
Placing this at the top of your model method automatically clears the Model
Builder tree contents on each run.

For a list of model utility methods, see “Model Utility Methods” on page 126.

A COMPLETE EXAMPLE IN ID

The following code listing uses all the elements of the previous sections—
including material definitions, geometry setup, physics configuration, and
boundary conditions— and demonstrates how to set up and run a 1D stationary
heat transfer simulation in a 10 cm long steel rod, focusing on its lengthwise
thermal behavior. In this model, the left side of the rod is cooled while a random
heat source is applied throughout the rod.

To use this code:

I Start from the Model Wizard and select a Blank Model.

2 Copy and paste the code into a method, in the Application Builder, or the Java
Shell window.

3 Choose the corresponding Run option to start the simulation.

// Set up and run a 1D stationary heat transfer simulation
clearModel(model) ;

model.component().create("comp1", true);

model.component("comp1").geom().create("geom1", 1);
model.component("comp1").mesh().create("mesh1");

70 |

model.component ("comp1").geom("geomi").create("i1", "Interval");
model.component("comp1").geom("geom1").feature("i1").setIndex("coord", 0.1, 1);
model.component("comp1").geom("geom1").run();

model.component ("comp1").physics().create("ht", "HeatTransfer", "geomi");

model.component("comp1").material().create("mat1", "Common");

model.component ("comp1").material("mat1").label("Steel AISI 4340");

model.component ("comp1").material("mat1").propertyGroup("def").set("density",

"7850[kg/m"3]");

model.component ("comp1").material("mat1").propertyGroup("def").set("heatcapacit

y", "475[J/(kg*K)1");

model.component ("comp1").material("mat1").propertyGroup("def")
.set("thermalconductivity", new String[]{"44.5[W/(m*K)1", "O", "O", "O",

"44.5[W/ (m*K)]", "0", "0", "0", "44.5[W/(m*K)]"});

model.func().create("rn1", "Random");
model.func("rn1").set("type", "uniform");
model.func("rn1").set("mean", 0.5);

model.component ("comp1").physics("ht").create("temp1", "TemperatureBoundary",
0);

model.component ("comp1"
model.component ("comp1"
model.component ("comp1"
model.component ("comp1"
rn1(x))");

physics("ht"
physics("ht"
physics("ht"
physics("ht"

feature("temp1").selection().set(1);
create("hs1", "HeatSource", 1);
feature("hs1").selection().set(1);

).
).
).
) .feature("hs1").set("Q0", "1e6*(1+

).
).
).
).

model.study().create("std1");

model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/ht", true);
model.study("std1").createAutoSequences("all");
model.sol("sol1").runAll();

model.result().create("pgl1", "PlotGroupiD");
model.result("pg1").label("Temperature (ht)");
model.result("pg1").feature().create("lngr1", "LineGraph");
model.result("pgl1").feature("lngri").set("xdata", "expr");
model.result("pgl").feature("lngri").set("xdataexpr", "x");
model.result("pgl1").feature("lngri").set("data", "parent");
model.result("pg1").feature("lngr1").selection().geom("geomi", 1);
model.result("pgl1").feature("lngri1").selection().set(1);
model.result("pgl").run();

).
).
).
).

model.result("pg1").run();

A COMPLETE EXAMPLE IN 3D

The following code listing is similar to the 1D case, but simulates heat transfer in
a 3D cylinder. This example demonstrates how to set up and run a stationary 3D
heat transfer simulation in a 10 cm long cylindrical steel rod with a radius of 0.5
cm. One end of the rod is cooled, while a random heat source is applied
throughout its volume.

// Set up and run a 3D stationary heat transfer simulation

|71

clearModel(model) ;
model.component().create("compl", true);

model.component ("comp1").geom().create("geom1", 3);
model.component ("comp1").geom("geom1").geomRep("comsol");
model.component ("comp1").mesh().create("mesh1");

model.component ("comp1"
model.component ("comp1"
model.component ("comp1"

geom("geomi"

(create("cyltl", "Cylinder");
geom("geomi"

(

(

feature("cylt1").set("h", 0.1);

).).
).).
) .geom("geom1").feature("cyli1").set("r", 0.005);
).).

model.component ("comp1").geom("geom1").run();
model.component("comp1").physics().create("ht", "HeatTransfer", "geomi");
model.component("comp1").material().create("mat1", "Common");

model.component ("comp1").material("mat1").label("Steel AISI 4340");
model.component("comp1").material("mat1").propertyGroup("def").set("density",
"7850[kg/m"31");
model.component("comp1").material("mat1").propertyGroup("def").set("heatcapacit
y", "475[J/(kg*K)1");
model.component("comp1").material("mat1").propertyGroup("def")
.set("thermalconductivity", new String[]{"44.5[W/(m*K)]1", "0", "O0", "O",
"44.5[W/(m*K)]", "0", "0", "O", "44.5[W/(m*K)]"});
model.func().create("rn1", "Random");
model.func("rn1").set("type", "uniform");
model.func("rn1").set("nargs", 3);
model.func("rn1").set("mean", 0.5);

model.component ("comp1").physics("ht").create("temp1", "TemperatureBoundary",
2);

model.component ("comp1"
model.component ("comp1"
model.component ("comp1"
model.component ("comp1"
rnt(x,y,2))");

physics("ht"
physics("ht"
physics("ht"
physics("ht"

feature("temp1").selection().set(3);
create("hs1", "HeatSource", 3);
feature("hs1").selection().set(1);

).
).
).
) .feature("hs1").set("Q0", "1e6*(1+

) -
).
) -
).

model.study().create("std1");

model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/ht", true);
model.study("std1").createAutoSequences("all");
model.sol("sol1").runAll();

model.result().create("pgl1", "PlotGroup3D");
model.result("pg1").label("Temperature (ht)");
model.result("pgl1").feature().create("voll", "Volume");
model.result("pgl").feature("voll").set("colortable", "HeatCameraLight");
model.result("pgl").run();

model.result("pg1").run();

Note: When using the Record Code or Record Method options, additional code may
be generated automatically. In the examples above, any unnecessary or extraneous
code has been removed for clarity.

72|

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

* heat_transfer_in_cylindrical_rod.mph

TURNING OFF AND RESETTING THE MODEL HISTORY

When running model method code to automate modeling tasks, the stored model
history can grow excessively large. The model history is used, for example, when
saving to a Model M-file or Model Java-file. Depending on the repetitive nature
of your code, you may want to temporarily disable history logging to keep the
model history manageable. This can be done as shown below:

model.hist().disable();
// some code
model.hist().enable();

To reset the model history to an almost minimal sequence of commands that
reproduces the current state of the model object, you can use:

model.resetHist();

In the File menu, this action is referred to as Compact History.

Note that model history logging is only used for model methods and is
automatically turned oftf when running an application. Also, when history logging
is disabled, certain features are not available, such as saving to a Model M-file or
Java-file and using the Copy to Clipboard functionality.

OPTIMIZING PHYSICS FEATURE CREATION PERFORMANCE

Repeated create operations for features in the Model Builder can become slow
when you add many of them. Different feature types vary in complexity—for
example, the TemperatureBoundary boundary condition is relatively simple, while,
for example, a Thermal Contact boundary condition performs more advanced
operations. Although certain optimizations are possible, identifying and resolving
bottlenecks can be time-consuming.

A common technique to speed up these processes is to temporarily disable
updates, as shown below:

try {
// Turn off updates

model.disableUpdates(true);

// Perform the required operations here,
// typically involving repeated manipulations of physics features

} finally {
// Important: re-enable updates before leaving the method

| 73

https://www.comsol.com/model/application-programming-guide-examples-140771

// The try—-finally block ensures this is done even if errors occur
model.disableUpdates(false);
}

// Note: Some operations cannot be performed while updates are disabled.
By using this approach, certain methods can show significant reduction in
processing time.

Disabling model updates can lead to unexpected side effects. For example,
parameters in a physics feature, such as model inputs ending in _src, may remain
invalid until the model is updated. Attempting to set any of these parameters while
updates are disabled can produce errors. In addition, generated variables may be
unavailable to the unit evaluator, and the equation view may show incomplete
data. As soon as updates are re-enabled, the program performs a full variable
refresh and returns the model to a fully functional state.

The following example uses this technique to test the speed when adding a large
number of model parameters. Change the value of the disableFlag variable to
toggle between the disabled and enabled states.

// Enable or disable updates
boolean disableFlag = true;

// Number of parameter updates to perform
int maxIterations = 2000;

// Clear model
clearTheModel(); // This may take several seconds and is not part of the time
measured

// Record start time

long startTime = timeStamp();
debuglLog("Start of test.");
debuglLog("Disable is: "+disableFlag);

// Disable model updates (returns previous state) to speed up the loop
boolean updatesWereEnabled = model.disableUpdates(disableFlag);

try {
// Bulk-set parameters Vali, Val2, ..
for (int i = 1; i <= maxIterations; i++) {
model.param("default").set("vVal"+i, i);

}

} finally {
// Always restore the original update state, even if an error occurs
model.disableUpdates(updatesWereEnabled);

}

// Compute and log elapsed time in h:mm:ss format

long endTime = timeStamp();

debugLog("End of test.");

debugLog("Data reading time: "+formattedTime(endTime-startTime, "h:min:s"));

This example is part of a collection available for download:

74 |

www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

e disable_updates.mph

LIMITATIONS WITH LOADING AND SAVING MODELS

If you use the loadModel method to load another model into your application,
then the usual functionality for displaying the geometry, mesh, and results, for the
loaded model, is not directly available in the application since that functionality is
reserved for the embedded model. However, you can use the API to call
geometry, mesh, study, and results functionality and extract numerical results
from the loaded model. For example, you can change the value of parameters or
variables of the loaded model, run a study, and extract numerical results.

However, in an application, you can display plots generated from models other
than the embedded model by writing specific method code. First, you will need to
use the loadModel method to load the desired model. Following this, the
useGraphics method can be used to display a particular plot group from the
loaded model. Here is a simplified example to illustrate this process:

Model m = loadModel(...);

useGraphics(m.result("pgi1"), "/formi/graphicsi");
In this example, loadModel is used to load a model, and useGraphics is used to
display a plot group "pg1" from the loaded model in the graphics component

"/form1/graphicst”

Note that useGraphics exclusively supports the display of plot groups. This
method cannot be used for displaying other graphical elements like geometry or
mesh. Note, however, that functionality for plotting the CAD model as well as the
mesh is possible also from plot groups. For example, by plotting a constant
expression or a fixed color for a surface or volume plot. Or, by using a dedicated
mesh plot.

The toolbar accompanying these plots is limited compared to the one available for
plots from the embedded model. This limitation exists as certain actions associated
with the full toolbar are not supported in this scenario.

Note that the loadModel and saveModel methods are not supported in standalone
applications that have been compiled with COMSOL Compiler.

The Model Object Class Structure

For a full description of the class structure and method signatures, see the HTML
document Java Documentation available in the COMSOL Documentation. You

| 75

https://www.comsol.com/model/application-programming-guide-examples-140771

find the Java documentation under COMSOL API for use with Java® at the bottom

of the Documentation window.

The figure below shows the document as displayed in the COMSOL

documentation viewer.

@, Documentation
4 € 3 Serchscope: | Alldocuments

~ COMSOL Documentation

Q

» ComsoL Muliphysics
» Materil Library
» ACIDC Module

OVERVIEW PACKAGE CLASS TREE DEPRECATED

Packages

Prev Ciase Nt Coss Framss

» Acoustics Module

com.comsol.model
oLmod:

» Battery Design Module

» CAD Import Module:

» CFD Module:

» Chemical Reacton Engineering Module

Interface AppFeature

» Composite Materials Module otity, PropFeature,

moeX HELD

Summary: Nested | Fed | Const | ethed Detal Fied | Constr | thod

SelectionEotity

» Corrosion Module

» Design Module
» ECAD Import Module.

» Electrochemistry Module

» Electrodeposition Module

» Fatigue Module

» Fuel Cell & Elactrolyzer Module

om.comsolmodel.application

Interfaces
Method Summary.
AppFeature

» Geomechanics Module

» Heat Transfer Module

» Liquid and Gas Proprties Module
» MEMS Module.

» Metal Processing Module

» Microfiudics Module:

» Mixer Module
» Molecular Flow Module
» Multibody Dynamics Module

[it et | e s | A verais

» Nonlinear Structural Materials Module
» Optimization Modue

» Partice Tracing Module

» Pipe Flow Module

» Plasma Module

| model.propfeat:

» Polymer Flow Module
» Porous Media Flow Module
» Ray Optics Module

» RF Module
» Rotordynamics Module
» Semiconductor Module

» Structural Mechanics Module

» Subsurface Flow Module.

Method Detail

V| previous section

» LiveLink™ for Excel®

sol.model.

Next Secton »

If you encounter a class that you are unfamiliar with you will get help by a tooltip
as in the figure below for the output of the getView method.

@Preview rethod] X

‘ my_view = getView("/forml/graphicsl"};

[= T, I SR TYRY

my_view cannot be resolved to a variable, Use Ctrl+1 to correct this error. |

By using the keyboard shortcut Ctrl+1 the correct type declaration is assigned to

the variable as shown in the figure below.

@Preview rethod] X

4

ViewBase hy_uiew S

76 |

getView("/forml/graphicsl™);

This way you can avoid having to consult the Java Documentation.

| 77

The Application Object

The application object is a part of the model object and is the data structure that
allows access to the user interface features of an application from within a method.
The state of the application object is reflected in the COMSOL Desktop user
interface by the contents of the Application Builder and its application tree.

You can write code using the Method Editor to directly access and change the

features presented in a running application, including button text, icons, colors,
and fonts.

The application object gives you access to a subset of the features and settings
available in the Application Builder. You can use the application object methods
for runtime modifications to the user interface, but not for building a complete
user interface. For building the user interface of an application, you need to use

the Form Editor as described in the book Introduction to the Application
Builder.

This section gives an overview of the application object.

Shortcuts

Form objects and other user interface components are referenced in methods by
using a certain syntax. For example, using the default naming scheme form3/
buttons refers to a button with name button5 in form3 and form2/graphics3 refers
to a graphics object with name graphics3 in form2. You can also change the
default names of forms and form objects. For example, if form1 is your main form
then you can change its name to main.

To simplify referencing form objects as well as menu, ribbon, and toolbar items by
name, you can create shortcuts with a custom name. In the Settings window of an

object or item, click the button to the right of the Name field and type the name
of your choice.

Settings v O R x | O CreateShortcut X
I Mame: reportButton

Name: reportButton = [[] Update methods

it Report | Create Shortcut (Ctrl+K) oK Cancel
lcon: # report_32.png - + =

Size: Large =

Style: Flat -

Tooltip: Create a simulation report.

Keyboard shortcut:

78 |

To create or edit a shortcut, you can also use the keyboard shortcut Ctrl+K.

All shortcuts that you create are made available in a Shortcuts node under
Declarations in the application tree.

¥ Events

v = Declarations
= Boolean
123 Integer
25 Double
abe String

<Z» Material {materiall ist}

<Z» Simulation Type List {simulationTypeList}

=] Shortcuts
> [Methods
» [Libraries

In the Settings window for Shortcuts shown below, a number of shortcuts were
created for a various form objects.

Settings

Shortcuts
List of Shortcuts

]
MName

reportButtonTablet

targetFrequencyTextSmart...
targetFrequencylnputSma...

frequencyToleranceTextS..,

frequencyTolerancelnputS..,
pronglengthinputSmartp...
targetFrequencyUnitSmart...

frequencyTolerancelnits...

plotButtonSmartphone

playSoundButtonSmartph...

reportButtonSmartphone

Target

toolbarTablet/reportButtonTablet
rainSmartphone/targetFrequencyTextSmartphone
mainSmartphone/targetFrequencylnputbmartphone
rainSmartphone/frequencyToleranceTextSmartphone
mainSmartphone/frequencyTolerancelnputSmartphone
rainSmartphone/pronglengthlnputSmartphone
mainSmartphone/targetFrequencyUnitSmartphone
mainSmartphone/frequencyTolerancelnitSmartphone
toolbarsmartphone/plotButtonSmartphone
toolbarsmartphone/playSoundButtonSmartphone
toolbarsmartphone/reportButtonSmartphone

+~O1 X

Description
Shortcut to Button
Shortcut to Text label
Shortcut to Input field
Shortcut to Text label
Shortcut to Input field
Shortcut to Input field
Shortcut to Unit
Shortcut to Unit
Shortcut to Toolbar
Shortcut to Toolbar
Shortcut to Toolbar

The shortcuts can be referenced in other form objects or in code in the Method
Editor. The example below shows a shortcut tempvis used as an input argument
to a temperature plot.

L]
Command

Plot Temperature (ht)

lcon | Arguments
tempVis

| 79

Shortcuts are automatically updated when objects are renamed, moved, copied,
and duplicated. They are available in application methods as read-only Java®
variables, similar to string, integer, double, and Boolean declarations.

Using shortcuts is recommended because it avoids the need to update methods
when the structure of the application user interface changes.

Shortcuts can also be created for most objects in the model builder tree.

ExAMPLE CODE

If the application contains a button named button1 in a form named form1, and
the button has a shortcut named b1, the following two ways to change the button
text to red are equivalent:

b1.set("foreground", "red");

app.form("formi1").formObject("button1").set("foreground", "red");

Accessing the Application Object

In the Method Editor you can directly access the application object part of the
model object by using the app variable. This variable is a shorthand for
model.app().

The Name of User Interface Components

Access the various parts of the application object by using the zame of a form
object, form, item, and so on. A zame in the application object has the same
function as the zayg in the model object omitting the model.app part.

For example, in the line of code
app.form("formi1").formObject("button1").set("enabled", false);

the string form1 is the name of a form and button1 is the name of a button.

Important Classes

THE MAIN APPLICATION CLASS

When working with an application object, the main application class is AppModel,
which is the type of model.app().

80 |

DECLARATION CLASSES

In addition to the basic data types and shortcut declarations, the Declaration node
may include Choice List and Unit List declarations. The corresponding classes are
ChoiceList and UnitSet. The parent class to ChoiceList and UnitSet is called
DataSource. In addition, Scalar, Array 1D, and Array 2D data types are handled
by the DataSource class. For more information, see “Data Source and
Declaration” on page 112.

METHOD CLASS

The Method class is used to represent methods. For more information, see
“Method Class” on page 124.

MAIN USER INTERFACE COMPONENT CLASSES

In an application object, the main user interface components correspond to the
following classes:

¢ MainWindow

- The class representing the Main Window node in the application tree.
s Form

- The class representing a form.
* FormObject

- The class representing a form object.
e Item

- The class representing, for example, a menu, toolbar, or ribbon item.
* AppEvent

- The class used for application user-interface events.
Each class has a set of associated methods that are used to edit the corresponding

user interface component at runtime. These are described in the following
sections.

In addition to the main user interface component classes, there are also list
versions of the Form, FormObject, and Item classes. These are: FormList,
FormObjectList, and ItemList.

Get and Set Methods for the Color of a Form Object

The get and set methods described in the section “Get and Set Methods for
Accessing Properties” on page 43 are applicable to the model object as well as the

| 81

model.app part of the model object. In addition, the following methods are
available for changing the color of a form object:

NAME SYNTAX DESCRIPTION

getColor int[] getColor(String prop) Get the value of a color

property as an array of red,
green, and blue values.

setColor setColor(String prop, int r, int g, int b) Seta color property using
red, green, and blue values.

Not all methods are applicable to all properties. Use Ctrl+Space to use code
completion to find out what methods are applicable for a certain object, and what
property names and property values are applicable for a certain method.

General Properties

The following table lists properties that are available for several different user
interface components, including form objects. In the table below, a user interface
component is referred to as an object.

PROPERTY VALUE DEFAULT DESCRIPTION

background String default The background color for the
corresponding user interface element.

enabled true | false true I the value is true, the corresponding

object is enabled in the user interface,
which means that the user can
interact with the object.

font String default The font family name. The special
value default means that the font to
use is determined by the parent
object, which is the corresponding
setting in the Settings window of the

Forms node.
fontbold true | false false If true the font uses boldface style.
fontitalic true | false false If true the font uses italic style.
fontunderline true | false false If true the font uses underline style.

82 |

PROPERTY VALUE DEFAULT DESCRIPTION

fontsize String -1 The font size in points. The special
value -1 represents the default size,
which means that the size is taken
from the parent object (the Forms
node) or from the system default size
if no parent object defines the size.

foreground String default The foreground color for the
corresponding user interface element.
visible true | false true If the value is true, the corresponding

object is visible in the user interface.

A foreground or background color property is represented by a string value. The
available colors are: black, blue, cyan, gray, green, magenta, red, white, and
yellow, or a custom color may also be defined. The special value default means
that the color is taken from the parent object. Depending on the parent type, this
could mean that default is Inherit or Transparent, referring to the corresponding
setting in the Settings window in the Form Editor. An arbitrary RGB color can be
represented by a string of the form rgb(red,green,blue) where red, green, and
blue are integers between 0 and 255. Color properties can also be manipulated
using the getColor and setColor methods to directly access the red, green, and
blue color components. If a color property has the value default, it does not have
red, green, and blue values. In this case, the getColor method returns the array
[0,0,0].

ExaMPLE CODE
The following example reads the current background color for a form, makes the
color darker, and applies the modified color to the same form.

int[] rgb = app.form("formi1").getColor("background");

for (int i = 0; 1 < 3; i++)

rgb[i] /= 2;

app.form("formi").setColor("background", rgb[0], rgb[1], rgb[2]);
The following line of code sets the background color to black:

app.form("formi1").set("background", "black");
The following line of code sets the background color to default which in the case
of the background color property corresponds to the Form Editor setting
Transparent.

app.form("formi1").set("background", "default");

The following line of code sets the background color to the RGB values 125, 45,
and 43.

app.form("formi1").set("background", "rgb(125,45,43)");

| 83

The Main Application Methods

The following table lists the most important methods for the main application
class AppModel:

NAME SYNTAX DESCRIPTION

declaration Declaration declaration() Returns the list of declarations.

declaration DataSource) Returns the declaration object (Scalar, Array 1D,
declaration(String name) Array 2D, ChoiceList, or UnitSet) with the

specified name.

group DeclarationGroupList group() Returns the list of declaration groups.

group DeclarationGroup Returns the declaration group with a given name.
group(String name)

event AppEventHandlerList event() Returns the list of event handlers.

event AppEventHandler event(String Returns the event handler with the specified
name) name.

form FormList form() Returns the list of forms.

form Form form(String name) Returns the form with the specified name.

hasProperty boolean hasProperty(String Returns true if there is a modifiable property with
name) the specified name.

mainWindow MainWindow mainWindow() Returns the MainWindow object.

You can view additional methods by using Ctrl+Space for code completion.

The AppModel class has the following properties:

PROPERTY VALUE DEFAULT DESCRIPTION

asktosave true | false false If true, ask user if changes should be saved before
the application is closed.

startmode edit | run edit

Determines whether the application is opened
for editing or running when you double-click the
MPH file, including Windows desktop icons.

ExAMPLE CODE

app.set("asktosave", true);

The following code appends a text string to the application window title.

String oldTitle = app.mainWindow().getString("title");
app.mainWindow().set("title", oldTitle + " modified");

The following examples show how to query the list of declarations in an

application.

84 |

// Get the declaration list
Declaration list = app.declaration();

// Get the names of all DataSource objects in the list.
String[] names = list.names();

// Get the number of DataSource objects in the list.
int size = list.size();

// Get the DataSource with the name "svar".
DataSource src = list.get("svar");

// Get the index within the list of the DataSource with the name
int index = list.index("svar");

"svar"

// Get the DataSource at a certain index within the list.
DataSource src = list.get(index);
// Get the DataSource objects defined in a given form.

Declaration formDeclarations = app.form("formi1").declaration();

// Iterate over DataSource objects within the list.

for(DataSource dt
// Get the type of the DataSource.
String type

}

list) {

= dt.getType();

Main Window

The Mainwindow class has the following methods:

NAME SYNTAX DESCRIPTION

fileMenu TtemList fileMenu() Returns the list of items in the file menu.

fileMenu Item fileMenu(String Returns the file menu item with the specified
name) name.

hasProperty boolean Returns true if there is a modifiable property with
hasProperty(String name) the specified name.

menuBar ItemList menuBar() Returns the list of items in the menu bar.

menuBar Item menuBar(String Returns the menu bar item with the specified
name) name.

ribbon ItemList ribbon() Returns the list of items in the ribbon.

ribbon Item ribbon(String name) Retumns the ribbon item with the specified name.

toolBar ItemList toolBar() Returns the list of items in the toolbar.

toolBar Item toolBar(String Returns the toolbar item with the specified name.

name)

| 85

The menuBar and toolBar items are visible in the application user interface if the
menu type is set to Menu bar in the Settings window of the Main Window. The
ribbon and fileMenu items are visible in the user interface if the menu type is set
to Ribbon. It is possible to access and modify items that are not visible based on
the menu type setting, but doing so will not have any visible effect in the user
interface.

The Mainwindow class has the following properties:

PROPERTY VALUE DEFAULT DESCRIPTION

imagetheme $default | $default Set the color theme for image
$light | $dark export.

showfilename true | false true If true the filename is included in the

window title bar title.

title String My application The text to display in the window
title bar.
theme $default | $default Set the color theme for the

$light | $dark application user interface.

ExAMPLE CODE

// Do not show the filename in the application user interface window bar.
app.mainWindow() .set("showfilename", false);

// Set dark application theme.

app.mainWindow().set("theme", "$dark");

// Set light image export theme.

app.mainWindow().set("imagetheme", "$light");

Form

The Form class has the following methods:

NAME SYNTAX DESCRIPTION

declaration DataSource declaration(String name) Returns a form declaration
object (Scalar, Array ID,
Array 2D, or Choicelist) with
the specified name.

formObject FormObjectList formObject() Returns the list of form
objects.
formObject FormObject formObject(String name) Returns the form object with

the specified name.

86 |

NAME SYNTAX DESCRIPTION

getName String getName () Returns the name of this
form.
getParentForm Form getParentForm() Returns the parent form that

contains this form. Useful for
local cards in a card stack.

hasProperty boolean hasProperty(String name) Returns true if there is a
modifiable property with the
specified name.

method MethodList method() Returns the list of methods.

method Method method(String name) Gets a method with the
specified name.

The Form class has the following properties:

PROPERTY VALUE DEFAULT DESCRIPTION

icon String The name of the background image.
Valid values are images defined in the
Images > Libraries node in the

Application Builder.

iconhalign left | rentef‘l | center Horizontal alignment for the
right | fill -
repeat background image.
iconvalign top | center | center Vertical alignment for the background
bottom | fill | imace
repeat e
title String Form N The form title for an integer N.

ExAMPLE CODE

app.form("formi1").set("icon", "compute.png");
app.form("formi1").formObject("button1").set("enabled", false);
DataSource ds = app.form("formi1").declaration("var");

For examples of how to use the declaration method, see “The Main Application
Methods” on page 84.

| 87

Form Object

The Formobject class has the following methods:

NAME SYNTAX DESCRIPTION
declaration (Ej)atiSource s Returns a form declaration object (Scalar, Array
eclaration(String N . .
name) ID, Array 2D, or Choicelist) with the specified
name.
expanded void expanded(String Sets the expanded state of the form when using
form, boolean the sections type
expanded) YP
form FormList form() For a cardstack form object, returns the list of
local cards
form Form form(String name) Fora cardStack form object, returns the local card
with the specified name.
getName String getName() Returns the name of this form object.
getParentForm Form getParentForm() Returns the parent form that contains this form
object.
getType String getType() Returns the form object type name, as defined in
the following sections.
getvalue Value getValue() Returns the current value of a Formobject when
applicable. The method is supported by the
following types of Formobjects: input field, toggle
button, checkbox, combo box, file import, array
input, radio button, selection input, text, list box,
table, slider, knob.
hasProperty Eooéean (stri Returns true if there is a modifiable property with
asProperty(String .
name) the specified name.
item TtemList item() For a Toolbar, Graphics, or Table form object,
retumns the list of user-defined buttons.
item Item item(String name) Fora Toolbar, Graphics, or Table form object,
return the user-defined button with the specified
name.
visible void visible(String Sets the visible state of the form.

form, boolean visible)

Most form objects have one or more of the properties listed in “General
Properties” on page 82. A form object has a certain property if the corresponding
setting is available in the Form Editor. Additional properties are supported for
several types of form objects. The general properties that are supported and any
additional properties for form objects are listed in the following sections.

88 |

ExAMPLE CODE

The following code loops over all buttons and disables them:

for (FormObject formObject : app.form("formi").formObject()) {
if ("Button".equals(formObject.getType())) {
formObject.set("enabled", false);
b
}
The getType method retrieves the type of form object. In the above example the
type of form object is Button and the statement
"Button".equals(formObject.getType()) represents a string comparison
between the output of the getType method and the string "Button".

For an example of using getValue, see “Data Validation” on page 297.
The following table lists all form object types that can be returned by getType:

FORM OBJECT TYPE

ArrayInput Hyperlink SelectionInput
Button Image Slider
CardStack InformationCardStack Spacer
CheckBox InputField Table
ComboBox Knob Text
DataDisplay Line TextLabel
Equation ListBox ToggleButton
FileImport Log Toolbar

Form MessagelLog Unit
FormCollection ProgressBar Video

Gauge RadioButton WebPage
Graphics ResultsTable

| 89

ARRAY INPUT

Property Value Default Description

background See “General Properties” on page 82.
enabled

font

fontbold

fontitalic

fontsize

foreground

visible

Example Code

app.form("formi1").formObject("arrayinput1").set("enabled", false);

BUTTON

PROPERTY VALUE DEFAULT DESCRIPTION

inabl‘?d See “General Properties” on page 82.

ont

fontbold

fontitalic

fontsize

foreground

visible

icon String " The button icon. Valid values are
images defined in the Images >
Libraries node in the Application
Builder.

text String Generated The button text. The text must not be

automatically an empty string.
tooltip String " The button tooltip text.

In the Form Editor, if a button has its Size sctting set to Large, it always displays
its text property. If the button is Small, it either displays the icon or the text
according to the following rule: if the icon property is empty, the text is displayed,
if the icon property is not empty, the icon is displayed.

Example Code
app.form("formi1").formObject("button1").set("enabled", false);

90 |

CARD STACK

PROPERTY VALUE DEFAULT DESCRIPTION
enabled See “General Properties” on
visible

page 82.

Example Code

app.form("formi1").formObject("cardstack1").set("visible", false);

To access objects in a local card, either use shortcuts or use the form method:

app.form("formi1").formObject("cardstack1").form("cardi")
.formObject ("buttoni1").set("enabled", false);

CHECKBOX

PROPERTY VALUE DEFAULT

DESCRIPTION

background
enabled

font

fontbold
fontitalic
fontsize
fontunderline
foreground
visible

text String Generated
automatically

tooltip String "

See “General Properties” on
page 82.

The checkbox label text.

The checkbox tooltip text.

Example Code

app.form("formi1").formObject("checkbox1").set("tooltip", "tooltip text");

CoMBO Box

PROPERTY VALUE DEFAULT

DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on
page 82.

Example Code

app.form("formi1").formObject("combobox1").set("foreground", "blue");

91

DATA DISPLAY

PROPERTY VALUE DEFAULT

DESCRIPTION

background

enabled

font

fontbold

fontitalic

fontsize

foreground

visible

superscript | E

exponent superscript

notation auto | scientific auto
decimal

precision |n‘teger 4

showunit true | false true

tooltip String "

See “General Properties” on
page 82.

When set to superscript,
exponents are displayed using
superscript font. When set to E,
exponents are displayed using
the character E followed by the
exponent value.

When the value is scientific,
numbers are always displayed
using scientific notation. When
the value is decimal, numbers
are never displayed using
scientific notation. When the
value is auto, the notation
depends on the size of the
number.

The number of significant digits
that are displayed.

Controls if the unit is displayed
in addition to numerical values.

The tooltip text.

Example Code

app.form("formi1").formObject("datadisplay1")
.setColor("background", 192, 192, 192);

92 |

EQUATION

PROPERTY VALUE DEFAULT DESCRIPTION

enabled See “General Properties” on
Foreground page 82.

visible

equation String The string in LaTeX syntax

defining the equation.

Example Code

app.form("formi1").formObject("equationi").set("visible", false);

FILE IMPORT

PROPERTY VALUE DEFAULT

DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

buttontext String Browse. ..

dialogtitle String File import

filetypes String[l {"ALLFILES"}

See "General Properties” on page 82.

Text to display on the button that opens
the file browser.

Text to display as dialog title for the file
browser dialog. Also displayed as a tooltip
for the FileBrowser form object.

Defines the list of file types that can be
selected in the file browser.

Example Code
app.form("formi1").formObject("fileimporti")

.set("filetypes", new String[]{"ALL2DCAD"});

FORM

A form used as a subform does not have any modifiable properties.

|93

FORM COLLECTION

DESCRIPTION

PROPERTY VALUE DEFAULT

enabled

font

fontbold

fontitalic

fontsize

foreground

visible

formvisible boolean[] Array with each
entry having the
value true

sectionexpanded boolean[] Array with each
entry having the
value true

See “General Properties” on page 82.

Defines the visible state of forms in a
form collection.

Defines the expanded state of forms in
a form collection when using the
sections type.

To modify the active pane, change the corresponding declaration variable.

Example Code
This line of code changes the font:

app.form("formi1").formObject("collection1").set("font", "Arial");

The expanded state of sections in form collections can be controlled by:
app.form("formi1").formObject("formcollectioni").expanded("form2", false);

The expanded method is only supported by form collections which use sections.
The first argument is the tag of the form which is represented by the section. The
second argument determines if the sections should be expanded or collapsed.

94 |

GRAPHICS

PROPERTY VALUE DEFAULT DESCRIPTION
datapick true | false false If true, data picking is enabled in the
graphics form object.
datapicktarget ProbeFeature Defines where the picked data is
GraphicsData stored. Valid values are probe features
and GraphicsData declarations.
enabled See “General Properties” on page 82.
visible
source ModelEntity Defines the type of model entity (Plot
Group, Geometry, Mesh, Explicit
Selection or Player Animation) used
to plot in the graphics form object.
background2d String | RGB (0- Defines the background color of the
255) 2D graphics object. Can be set with a
color name (for example, blue,
black) or RGB values.
topBackground String | RGB (O- Defines the top background color of
255) the graphics object. Can be set with a
color name or RGB values.
bottomBackground String | RGB (0- Defines the bottom background color
255) of the graphics object. Can be set
with a color name or RGB values.
icon String (image logo_graphics. Defines the icon shown for the

name) | ""

png

graphics form object. Valid values are
images from the Libraries>Images
node in the application tree, or an
empty string for no icon.

Example Code

This line of code displays plot group 5 (pg5) in the graphics object graphics1 in
the form with the name Temperature:

app.form("Temperature").formObject("graphicsi")

.set("source", model.result("pg5"));

The following line of code using useGraphics is equivalent to the above example:

useGraphics(model.result("pg5"),

"Temperature/graphicsi");

Either method changes the source of the graphics form object and then plots the

contents.

To clear the contents of a graphics object, use:

| 95

app.form("Temperature").formObject("graphicsi")
.set("source", (ModelEntity) null);
or equivalently
useGraphics(null, "Temperature/graphicsi");

The code below displays the mesh in the model tree node mesh1 in the graphics
object graphicsi contained in the card of a card stack:

app.form("mesh").formObject("cardstack1").form("card1")
.formObject ("graphics1").set("source", model.mesh("mesh1"));

The code below enables data picking for a graphics object and sets the data picking
target to a domain point probe:
app.form("formi1").formObject("graphics1").set("datapick", true);
app.form("formi1").formObject("graphics1").set("datapicktarget",
model.component("comp1").probe("pdomi"));
If a shortcut graphicsi has been created for the graphics object and a shortcut
pdom1 has been created for the probe object, the above can be shortened to:
graphicsi.set("datapick", true);
graphicsi.set("datapicktarget", pdomi);
It is possible to change the color, top color, bottom color, and icon of a Graphics
form object while the app is running. The syntax for changing these properties is
the same as for other color and icon options.

The color properties are named background2d, topBackground, and
bottomBackground. Each property can be set either by using a color name string
(for example, blue, black) or by specifying RGB values in the range 0-255.

The icon property is named icon. Valid values are images defined in the Libraries
> Images node in the application tree, or an empty string (" ") to indicate no icon.
The default icon is logo_graphics.png. The code below illustrates this:

app.form("formi1").formObject("graphics1").set("background2d", "blue");
app.form("formi1").formObject ("graphics1").set("topBackground", "black");
app.form("formi1").formObject("graphics1").set("bottomBackground", "red");

app.form("formi1").formObject("graphics1").setColor("background2d", 230,
236, 232);

app.form("form1").formObject("graphics1").set("icon", "compute_32.png");

9% |

HYPERLINK

PROPERTY VALUE DEFAULT DESCRIPTION

background See "General Properties” on page 82.

enabled

font

fontbold

fontitalic

fontsize

visible

text String Generated The text to display on the HyperLink
automatically form object.

url String " The URL to open when the HyperLink

is activated.

Example Code
with (app.form("form1").formObject("hyperlinki"));

set("text", "COMSOL");
set("url", "www.comsol.com");
endwith();
IMAGE
PROPERTY VALUE DEFAULT DESCRIPTION
enabled See “General Properties” on page 82.
visible
icon String cube_large.png Defines the icon name to display in the

Image form object. Valid values are
images defined in the Images > Libraries
node in the Application Builder.

Example Code

app.form("formi1").formObject("imagel").set("icon",

"compute.png");

| 97

INFORMATION CARD STACK

PROPERTY VALUE DEFAULT DESCRIPTION

background See "“General Properties” on page
enabled 82

font)

fontbold

fontitalic

fontsize

fontunderline

visible

Example Code

app.form("formi1").formObject("infocard1").set("fontunderline", true);

98 |

INPUT FIELD

PROPERTY VALUE DEFAULT DESCRIPTION

background See “General Properties” on

igﬁgled page 82.

fontbold

fontitalic

fontsize

foreground

visible

editable true | false true I true then the text in the input
field can be edited by the user.

exponent superscript | E superscript When set to superscript,
exponents are displayed using
superscript font. When set to E,
exponents are displayed using
the character E followed by the
exponent value.

inputformatting on | off off If the value is on, then numerical
values in the input field are
formatted according to the
exponent, notation, and
precision properties. VWhen the
user is editing the text in the
input field, the formatting is
temporarily disabled so that the
original text can be edited.

maxdouble double 1000 The maximum allowed double
value. This property is only
accessible when the Filter setting
is set to Double and the
corresponding checkbox is
enabled in the Data Validation
section.

mindouble double 0 The minimum allowed double

value. This property is only
accessible when the Filter setting
is set to Double and the
corresponding checkbox is
enabled in the Data Validation
section.

| 99

PROPERTY

VALUE

DEFAULT

DESCRIPTION

maxinteger

mininteger

notation

precision

tooltip

Integer

Integer

auto | scientific
| decimal

Integer

String

1000

auto

The maximum allowed integer
value. This property is only
accessible when the Filter setting
is set to Integer and the
corresponding checkbox is
enabled in the Data Validation
section.

The minimum allowed integer
value. This property is only
accessible when the Filter setting
is set to Integer and the
corresponding checkbox is
enabled in the Data Validation
section.

When the value is scientific,
numbers are always displayed
using scientific notation. When
the value is decimal, numbers
are never displayed using
scientific notation. When the
value is auto, the notation
depends on the size of the
number.

The number of significant digits
displayed.

The tooltip displayed when the
mouse pointer is located over
the input field.

Example Code

app.form("formi1").formObject("inputfield1").set("precision", 6);

100 |

LINE

PROPERTY VALUE DEFAULT DESCRIPTION

inabIEd See “General Properties” on page 82

ont

fontbold

fontitalic

fontsize

foreground

visible

text String " Text to display on the line. The text is only
displayed for horizontal lines that have Include
divider text enabled in the Line object Settings
window.

thickness Integer 1 The line thickness.

linecolor String default The line color.

Example Code

app.form("formi1").formObject("linel1").set("text", "divider text");
app.form("formi1").formObject("line1").set("thickness", 10);
app.form("formi1").formObject("line1").set("linecolor", blue);

LIsT Box

PROPERTY VALUE DEFAULT

DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

Example Code

app.form("formi1").formObject("listbox1").set("foreground", "red");

To change the list box contents, modify the corresponding choice list:

app.declaration("choicelist1").appendListRow("new value", "new name");

| 101

LoG

PROPERTY VALUE DEFAULT DESCRIPTION

background See “General Properties” on page 82
enabled

font
fontbold
fontitalic
fontsize
foreground
visible

Example Code
app.form("formi1").formObject("log1").set("fontsize", "20");

MESSAGE LOG

PROPERTY VALUE DEFAULT DESCRIPTION

background See “General Properties” on page 82
enabled

font
fontbold
fontitalic
fontsize
foreground
visible

Example Code

app.form("formi1").formObject("messagesi").set("background", "gray");

PROGRESS BAR

PROPERTY VALUE DEFAULT DESCRIPTION
enabled See "General Properties” on page 82.
visible

To create and update progress information see “Progress Methods” on page 162.

Example Code

app.form("formi1").formObject ("progressbar1").set("visible", false);

102 |

RADIO BUTTON

PROPERTY VALUE DEFAULT DESCRIPTION

background See “General Properties” on page 82.
enabled

font

fontbold

fontitalic

fontsize

fontunderline

foreground

visible

To change the display name for a radio button, modify the value in the
corresponding choice list.

For a choice list that is used by a radio button, it is not possible to change the value
of any row, or to add or remove rows. Only the display name can be changed.

Example Code

app.form("formi1").formObject("radiobutton1").set("fontitalic", true);
app.declaration("choicelist1").setDisplayName("new name", 0);

RESULTS TABLE

PROPERTY VALUE DEFAULT DESCRIPTION

:na?led See “General Properties” on page 82.
on

fontbold

fontitalic

fontsize

foreground

visible

source TableFeature Set the contents of the results table.

To change the contents of the results table use the method useResultsTable or
evaluateToResultsTable. See also “GUI-Related Methods” on page 146.

Example Code
app.form("formi1").formObject("resultstable1").set("visible", true);
app.form("formi1").formObject("resultstable1").set("source",

model.result().table("tbl2"));
useResultsTable(model.result().table("tbl2"), "/formi/resultstablel");

| 103

SELECTION INPUT

PROPERTY VALUE DEFAULT DESCRIPTION

active true | false false The active property controls
whether the Selection Input is active.
Changing the property value selects
or deselects the Activate Selection
button in the Selection Input.

background See “General Properties’ on page 82.

enabled

font

fontbold

fontitalic

fontsize

foreground

visible

graphics FormObject Defines the graphics form object to
use when the selection form object is
active.

source SelectionFeature Defines the model selection the

selection form object is connected to.

Example Code
app.form("formi1").formObject("selectioninputi").set("graphics",
"graphicsi1");
Alternatively, if there are shortcuts sel1 and g1 to the selectioninputi and
graphics1 form objects:
sell.set("graphics", g1);
To change the model selection, assuming sel1 is a shortcut to the selection input
form object:
sell.set("source", model.selection("sel2"));

104 |

SLIDER

PROPERTY VALUE DEFAULT DESCRIPTION

enabled See “General Properties” on page 82.

visible

max Double 1 The largest possible slider value

min Double 0 The smallest possible slider value.

steps Integer 5 The number of steps between the min and
max values. The number of tick marks is one
more than the number of steps.

tooltip String " The tooltip text.

The min value is allowed to be larger than the max value, in which case the slider
behaves as if the values were swapped. The smallest value always corresponds to

the left side of the slider.

Example Code
app.form("formi1").formObject("slider1").set("min", 1);
app.form("formi1").formObject("slider1").set("max", 12);
app.form("form1").formObject("slider1").set("steps", 11);

| 105

KNOB

PROPERTY VALUE DEFAULT DESCRIPTION

background See “General Properties” on page

enabled 8

font :

fontbold

fontitalic

fontsize

foreground

visible

exponent superscript | E superscript When set to superscript,
exponents are displayed using
superscript font. When set to E,
exponents are displayed using the
character E followed by the exponent
value.

knobmaincolor String default The main background color.

knobradius Integer When knobradiusmanual has the
value on, this is the value of the knob.
The tick marks appear outside this
radius.

knobradiusmanual on | off off When the value is of f the radius is
calculated automatically. When the
value is on, the radius is given by the
knobradius property.

knobsecondarycolor String default The secondary background color.

labelformatting true | false false When true this setting enables
custom label formatting.

max Double 1 The largest possible knob value.

min Double 0 The smallest possible knob value.

mouse distance distance The kind of mouse movement to

vertical
ciroular change the knob value. When set t.o

distance, the distance the mouse is
moved, either horizontally or
vertically, controls the value. When
set to vertical, only the vertical
distance the mouse is moved controls
the value. When set to circular, the
value is changed using a circular
motion.

needlecolor String default The color of the knob’s needle.

106 |

PROPERTY

VALUE

DEFAULT

DESCRIPTION

notation

precision

scale

steps

tooltip

auto |
scientific |
decimal

Integer

none | marks |
markslabels |
marksalllabels

Integer

String

auto

marks

When the value is scientific,
numbers are always displayed using
scientific notation. When the value is
decimal, numbers are never
displayed using scientific notation.
When the value is auto, the notation
depends on the size of the number.

The number of significant digits that
are displayed.

To control whether the scale should
have tick marks or labels. When set
to none, the knob has no tick marks
or labels. When set to marks, the
knob has tick marks but no labels.
When set to markslabels, the knob
has tick marks and labels for the
minimum and maximum values.
When set to marksalllabels, the
knob has ticks marks and all major
ticks has a label.

The number of steps between the
min and max values. The number of
tick marks is one more than the
number of steps.

The tooltip text.

Example Code

app.form("formi1").formObject("knob1").set("min", 1);
app.form("formi1").formObject("knob1").set("max", 12);
app.form("formi1").formObject("knob1").set("steps", 11);

SPACER

A spacer object does not have any modifiable properties.

| 107

TABLE

PROPERTY VALUE DEFAULT DESCRIPTION

ina?led See “General Properties” on page 82.
on

fontbold

fontitalic

fontsize

foreground

visible

headers String[] Generated Column headers.
automatically

showheaders boolean Generated Show column headers.
automatically

To change the contents of the table, change the declaration variables or model
entities the table is displaying.

Example Code
app.form("formi1").formObject("table1").set("enabled", false);

TEXT

PROPERTY VALUE DEFAULT DESCRIPTION

background See "“General Properties” on page 82.

enabled

font

fontbold

fontitalic

fontsize

foreground

visible

editable on | off off If the value is on, the text can be
edited by the user of the application. If
the value is of f, the text can only be
changed programmatically.

textalign left | center left Defines how the text is aligned within

right the text area.
wrap on | off on If the value is on, word wrapping is

used to break lines that are too long
to fit within the text area. If the value
is of f, long lines may not be
completely visible.

Example Code

app.form("formi1").formObject("text1").set("textalign", "center");

108 |

TEXT LABEL

PROPERTY VALUE DEFAULT DESCRIPTION

bacggr‘gmd See “General Properties’” on

enable

font page 82.

fontbold

fontitalic

fontsize

fontunderline

foreground

visible

text String Generated The text to display in the
automatically label when the label is not in

multiline mode.
textmulti String Generated The text to display in the

automatically

label when the label is in
multiline mode.

Example Code

app.form("formi1").formObject("textlabell").set("text", "custom text");

TOGGLE BUTTON

PROPERTY VALUE DEFAULT DESCRIPTION
inabled See "General Properties” on page 82.
ont

fontbold

fontitalic

fontsize

foreground

visible

icon String " The button icon. Valid values are images
defined in the Images > Libraries node
in the Application Builder.

text String Generated The button text. The text must not be

automatically an empty string.
tooltip String " The button tooltip text.

A button with size large always displays the text, a button with size small displays
cither the icon or the text. If the icon property is empty, the text is displayed. If
the icon property is not empty, the icon is displayed.

Example Code

app.form("formi1").formObject ("togglebutton1").set("icon",
"about_information.png");

| 109

TOOLBAR

PROPERTY VALUE DEFAULT DESCRIPTION

background See “General Properties” on page 82
enabled

font

fontbold

fontitalic

fontsize

foreground

visible

Example Code
app.form("formi").formObject("toolbar1").set("background", "gray");

UNIT

PROPERTY VALUE DEFAULT DESCRIPTION

background See “General Properties” on page 82
enabled

font

fontbold

fontitalic

fontsize

foreground

visible

Example Code

app.form("formi1").formObject("unit1").set("visible", false);

VIDEO
PROPERTY VALUE DEFAULT DESCRIPTION
visible See “General

Properties” on page 82

Example Code

app.form("formi1").formObject("video1").set("visible", false);

110 |

WEB PAGE

PROPERTY VALUE DEFAULT DESCRIPTION
file String The file to display. File scheme
syntax is supported.
html String <html></html> The HTML code to display.
report ReportFeature The report feature to display.
or String
type page | url | page Determines which property is

type | report

url String www.comsol.com

visible

used to specify the browser
display contents.

The URL to display.

See "General Properties” on
page 82.

Example Code

app.form("formi1").formObject ("webpagel").set("type", "report");
app.form("formi1").formObject ("webpagel").set("report", "rpti");

model.result().report("rpti1");
model.result().report("rpt1").run();

Item

Item objects represent items, toggle items, user defined buttons in Toolbar,
Graphics, and Table form objects, and submenus in the menu bar, toolbar, ribbon,
and file menus. The following methods are available:

NAME SYNTAX

DESCRIPTION

getParentItem Item getParentItem()

hasProperty boolean
hasProperty(String
name)

item ItemList item()

item Item item(String name)

Returns the parent item, or null for a top-
level item.

Returns true if there is a modifiable property
with the specified name.

Returns the list of subitems.

Returns the subitem with the specified name.

The 1tem class contains the following properties:

PROPERTY VALUE DEFAULT DESCRIPTION

enabled on | off on If the value is on, the item can be activated
by the user. If the value is off, the item
cannot be activated.

icon String Generated The icon name. Valid values are images

automatically defined in the Images > Libraries node in
the Application Builder.

text String Generated The text for a menu or ribbon item.
automatically

title String Generated The title text for a menu or submenu.
automatically

tooltip String " The tooltip text.

visible on | off on Controls whether the item is visible or not.

In order for an item to be enabled, the enabled property needs to have the value
on for the item itself as well as for all of its parents. In other words, disabling an
item also disables all of its subitems.

Item objects also include separators. However, separators do not have any
accessible properties.

Item objects for user-defined buttons do not have the title and tooltip
properties. For Table form objects, predefined items such as “move up” and
“move down” do not have any modifiable properties.

ExAMPLE CODE

app.mainWindow() .menuBar("menul").set("title", "new title");
app.mainWindow().menuBar("menul").item("toggle_item1").set("text",
"test");

Data Source and Declaration

In the Java API, DataSource is the common interface for values defined under
Declarations. The following DataSource interfaces are available:

* Primitive: covers the declaration types Scalar, Array 1D, and Array 2D with
base types String, Boolean, Integer, and Double.

e ChoicelList: a set of selectable options.
* UnitSet: a set of physical units.
* GraphicsData: graphical output data.

112 |

SCALAR, ARRAY ID, AND ARRAY 2D METHODS
The methods in the following table apply to Scalar, Array 1D, and Array 2D
declarations of types String, Boolean, Integer, and Double.

At runtime, these nodes are returned as DataSource objects that also implement
Primitive. Use the typed getters and setters to read and write native Java values
(for example, int[] or double[][]). Always select the accessor (get and set) that
matches the declaration’s type.

DataSource Methods

NAME SYNTAX DESCRIPTION

getBoolean boolean getBoolean() Gets the Boolean value stored in
the data source.

getBooleanArray boolean[] getBooleanArray () Gets the Boolean array value
stored in the data source.

getBooleanMatrix boolean[][] getBooleanMatrix() Gets the Boolean matrix value
stored in the data source.

getDouble double getDouble() Gets the double value stored in
the data source.

getDoubleArray double[] getDoubleArray() Gets the double array value
stored in the data source.

getDoubleMatrix double[][] getDoubleMatrix() Gets the double matrix value
stored in the data source.

getInt int getInt() Gets the int value stored in the

data source.

getIntArray int[] getIntArray() Gets the int array value stored in
the data source.

getIntMatrix int[][]1 getIntMatrix() Gets the int matrix value stored
in the data source.

getString String getString() Gets the String value stored in

the data source.

getStringArray String[] getStringArray() Gets the String array value stored
in the data source.

| 113

NAME SYNTAX DESCRIPTION
getStringMatrix String[][] getStringMatrix() Gets the String matrix value
stored in the data source.
set Setzgooiean valutla)) Set the value stored in the data
set(boolean[] value
set (boolean[][] value) source. Available methods
set(double value) depend on the type of the
set(double[] value) underlying declaration
set(double[][] value)
set(int value)
set(int[] value)
set(int[][] value)
set(String value)
set(String[] value)
set(String[][] value)

ExaMPLE CODE

// Get a scalar double declaration

DataSource ds = app.declaration("var");

// The 'var' declaration is a scalar double so we use the getDouble method
// to read its value.

double cur = ds.getDouble();

// Modifying the local field 'cur' does not affect the value stored in the
// data source ds

cur = cur + 1;

// Set the value of the data source

ds.set(cur);

// Retrieve a DeclarationGroup object containing entries of the
// "string1" String declarations node
DeclarationGroup group = app.declaration().group("string1");

// Retrieve a DeclarationGroup object containing entries of the
// "string1" String declarations node under the given form
group = app.form("formi1").declaration().group("stringl1");

// Get the value of the "svar" declaration among the entries
String value = group.get("svar").getString();

// Get the names of all individual declaration variables
String[] names = app.declaration().names();

// Get the names of all global primitive declaration nodes
String[] names = app.declaration().group().names();

// Get the names of the local primitive declaration nodes of a given form
String[] names = app.form("formi1").declaration().group().names();

DETAILS OF THE JAVA IMPLEMENTATION OF DECLARATION CLASSES

This section covers more advanced use of Java programming with declarations in

the API.

114 |

The Declaration class provides access to all user-defined declarations in an
application. In addition to retrieving individual declarations (such as scalars or
arrays), the class contains methods for retrieving DeclarationGroup objects.

A DeclarationGroup corresponds one-to-one to a typed node under Declarations
in the UlI, for example, the node Array ID Integer I. The group contains the
individual declaration entries (variables) of that primitive kind. Each entry is
exposed as a Primitive (DataSource) and can be read /written with the type-
specific get and set methods.

Do not confuse a DeclarationGroup with Group nodes under Declarations, which
are only used to organize declarations.

The Declaration class also provides a method for retrieving a
DeclarationGroupList object. A DeclarationGroupList contains all
DeclarationGroup objects under a given Declarations node. It implements the
IEntityList<DeclarationGroup> interface, which defines methods for retrieving
and iterating over the contained groups.

The figures below shows an example of two DeclarationGroup objects double1
and double2 and how to access their variables.

e B [= - % @ B @ T Untitled.mph - COMSOL Multiphysics = o X
File Home Method a
() Utiiy Class [L £l) Check Syntax '€ Use Sh = Breakpoints | B Test Application
s Externallavalibrary | ooy L1 Model Expressions 27 GotoNede U7 Create Local Variable Debug | Java B RemoveAl Apply Changes
C External C Library toSaved | [RecordMethod @ Record Code () Send to Chatbotv Bre Log | Shell | o DisableAll | (3) Testin Web Browser v
Libraries Edit Code Debug Breakpoints Test
n S . o Preview method! X =% :
Application Builder or @ -) . Settings
__ ~ Primitive pl - app.declaration().group(“doublel”). get("b"); -
- L Ery €] debuglog(pl.getDouble()) ; QU
a o . . Label: | Double 1
Primitive p2 = app.declaration().group(“double?").get("="};
v [E] Untitied.mph (root) 5 debuglog(p2.getDouble()); Name: | doublel
A Inputs
B, Themes List of Variables
> [Main Window o
T Forms Name Initial value Description
B Events R "
~ = Declarations b 22
=5 Double 1{double1} (3 33
&5 Double 2 {doubleZ} 100% ¥
v B Methods
method Debug Log
> [Libraries a\m= B .
2.2
55
181GB|195GB

| 115

The second figure additionally shows how to retrieve the names of all
DeclarationGroup names, using the DeclarationGrouplList method names()

CRNEN ® > PRSI Wic| B @ ® ¥ B < Untitledmph- COMSOL Mukiphysics - o x
File Home Method 2]
(3) Utility Class E [+ Language Elements "/ Check Syntax E*C Use Shortcut Continue “= Breakpoints » Test Application
5 \ . e
12 External Java Library Revert 1 Model Expressions %4 GotoNode 1% Create Local Variable Debug | Java F Remove All Apply Changes
€ Extemal C Library toSsved = Record Method @ Record Code () Send to Chatbot v o . Log | Shel | of pisapleAll (5) Testin Web Browser v
Libraries Edit Cade Debug Breakpoints Test
m - . . Preview [method1 X =K% .
Application Builder os @ | B maoat | Settings
S Primitive pl = app.declaration().group(“doublel”).get("b"); .
&= »- 3 debuglog(p1. getdouble()) ; Pouble
e Labek Double 2
Prinitive p2 = app.declaration().group(“double2").get("e");
~ [&] Untitied.mph (root) depugLog(pa . getDouble()) s Name: | double2
A5 Inputs
B Themes DeclarationGrouplist groups = app.declaration().group(); List of Variables
> [Mein Window String names[] = groups.names(); N
B Forms P sy Name Initial value Description
Events d a4
v = Declarations . 55
&5 Double 1 {double®}
== Double 2 {double2} 100~
~ [Methods
method1 Debug Log
> [Libraries

avE = -8

2.2
5.5
2.2
5.5
{do

1.86 GB | 1.98 GB

A DeclarationGroup implements the generic interface IEntityList<Primitive>.
This means it behaves like a typed list, with methods to:

» Retrieve a specific entry by name or index: get(String name), get(int index)
* Return the full list of entry names: names ()
* Query the size of the group: size()

* Find the index of an entry by name: index (String name)

In addition, the DeclarationGroup class itself defines the method getType(),
which returns the data type of the group.

Since it implements a list interface, you can use a standard Java enhanced for-loop
to iterate over its entries:

// Iterate over the entries of the "integer1" Integer declarations node.

int i = 0;

for (Primitive entry: app.declaration().group("integer1")) {

entry.set(i++);

}
Here, cach Primitive represents a single entry of the group, such as one integer
element inside the array declaration named "integeri".
The Primitive interface encapsulates an individual declaration entry. It is derived
from the more general DataSource interface, which is the base abstraction for all
data objects in the API. Through Primitive, you can update the value of an entry
using one of the overloaded, type-specific set(...) methods, for example,

116 |

set(int value),set(double[][] value),or set(String[] value). Depcnding on
the declaration type, you can also retrieve values in a type-safe way.

This design allows you to work with declarations in a way that is both object-
oriented (via classes and interfaces) and natural for Java developers (using familiar
list and iteration patterns).

The following tables list the most important methods for handling declarations.

| 117

Declaration and DataSource Methods

NAME SYNTAX DESCRIPTION

declaration Declaration declaration() Returns the list of declarations.

declaration DataSource] Returns the declaration object (Scalar, Array 1D,

declaration(String name) Array 2D, ChoicelList, or UnitSet) with the specified

name.

group DeclarationGroupList group() Retumns the list of all declaration groups under the
Declarations node. Example:
DeclarationGroupList groups =
app.declaration().group();

group DeclarationGroup Returns the declaration group with the specified

group(String name)

name. Example: DeclarationGroup ints =
app.declaration().group("integert");

DeclarationGroupList Methods

NAME SYNTAX DESCRIPTION
get DeclarationGroup get(String Gets a group by name. Example: DeclarationGroup
name) g = groups.get("integert");
get DeclarationGroup get(int Gets a group by index (O-based). Example:
index) ; -
DeclarationGroup g = groups.get(0);
names String[] names() Returns the names of all groups. Example: for
(String n : groups.names()) { .. }
size int size() Returns how many groups there are. Example: int
count = groups.size();
index int index(String name)

Returns the position of a group (¢ | if not found).
Example: int idx = groups.index("integeri");

118 |

DeclarationGroup Methods

NAME SYNTAX DESCRIPTION

names String[] names() Returns all entry names. For example, print all entry
names in the "integer|" group:
for (String n :
app.declaration().group("integert").names())

debuglLog(n);

size int size() Returns the number of entries. For example, get the
number of entries in the "integer1" group:
int n =
app.declaration().group("integer1").size();

index int index(String name) Returns the index of an entry (-1 if not found). For
example, find the index of the "svar" declaration:
int idx = app.declaration().group("stringl")
.index("svar");

getType String getType() Retumns the group’s data type (for example, "String"
or "Array1DString"). For example, inspect the data
type of the "integer1" group:
String t = app.declaration()
.group("integer1").getType();

get Primitive get(int index) Gets an entry by index or by name.

Primitive get(String
name)

Example (by index):

Primitive p =
app.declaration().group("integeri").get(0);
Example (by name):

String value =
app.declaration().group("string1")
.get("svar").getString();

CHOICE LIST AND UNIT SET METHODS

The methods described in the following table are applicable for both ChoiceList
and UnitSet objects. These methods are used to manipulate choice lists and unit
sets during runtime.

NAME SYNTAX DESCRIPTION
addListRow addListRow(String value, String Inserts a new row with the given
displayName, int row) value and display name at the
specified row (0-based).
appendListRow appendListRow(String value, String Inserts a new row with the given
displayName)

value and display name at the end
of the list.

| 119

NAME

SYNTAX

DESCRIPTION

getValue

getDisplayName

getDisplayName

getvalues

getDisplayNames

removeListRow

setListRow

setList

setValue

setDisplayName

String getValue(int row)

String getDisplayName(int row)

String getDisplayName(String value)

String[] getValues()

String[] getDisplayNames()

removeListRow(int row)

setListRow(String value, String
displayName, int row)

setList(String[] values, String[]
displayNames)

setValue(String value, int row)

setDisplayName (String displayName, int

row)

Returns the value for the given
row (0-based).

Returns the display name for the
given row (0-based).

Returns the display name for the
row with the given value.

Returns all values as an array.

Returns all display names as an
array.

Removes the given row (0-based)
from the list.

Sets the value and display name
for the given row (0-based). If the
row is equal to the length of the
list, a new row is added.

Sets all of the values and display
names, replacing the contents of
the choice list or unit set.

Sets the value for the given row
(O-based). If the row is equal to
the length of the list, a new row is
added with the value and an
empty display name.

Sets the display name for the
given row (0-based). If the row is
equal to the length of the list, a
new row is added with the
display name and an empty value.

Example Code

The code below adds the string Aluminum 3004 to a choice list. Note that the
choice list index starts at 0, whereas the material tags start at 1 (mat1, mat2, mat3,

and mat4).

ChoicelList choicelList = getChoicelList("choicelist1");
choicelList.setListRow("mat4",

"Aluminum 3004", 3);

For more information on using choice lists for changing materials, see the book
Introduction to the Application Builder.

120 |

UNIT SET METHODS

When the object is a UnitSet the following additional methods are also available:

NAME SYNTAX DESCRIPTION
getString String getString() Returns the currently selected value for the unit
set.
getString String Returns the selected unit for the given unit list.
getString(String
unitList)
set set(String value) Switch unit for the unit set.

GRAPHICSDATA METHODS

When the object is a GraphicsbData the following methods are available:

NAME SYNTAX DESCRIPTION
getString String getString(String name) Returns the value of the specified
property as a string.
getDouble double getDouble(String name) Returns the value of the specified
property as a double value.
getDoubleArray double[] getDoubleArray(String Returns the value of the specified
name)

property as a double array value.

set set(String name, gtrggg vaiue) Sets a new value for the property
set(String name, double value) . .
set(String name, double[] value) with the speCIﬂed name.

The GraphicsData class has the following properties:

PROPERTY VALUE DEFAULT DESCRIPTION

coord doublef] 0, 0,0 Point location of picked data. Array of
[, 2, 3, or 6 elements, corresponding
to 1D, 2D, 3D, or Smith plot,
respectively.

depth double 0 Point along a line when data picking in
a domain. Valid values are between 0
and |, inclusive.

edim domain | domain Geometric entity level.
boundary
eval double 0 Evaluated value of picked data.

| 121

PROPERTY VALUE DEFAULT DESCRIPTION

method pointnormal | pointnormal Method of selecting a point in a 3D
pointdir | comet
twopoints g .
none

twopoint first | second first Point being picked in the twopoints

line entry method.

Example Code

The following code enables data picking for the graphics1 object, connects it to
the graphicsdatai object and sets some properties on the graphicsdatai object:

app.form("formi1").formObject("graphics1").set("datapick", true);
app.form("formi1").formObject("graphics1").set("datapicktarget",
app.declaration("graphicsdatal"));
app.declaration("graphicsdatal").set("edim", "boundary");
app.declaration("graphicsdatal").set("method", "pointdir");

AppEvent Class

The AppEvent class contains information regarding an application user-interface
events. The event field, accessible in application methods, is initialized with an
instance of this class when a FormObject event is being triggered. The
getUsercControl method retrieves the FormObject where the event originated.

NAME SYNTAX DESCRIPTION

getNewvalue Value getNewValue() New value corresponding to a form object having
an On data change event type.

getOldvalue Value getOldvalue() Old value corresponding to a form object having
an On data change event type.

getUserControl IPropertyAccess To make it convenient to access a user control that

getUserControl()

triggered an event the method
event.getUserControl retumns the form or form
object that triggered the event. The retumn type of
the methods is IPropertyAccess and the object
can be cast to an instance of the FormObject or
Form class depending on what type of event is
triggered.

VALUE CLASS

The methods getNewvalue and getOldvalue returns an object of type Value which
has methods according to the table below. The Value class represents a value

122 |

which can be retrieved in different formats depending on the form object. For
example, an event triggered from an input field is a scalar variable (boolean, int,
double, or String). This means that only a subset of the methods in the table
below is valid for a particular form object event.

NAME SYNTAX DESCRIPTION

getBoolean boolean getBoolean() Gets the Boolean value.

getBooleanArray boolean[] Gets the Boolean array value.
getBooleanArray ()

getBooleanMatrix boolean[][] Gets the Boolean matrix value.
getBooleanMatrix()

getDouble double getDouble() Gets the double value.

getDoubleArray double[] Gets the double array value.
getDoubleArray()

getDoubleMatrix double[][] Gets the double matrix value.
getDoubleMatrix()

getInt int getInt() Gets the int value.

getIntArray int[] getIntArray() Gets the int array value.

getIntMatrix int[][] Gets the int matrix value.
getIntMatrix()

getString String getString() Gets the string value.

getStringArray String[] Gets the string array value.
getStringArray()

getStringMatrix String[][] Gets the string matrix value.
getStringMatrix

Example Code

The following code exemplifies how to use the event field, for the class AppEvent,
and the methods getNewvalue and getOldvalue:

String value = event.getNewValue().getString();
String oldValue = event.getOldValue().getString();

For an example of using the event field and its associated methods, see “Data
Validation” on page 297.

AppEventHandler Class

This class represents the Event and Timer nodes found under Events in the
Application Builder. An AppEventHandler object can be either an Event or a Timer.

| 123

The following methods are available for an AppEventHandler object:

NAME SYNTAX DESCRIPTION

getName String getName () Returns the name of this event handler.

getType String getType() Returns the event handler type name: Event or
Timer.

An AppEventHandler object has the following properties:

PROPERTY VALUE DEFAULT DESCRIPTION
delay double 1 The interval of a Timer in seconds.
enabled See “General Properties’” on page 82.

Example code
The following code sets the interval of a Timer to 1 hour:
app.event("timer1").set("delay","1[h]");

Method Class

The Method class is used to represent a method. The following method is available
for a Method object:

NAME SYNTAX DESCRIPTION

run Object run(Object... input) Run the method with the specified
input parameters.

The following code exemplifies using a Method object:

// Get a Method object representing a Form Method.

Method m = app.form("form1").method("method1");

// The method takes a String parameter and returns a double.
double res = (Double) m.run("input");

124 |

Form, Form Object, and Item List Methods

The AppEventHandlerList, Declaration, FormList, FormObjectList, and
ItemList classes have the following methods:

NAME SYNTAX PURPOSE

get Form get(int index) Returns the object at a certain index.
FormObject get(int
index)

Item get(int index)
DataSource get(int
index)

AppEventHandler get(int
index)

get Form get(String name) Returns the object with a given name.
FormObject get(String
name)
Item get(String name)
DataSource get(String

name)
AppEventHandler
get(String name)
index int index(String name) Returns the O-based position of the object with a
given name in the list.
names String[] names() Retumns an array of names for all objects in the
list.
size int size() Returns the number of objects in the list.

Additionally the FormList class has the following methods:

NAME SYNTAX PURPOSE

hasProperty boolean . Returns true if there is a modifiable property with
hasProperty(String name) the specified name

It is also possible to use a list in an enhanced for loop to operate on all objects in
the list.

In the following example, the background color is set to red in all forms, by
looping over all forms:

for (Form f : app.form()) { // app.form() is of type FormList
f.set("background", "red");

}

| 125

The Built-in Method Library for the Application Builder

This section lists built-in methods available in the Method Editor in addition to
the methods that operate on the model and application objects. For more
information on the model object and its methods, refer to earlier sections of this
book and the Programming Reference Manual. For more information on the
application object, see “The Application Object” on page 78. Some of the listings
have associated example code but for more extensive programming examples, see
“Programming Examples” on page 187.

The syntax rules are those of the Java® programming language. Note that each line
of code needs to end with a semicolon (;), but the semicolon is omitted in the

listings below.

Model Utility Methods

The following table summarizes the model utility methods for querying, creating,
loading, and saving model objects. The model object is stored on the MPH file

format. These methods should not be confused with utility classes, defined in the
application tree under libraries.

NAME SYNTAX DESCRIPTION
clearModel clearModel (Model model) Remove everything from the
cleariodel(String tag) model except for the application

part and the things you can
change on the root node in the
Model Builder, such as thumbnail,
comment, and author.

createModel Model createModel(String tag) Creates a new model with the
given tag.

createModel Model createModel() Create a new model with a
unique tag.

getModel Model getModel(String tag) Returns the model with a
specified tag.

loadModel Model loadModel(String location) Loads a model with a specified
tag from a file on the file system
or in a database.

loadModel Model loadModel(String tag, String Loads a model from a file. The

location)

model is given a unique tag.

126 |

NAME SYNTAX DESCRIPTION
loadProtectedModel Model loadProtectedModel(String tag, Loads a password protected
String filename, String password) model with a specified tag from a
file.
loadProtectedModel Model loadProtectedModel(String Loads a password protected
filename, String password) model from a file. The model is
given a unique tag.
loadRecoveryModel Model loadRecoveryModel(String tag, Loads a model from a recovery
String foldername) directory/folder structure.
loadRecoveryModel Model loadRecoveryModel(String Loads a model from a recovery
foldername) directory/folder structure. The
model is given a unique tag.
modelTags String[] modelTags() Returns an array of model tags
for all loaded models, including
the embedded model.
removeModel removeModel(String tag) Removes a model. The
removeModel (Model model) embedded model cannot be
removed.
saveModel saveModel (Model model, String Saves a model to a file. The
filename) filename can be a file scheme
path or (if allowed by security
settings) a server file path.
uniqueModeltag String uniqueModeltag(String prefix) Returns a model tag that is not in
use.
getComsolVersion getComsolVersion() Returns the current software

version as a string.

For the built-in application methods loadModel(<Iocation>) and

loadModel (<tag>,<location>) the <location>argument scan either be the
path to an MPH file found on the file system or a model location URI referencing
a model version in a Model Manager database.

The model utility methods provide convenient shortcuts to commonly used
methods in the ModelUtil class. In addition to these shortcuts, the ModelUtil class
offers functionality for managing client—server operations. This includes methods
for connecting to or disconnecting from a COMSOL Multiphysics server or
COMSOL Server. For a complete list of available methods, refer to the
Programming Reference Manual.

Example Code

The code below loads a model using loadModel, presented in the table above. It
extracts the x-, y-, and z-coordinates of all Mesh nodes and stores them in a 2D

| 127

double array coords[3][N], where N is the number of Mesh nodes. The individual
x-y-, and z- coordinates are available as the length-N 1D arrays coords[01,
coords[1], coords[2], respectively. (The node locations can be plotted by using
the Cut Point 3D dataset in combination with a 3D Point Trajectories plot.)

Model extmodel = loadModel("C:\\Paul\\pacemaker_electrode.mph");
SolverFeature step = extmodel.sol("sol1").feature("vi");
XmeshInfo xmi = step.xmeshInfo();

XmeshInfoNodes nodes = xmi.nodes();

double[][] coords = nodes.coords();

For more information on methods operating on the model object, see the
Programming Reference Manual.

Note that to make the code above platform independent for use in an application
you can instead use the common application file folder:

Model extmodel = loadModel("common:///pacemaker_electrode.mph");

License Methods

The license methods read the license number and check out or test the licenses of
the current session or for an MPH file. This functionality can be used, for example,
to limit the use of an application to one or a few license numbers or to dynamically
adapt functionality of an application depending on which product licenses are

available.

NAME SYNTAX DESCRIPTION
checkoutLicense boolean checkoutLicense(String... Checks out licenses for all
product) specified products. If not all

licenses can be checked out, no
licenses are checked out.

checkoutLicenseFor boolean checkoutLicenseForFile(String Checks out licenses required to

File file) use a given MPH file. If not all
required licenses can be checked
out, no licenses are checked out.

checkoutLicenseFor boolean Checks out licenses required to

FileOnServer ?aililé)i(.:enseFor‘FileOnSer‘ver(Str‘ing use a given MPH file. If not all

’ required licenses can be checked

out, no licenses are checked out.

getLicenseNumber String license = getLicenseNumber() Returns a String with the license

number for the current session.

128 |

NAME SYNTAX

DESCRIPTION

hasProduct boolean hasProduct(String... product)

hasProductForFile boolean hasProductForFile(String file)

hasProductForFile0 boolean
nServer checkoutLicenseForFileOnServer(String
file);

Returns true if the COMSOL
installation contains the software
components required for running
the specified products. Code
completion can be used to get a
list of valid product names.

Returns true if the COMSOL
installation contains the software
components required for running
the products required by a given
MPH file.

Returns true if the COMSOL
installation contains the software
components required for running
the products required by a given
MPH file.

EXAMPLE CODE

The following code tries to check out a license for the AC/DC Module, and

displays an error message if it fails:
if (!checkoutLicense("ACDC"))

alert("There seems to be a problem. Please contact Alice and Bob at 123-

456-7890.");

You can use this to customize license error messages by calling a method
containing this code before any add-on product specific features are used by the

application.

In the Application Builder root node you can further select the Ignore license errors
during launch checkbox. This will make it possible for users to start an application
regardless of which licenses are available. However, this will not work if the
application, at startup, uses features required by an add-on product. The
application has to be created in such a way that the add-on product specific
features are not used in the startup phase of the application but instead are

deferred to later in the workflow.

To emulate a scenario where there are not enough available licenses you can, for
example, disable one or more products in the Licensed and Used Products in Session
dialog, available from the File menu in the COMSOL Desktop environment.

The following code tests if the COMSOL installation has the capability to use an
MPH file:

boolean ok = hasProductForFile(“model_file.mph”);

| 129

Note that even if hasProductForFile return true, in a floating network license
situation there may not be any free licenses to check out. If your application is
going to process several MPH files and you want to make sure all licenses are
checked out before the processing starts, instead use the checkoutLicense or
checkoutLicenseForFile methods.

LICENSE FEATURE STRINGS

The following table contains the product strings for all add-on products in the
COMSOL 6.4 product suite that can be used by the method checkoutLicense:

PRODUCT/FEATURE FEATURE NAME

AC/DC Module ACDC

Acoustics Module ACOUSTICS

Battery Design Module BATTERYDESIGN

CAD Import Module CADIMPORT

CFD Module CFD

Chemical Reaction Engineering Module CHEM

Corrosion Module CORROSION

Design Module DESIGN, CADIMPORT
ECAD Import Module ECADIMPORT

Electric Discharge Module ELECTRICDISCHARGE
Electrochemistry Module ELECTROCHEMISTRY
Electrodeposition Module ELECTRODEPOSITION
Fatigue Module FATIGUE

File Import for CATIA V5 CATIA5

Fuel Cell & Electrolyzer Module FUELCELLANDELECTROLYZER
Geomechanics Module GEOMECHANICS
Granular Flow Module GRANULARFLOW

Heat Transfer Module HEATTRANSFER

Liquid & Gas Properties Module

LiveLink™ for AutoCAD®

LIQUIDANDGASPROPERTIES
LLAUTOCAD, CADIMPORT

LiveLink™ for PTC® Creo® Parametric™ LLCREOPARAMETRIC,
CADIMPORT
LiveLink™ for Excel® LLEXCEL

LiveLink™ for Inventor®

LiveLink™ for MATLAR®

LLINVENTOR, CADIMPORT
LLMATLAB

130 |

PRODUCT/FEATURE

FEATURE NAME

LiveLink™ for Revit®

LiveLink™ for Simulink®
LiveLink™ for Solid Edge
LiveLink™ for SOLIDWORKS

®
®

Material Library

MEMS Module

Metal Processing Module
Microfluidics Module

Mixer Module
Molecular Flow Module
Multibody Dynamics Module
Nonlinear Structural Materials Module
Optimization Module
Particle Tracing Module

Pipe Flow Module

Plasma Module
Polymer Flow Module
Porous Media Flow Module
Ray Optics Module

RF Module

Rotordynamics Module
Semiconductor Module
Structural Mechanics Module
Subsurface Flow Module
Uncertainty Quantification Module
Wave Optics Module

LLREVIT, CADIMPORT
LLSIMULINK
LLSOLIDEDGE, CADIMPORT
LLSOLIDWORKS, CADIMPORT
MATLIB

MEMS

METALPROCESSING
MICROFLUIDICS

MIXER

MOLECULARFLOW
MULTIBODYDYNAMICS
NONLINEARSTRUCTMATERIALS
OPTIMIZATION
PARTICLETRACING
PIPEFLOW

PLASMA

POLYMERFLOW
POROUSMEDIAFLOW
RAYOPTICS

RF

ROTORDYNAMICS
SEMICONDUCTOR
STRUCTURALMECHANICS
SUBSURFACEFLOW

ua

WAVEOPTICS

File Methods

File methods are used to read and write data to a file or portions of a file. Note
that higher-level techniques for reading and writing to files are available from
within the Application Builder user interface. For more information, see the book

| 131

Introduction to the Application Builder and “GUI Command Methods” on

page 158.
NAME SYNTAX DESCRIPTION
readFile* String readFile(String name)

openFileStreamReader*

openBinaryFileStreamReader*

readMatrixFromFile*

readMatrixFromFile*

readStringMatrixFromFile*

readStringMatrixFromFile*

readCSVFile*

CsReader
openFileStreamReader (String
name)

CsBinaryReader
openBinaryFileStreamReader (Stri
ng name)

double[][]
readMatrixFromFile (String name)

double[][]
readMatrixFromFile (String name,
char delimiter)

String[][]
readStringMatrixFromFile (String
name)

String[][]
readStringMatrixFromFile (String
name, char delimiter)

String[][] readCSVFile(String
name)

Returns the contents in the given
filename as a string. The string
name is the absolute path to a file
or a path given by the file scheme
syntax.

Returns a CsReader that can be
used to read line-by-line or
character-by-character from the
given filename.

Returns a CsBinaryReader that
can be used to read from the
given file byte-by-byte.

Reads the contents of the given
file into a double matrix. The file
has the same spreadsheet type
format as available in the model
tree Export node.

Reads the contents of the given
file into a double matrix, using a
user-defined delimiter character.
The file has the same spreadsheet
type format as available in the
model tree Export node.

Reads the contents of the given
file into a string matrix. The file
has the same spreadsheet type
format as available in the model
tree Export node.

Reads the contents of the given
file into a string matrix, using a
user-defined delimiter character..
The file has the same spreadsheet
type format as available in the
model tree Export node.

Reads a file with comma-
separated values (CSV file) into a
string matrix. Expects file to use
the RFC 4180 format for CSV.

132 |

NAME SYNTAX DESCRIPTION
readCSVFile* String[][] readCSVFile(String Reads a file with values, separated
name, char delimiter) by a user-defined delimiter
character, into a string matrix.
writeFile* writeFile(String name, String Writes the given String contents
contents) to the given filename.
writeFile* writeFile(String name, String Writes the given string contents
contents, boolean append) to the given filename. If append is
true, then the contents are
appended instead of overwritten.
writeFile* writeFile(String name, Writes the array data to the
double[][] data) given file. The spreadsheet format
is used, which means it can be
read by readMatrixFromFile.
writeFile* writeFile(String name, Writes the array data to the
ggggig;”l data, boolean given file. The spreadsheet format
is used, which means it can be
read by readMatrixFromFile. If
append is true, then the contents
are appended instead of
overwritten.
writeFile* writeFile(String name, Writes the array data to the
String[1[] data) given file. The spreadsheet format
is used, which means it can be
read by
readStringMatrixFromFile.
writeFile* writeFile(String name, Writes the array data to the
2;;;22; J[1 data, boolean given file. The spreadsheet format
is used, which means it can be
read by
readStringMatrixFromFile. If
append is true, then the contents
are appended instead of
overwritten.
writeFile* writeFile(String name, Writes the array data to the

String[][] data, char
delimiter, boolean append)

given file using the specified
delimiter character (CSV/TSV
style). The file can be read by
readCSVFile. If append is true,
then the contents are appended
instead of overwritten.

| 133

NAME

SYNTAX

DESCRIPTION

writeFile*

openFileStreamWriter®*

openFileStreamWriter®*

openBinaryFileStreamWriter*

openBinaryFileStreamWriter*

writeCSVFile*

writeCSVFile*

writeCSVFile*

writeCSVFile*

writeFile(String name,
String[][] data, char
delimiter, boolean append,
boolean bom)

CsWriter
openFileStreamWriter (String
name)

CsWriter
openFileStreamWriter (String
name, boolean append)

CsBinaryWriter
openBinaryFileStreamWriter(Stri
ng name)

CsBinaryWriter
openBinaryFileStreamWriter(Stri
ng name, boolean append)

writeCSVFile(String name,
String[][] data)

writeCSVFile(String name,
String[][] data, boolean
append)

writeCSVFile(String name,
double[][] data)

writeCSVFile(String name,
double[][] data, boolean
append)

Writes the array data to the
given file using the specified
delimiter character (CSV/TSV
style). The file can be read by
readCSVFile. If append is true,
then the contents are appended
instead of overwritten. If bom is
true, a Unicode byte order mark
(BOM) is written.

Returns a Cswriter that can
write to the given file.

Returns a CsWriter that can
write to the given file. If append is
true, then the contents are
appended instead of overwritten.

Returns a CsBinaryWriter that
can be used to write to the given
file byte-by-byte.

Returns a CsBinaryWriter that
can be used to write to the given
file byte by byte. If append is true,
then the contents are appended
instead of overwritten.

Writes the given string array
datato a CSV file. The RFC 4180
format is used for the CSV.

Writes the given string array
datato a CSV file. The RFC 4180
format is used for the CSV. If
append is true, then the contents
are appended instead of
overwritten.

Writes the given double array
datato a CSV file. The RFC 4180
format is used for the CSV.

Writes the given double array
datato a CSV file. The RFC 4180
format is used for the CSV. If
append is true, then the contents
are appended instead of
overwritten.

134 |

NAME

SYNTAX

DESCRIPTION

exists*

deleteFile*

copyFile*

importFile

boolean exists(String name)

deleteFile(String file)

copyFile(String sourceFile,
String destFile)

importFile(String name)
importFile(String name,
String[] fileTypes)

Tests whether a file with the given
name exists.

If the name is not a file scheme
path name or an absolute path,
then the method first finds out
whether a file with file scheme
path embedded:/// + argument
exists. If such a file does not exist,
then it tests whether there is a
file with a matching name in the
current working directory.

Delete a file with the given name
if it exists. The file is deleted on
the server,. The name can use a
file scheme path.

Copies a file on the server. Both
the source and target names can
use file scheme paths.

Displays a file browser dialog and
uploads the selected file to the
file declaration with the given
name. After this, the uploaded file
can be accessed with upload:///
<name>. The optional fileTypes
argument can be used to filter
which file types are available for
selection in the file browser. The
easiest way to get a list of valid
file types is to use code
completion in the Method Editor.
The file types defined by File Type
declarations can also be used.

| 135

NAME

SYNTAX

DESCRIPTION

importFile

writeExcelFile*

writeExcelFile*

readExcelFile*

readExcelFile*

importFile(ModelEntity entity,
String name)

writeExcelFile(String name,
String[][] data)

writeExcelFile(String name,
String sheet, String cell,
String[][] data)

String[][] readExcelFile(String
name)

String[][] readExcelFile(String
name, String sheet, String
cell)

Displays a file browser dialog and
uploads the selected file to the
Filename text field in the given
model object entity. This defines
an input file that the application
will need at a later stage. For
example, the Filename of an
interpolation function accessed
with model.func(’<tag>’)).
The uploaded file can be
accessed with upload:///<tag>/
filename.

Writes the given string array
data starting from the first cell in
the first sheet of an Excel file.
This method requires LiveLink™
for Excel™.

Writes the given string array
data starting from the specified
cell in the specified sheet of an
Excel file. This method requires
LiveLink™ for Excel®.

Reads the first sheet of an Excel
file, starting from the first cell,
into a String[][]. This method
requires LiveLink™ for Excel®.

Reads the specified sheet of an
Excel file, starting from the
specified cell, into a String[][].
This method requires LiveLink™
for Excel™.

136 |

NAME

SYNTAX

DESCRIPTION

getFilePath*

getClientFileName

String getFilePath(String name)

String getClientFileName(String
name)

Returns the absolute server file
path of the server proxy file
corresponding to a certain file
scheme path, or null if the server
proxy file for the given path does
not exist.

This method can be used to pass
the path to, for example, a file
using the temp:/// scheme to
external code or an application.
In addition, this method is used to
retrieve the filename of an
uploaded file when using the file
scheme upload:///inputFile,
for example by using a File
declaration together with a File
Import form object.

Returns the original name of an
uploaded file on the client file
system (or null if there is no
uploaded file matching the given
file scheme path).

This method is only useful for
providing user interface feedback.
For example, to get information
on which uploaded file is being
used. There is no guarantee that
the original file would still exist on
the client or even that the
current client would be the same
as the original client.

| 137

NAME

SYNTAX

DESCRIPTION

getClientFilePath

createDirectory*

String getClientFilePath(String

name)

createDirectory(String name)

Returns the original path of an
uploaded file on the client file
system (or null if there is no
uploaded file matching the given
file scheme path). Returns only
the filename part of the path
when called from an application
running in a web browser.

This method is only useful for
providing user interface feedback.
For example, to get information
on which uploaded file is being
used. There is no guarantee that
the original file would still exist on
the client or even that the
current client would be the same
as the original client.

Creates a file directory name, see
examples below in the Example
Code section.

All file methods in the table above that are marked with an asterisk (*) support

working with data files stored in a Model Manager database. Note that all of these
methods automatically load the data file to a working copy directory located on
the same computer that COMSOL Multiphysics runs on. This means that any
updates made to a data file is not persisted to the database unless explicitly saved
as a new file version via the Model Manager database API.

ExaMPLE CODE

This line of code copies the uploaded file file1 to the temp folder with new

filename file2.mphbin and then prompts the user to save the file to any location.
copyFile("upload:///filet1", "temp:///file2.mphbin");
fileSaveAs("temp:///file2.mphbin");

This line of code deletes the file file2.mphbin from the temp folder.
deleteFile("temp:///file2.mphbin");

This line of code creates a directory in the user folder, as specified in Preferences.
createDirectory("user:///a/b");

This line of code creates a directory in the Temp folder under C:.
createDirectory("C:\\Temp\\a\\b");

138 |

Note that the method fileSaveAs returns a boolean that indicates if saving the file
was successful or not. Saving a file will fail if, for example, the user does not have
access to the target folder.

Operating System Methods

Operating system methods are used for accessing operating system information
and commands from an application.

NAME

SYNTAX

DESCRIPTION

executeOSCommand

executeO0SCommand

fileOpen

getUser

String executeOSCommand(String
command, String... params)

String executeOSCommand(String
command, int timeoutSec, String
params...)

fileOpen(String name)

String username = getUser()

Executes the OS command with
the given command (full path)
and parameters. Execution times
out after a default 180 seconds.
Returns everything the process
printed to its out stream as a
string. When applicable, the
command is run server side.

Executes the OS command with
the given command (full path)
and parameters. Returns
everything the process printed to
its out stream as a string. The
execution is forcibly stopped after
timeoutSec seconds if the
command has not finished. To
disable the timeout functionality,
timeoutSec value O can be used.
When applicable, the command
is run server side.

Opens the file represented by
name with the associated
program on the client. Also see
the section “Example code”.

Returns the username of the user
that is running the application. If
the application is not run from
COMSOL Server, then the value
of the preference setting
General>Username>Name is
returned.

| 139

NAME SYNTAX DESCRIPTION

openURL openURL (String url) Opens a URL in the default
browser on the client.

playSound playSound(String name) Plays the sounds in the given file
on the client. Only .wav files are
supported; no external libraries
are required.

playSound playSound(double hz, int millis) Plays a signal at a given frequency
hz and with given duration
millis in milliseconds on the
client.

ExaMPLE CODE
The line of code below plays one of the sounds available in the data/sounds folder
of the COMSOL installation and has been embedded in the application and stored
in the Sounds library.

playSound("embedded:///success_1.wav");
In the command sequence of a form object, this is equivalent to selecting a sound
node under Libraries and clicking Run.
The line of code below opens a PDF file embedded in the application and stored
in the File library.

fileOpen("embedded:///1i_ion_battery_impedance.pdf");

140 |

In the command sequence of a form object, this is equivalent to selecting an Open
File node under GUI Commands > File Commands and clicking Run, as shown in the

figure below.

E Settings X

MName: help
Text: Help
lcon: B help_32.png
Size: Large
Tooltip:
Keyboard shortcut:
State
Visible
Enabled

~ Choose Commands to Run

> [Forms
~ @ GUI Commands
v File Commands
Save Application
[Save Application As
[Save Application Copy As
Save Application on Server
[Save Application on Server As
Open File
L SaveFile As
Exit Application
¥ [‘u Graphics Commands
> D Main Window Cormmands
> <# Model Commands
» = Declarations
> [Methods
» [Libraries
& Model (root)

w

Edit Node P Run [z Plot Set Value Show

Show as Dialog Import File Enable Disable

L
Command lcon | Arguments

Open file embedded:///li_ion_battery_i...

o~

This line of code opens the COMSOL home page in the default browser:

openURL ("www.comsol.com");

This line of code runs an application by means of an OS command:

executeOSCommand ("C:\\COMSOL64\\Multiphysics\\bin\\win64\\comsol.exe",

"-run", "C:\\work\\tubular_reactor.mph");

| 141

Email Methods

Email methods are used for sending emails from an application, typically with
attachments containing results from a simulation.

NAME SYNTAX DESCRIPTION
emailFromAddress String emailFromAddress() Returns the email from address
from the COMSOL Server or
preferences setting.
sendEmail sendEmail (String subject, String Sends an email to the default
bodyText) recipient(s) with the specified
subject and body text.
sendEmail sendEmail (String subject, String Sends an email to the default
bodyText, ModelEntity... modelEntity) recipient(s) with the speciﬂed
subject, body text, and zero or
more attachments created from
Report, Export, and Table nodes
in the embedded model.
sendEmail sendEmail (String toAddress, String Sends an email to the speciﬂed
;UbjeCt’ String bodyText, recipient(s) with the specified
odelEntity... modelEntity)
subject, body text, and zero or
more attachments created from
Report, Export, and Table nodes
in the embedded model.
userEmailAddress String userEmailAddress() Returns the user email

address(es) corresponding to the
currently logged in user, or an
empty string if the user has not
configured an email address.

Email Class Methods

The class EmailMessage can be used to create custom email messages.

NAME

SYNTAX

DESCRIPTION

EmailMessage

EmailMessage.setSer
ver

EmailMessage mail = new EmailMessage()

mail.setServer(String host, int port)

Creates a new EmailMessage
object.

Sets the email (SMTP) server
host and port to use for this
email message.

142 |

NAME SYNTAX DESCRIPTION
EmailMessage.setUse mail.setUser(String name, String Sets the username and password
r password) to use for email (SMTP) server
authentication. This method must
be called after the setServer
method.
EmailMessage.setSec mail.setSecurity(String security) Sets the connection security type
urity for email (SMTP) server
communication. Valid values are
'none’', 'starttls’',and 'tls'.
This method must be called after
the setServer method.
EmailMessage.setFro mail.setFrom(String fromAddress) Sets the from address.
m
EmailMessage.setTo mail.setTo(String... to) Sets the to addresses.
EmailMessage.setCc mail.setCc(String... cc) Sets the cc addresses.
EmailMessage.setBcc mail.setBcc(String... bcc) Sets the bcc addresses.
EmailMessage.setSub mail.setSubject(String subject) Sets the email subject line. Note
ject that newline characters are not
allowed.
EmailMessage.setBod mail.setBodyText(String body) Sets the email body as plain text.
yText An email can contain both a text
and an HTML body.
EmailMessage.setBod mail.setBodyHtml(String body) Sets the email body as HTML
yHtml text. An email can contain both a
text and an HTML body.
EmailMessage.attach mail.attachFile(String filename) Adds an attachment from a file.
File The attachment MIME type is
determined by the filename
extension.
EmailMessage.attach mail.attachFile(String filename, Adds an attachment from a file
File String mimeType) with the specified MIME type.
EmailMessage.attach mail.attachFromModel (ModelEntity Adds an attachment created
Fromiodel modelEntity) from a report, export, or table
feature in the model.
EmailMessage.attach mail.attachText(String text, String Adds a text attachment with a
Text mimeSubType)

specified sub-MIME type, such as
plain or HTML.

| 143

NAME SYNTAX DESCRIPTION

EmailMessage.attach mail.attachBinary(byte[] binary, Adds an attachment from a byte

Binary String mimeType) array with the specified MIME
type.

EmailMessage.send mail.send() Sends the email to the email

(SMTP) server. An email object
can only be sent once.

Each to, cc, and bee address string can contain multiple email addresses separated
by a comma or a semicolon character. Whitespace is allowed before and after the
separator character.

EMAIL PREFERENCES

To set general email preferences, open the Email page of the Preferences window.
There you can specity a From address and a Default to address. To set preferences
for an outgoing email (SMTP) server, open the Outgoing Server (STMP) page under
the Email page, as shown in the figure below.

O Preferences x

EE Outgoing Server (SMTP)

Host: server.myorganization.com

Application Builder Port: 2
Chatbot

Client-Server Connection security: | None -

Computing User: paul@myorganization.com
Email

Outgoing Server (SMTP)
Files

<

Password:

Geometry
Graphics

Help

Libraries

Mesh

Model Builder
Model Manager
Physics Builder
Results

Save

Security
Updates
UserInterface

Factory Settings

Factory Settingsfor Al Import.. Export.. oK Cancel

COMSOL Server provides a similar set of email preferences.

144 |

ExAMPLE CODE

The following code configures the email server settings, sends an email, and
attaches a report:

/ * %

* Sends an email with the simulation report attached.

*/

EmailMessage mail = new EmailMessage();

// Custom email server settings used

if (isOverrideEmail) {
mail.setServer(emailServerHost, emailServerPort);
mail.setUser(emailUser, utili.password);
mail.setSecurity(emailSecurity);
mail.setFrom(emailFromAddress);

}

mail.setTo(emailTo);

mail.setSubject(translate("Tubular_reactor_simulation", true));

mail.setBodyText(translate("The_computation_has_finished._please_find_the_

report_attached"));

mail.attachFromModel (model.result().report("rpt1"));

mail.send();

This code is run in the Tubular Reactor application, which is available as an
application example in the Application Libraries. The figure below shows part of
the user interface with an input field for the email address.

v When Solved
Play sound

[] Email report to:

{-E-} Email Settings

| 145

The figure below shows the corresponding form object and Settings window.

Previe: simulationEvents X i R
@ TEVIEW D imulationcven D main Se ”.]C] S
. SE
Play sound Name: emailAddressField =b
[] Email report te Editable
l 1 Tooltip: | Email_address
Email Settings = 3
~ Source I B e

v = Declarations
~ abec String

bc activePlot
=5c solutionState
=8 emailTo
=5: emailServerHost
=bc emailUser
=bc emailSecurity
=bc emailFromAddress

> B Boolean

» 122 Integer

& Model (root)

Use as Source =p Edit Node
Selected source:
abe String=emailTo
Initial value: ~ From data source -

Value:

GUI-Related Methods

The graphical user interface (GUI) related methods are used for displaying dialogs
with messages, editing form objects and user interface content, getting run-time
properties of the application user interface, and running methods.

NAME SYNTAX DESCRIPTION

Call a method directly <methodName> () Call a method from the
Methods list by using its
name, for example,
method1 (), method2().

callMethod callMethod(String name) Alternate way 1o call a
method from the Methods
list; used internally and in
cases of name collisions.

146 |

NAME

SYNTAX

DESCRIPTION

useGraphics

openForm

closeForm

closeDialog

dialog

alert

alert

useGraphics(ModelEntity entity,
String name)
useGraphics(ModelEntity entity,
FormObject graphics)

openForm(String name)

closeForm(String name)

closeDialog(String name)

dialog(String name)

alert(String text)

alert(String text, String title)

Plots the given entity (Plot
Group, Geometry, Mesh,
Explicit Selection or Player
Animation) in the graphics
form object given by the
name, name path, or graphics
form object in the second
argument.

Shows the form with the
given name in the current
main window. In a single
window application, the form
replaces the current one. In
an application with
subwindows, the form must
exist in the main window
layout. If not, it will not be
opened. Showing a form that
is already open will only
activate the form.

Closes the form with the
given name. Closing forms is
only possible in applications
using subwindows. This
method is not applicable for
single window applications.

Closes the form, shown as a
dialog, with the given name.

Shows the form with the
given name as a dialog.
Equivalent to the dialog
method of a Form object; see
below.

Stops execution and displays
an alert message with the
given text.

Stops execution and displays
an alert message with the
given text and title.

| 147

NAME

SYNTAX

DESCRIPTION

confirm

confirm

confirm

confirm

error

String confirm(String text)

String confirm(String text, String
title)

String confirm(String text, String
title, String yes, String no)

String confirm(String text, String
title, String yes, String no,
String cancel)

error(String message)

Stops execution and displays
a confirmation dialog with the
given text. It also displays two
buttons, "Yes" and "No". The
method returns "Yes" or "No"
depending on what the user
clicks.

Stops execution and displays
a confirmation dialog with the
given text and title. It also
displays two buttons, "Yes"
and "No". The method
returns "Yes" or "No"
depending on what the user
clicks.

Stops execution and displays
a confirmation dialog with the
given text and title. It also
displays two buttons with the
given strings as labels. The
method retumns the label of
the button that the user
clicks.

Stops execution and displays
a confirmation dialog with the
given text and title. It also
displays three buttons with
the given strings as labels.
The method retums the label
of the button that the user
clicks.

Stops execution and opens
an error dialog with the given
message.

148 |

NAME

SYNTAX

DESCRIPTION

error

request

request

request

error(String message, Throwable
cause)

String request(String text)

String request(String text, String
defaultString)

String request(String text, String
title, String defaultString)

Stops execution and opens
an error dialog with the given
message including the
underlying cause of class
Throwable, the general Java
exception class, or one of its
subclasses, such as
RuntimeException. This can
be used to “wrap” native
COMSOL Multiphysics error
messages with custom error
messages.

Stops execution and displays
a dialog with a text field,
requesting input from the
user. The given text is the
label of the text field. The
method returns the entered
text or null if the cancel
button is clicked.

Stops execution and displays
a dialog with a text field,
requesting input from the
user. The given text is the
label of the text field and the
default string is the text
initially shown in the text
field. The method retums the
entered text or null if the
cancel button is clicked.

Stops execution and displays
a dialog with a text field,
requesting input from the
user. The given text is the
label of the text field, the
default string is the text
initially shown in the text
field, and the title is the title
of the dialog. The method
retums the entered text or
null if the cancel button is
clicked.

| 149

NAME

SYNTAX

DESCRIPTION

message

message

clearLog

clearMessagelLog

evaluateToResultsTable

evaluateToDoubleArray2D

message (String message)

message (arg)

clearLog()

clearMessagelog ()

evaluateToResultsTable (NumericalFe
ature entity, String name, boolean
clear)

evaluateToResultsTable (NumericalFe
ature entity, FormObject graphics,
boolean clear)

double[][]
evaluateToDoubleArray2D(NumericalF
eature entity)

Sends a message to the
message log if available in the
application.

Sends a message arg to the
message log. For an
application this requires that
a message log is added to the
application user interface.
The input argument arg can
be a scalar, 1D array, or 2D
array of the types string,
double, int, or Boolean.

Clears the log window.

Clears the message log
window.

Evaluates the given entity, a
Derived Value, in the table
object given by the name,
name path, or graphics form
object in the second
argument, which will then be
the default target for the
evaluations of the Derived
Value. If the third argument is
true, the table is cleared
before adding the new data,
otherwise the data is
appended.

Evaluates the given entity, a
Derived Value, and returns
the nonparameter column
part of the real table that is
produced as a double matrix.
All settings in the numerical
feature are respected, but
those in the current table
connected to the numerical
feature are ignored.

150 |

NAME

SYNTAX

DESCRIPTION

evaluateToIntegerArray2D

evaluateToStringArray2D

useResultsTable

getChoicelList

setFormObjectEnabled

setFormObjectVisible

int[][]
evaluateToIntegerArray2D(Numerical
Feature entity)

String[][]
evaluateToStringArray2D(NumericalF
eature entity)

useResultsTable(TableFeature
tableFeature, String resultsTable)
useResultsTable(TableFeature
tableFeature, FormObject
resultsTable)

ChoicelList getChoicelList(String
name)

setFormObjectEnabled (String name,
boolean enabled)

setFormObjectVisible (String name,
boolean visible)

Evaluates the given entity, a
Derived Value, and returns
the nonparameter column
part of the real table that is
produced as an integer
matrix. All settings in the
numerical feature are
respected, but those in the
current table connected to
the numerical feature are
ignored.

Evaluates the given entity, a
Derived Value, and returns
the nonparameter column
part of the, potentially
complex, table that is
produced as a string matrix.
All settings in the numerical
feature are respected but
those in the current table
connected to the numerical
feature are ignored.

Shows the values from the
tableFeature in the
resultsTable form object.

Returns an object of the type
Choicelist, representing a
choice list node under the
declarations branch. The type
ChoicelList has methods
that make it easier to change
the matrix value with respect
to changing and accessing
values and display names
individually.

Sets the enable state for the

form object specified by the
name or name path.

Sets the visible state for the
form object specified by the
name or name path.

| 151

NAME

SYNTAX

DESCRIPTION

setFormObjectText

setFormObjectEditable

setMenuBarItemEnabled

setMainToolbarItemEnabled

setFileMenuItemEnabled

setRibbonItemEnabled

setToolbarItemEnabled

useView

setFormObjectText (String name,
String text)

setFormObjectEditable(String name,
boolean editable)

setMenuBarItemEnabled(String name,
boolean enabled)

setMainToolbarItemEnabled(String
name, boolean enabled)

setFileMenuItemEnabled(String name,
boolean enabled)

setRibbonItemEnabled(String name,
boolean enabled)

setToolbarItemEnabled(String name,
boolean enabled)

useView(View view, String name)
useView(View view, FormObject
graphics)

Sets the text for the form
object specified by the name
or name path in the second
argument. This method
throws an errorif it is
impossible to set a text for
the specified form object.

Sets the editable state for the
form object specified by the
name or name path. This
functionality is only available
for text field objects.

Sets the enable state for the
menu bar item specified by
the name or name path (from
menu bar) in the first
argument.

Sets the enable state for the
main toolbar item specified
by the name or name path
(from main toolbar) in the
first argument.

Sets the enable state for the
file menu item specified by
the name or name path
(from file menu) in the first
argument.

Sets the enable state for the
ribbon item specified by the
name or name path (from
main window) in the first
argument.

Sets the enable state for the
toolbar form object item
specified by the name or
name path in the first
argument.

Applies a view to the
graphics contents given by
the name, name path, or
graphics form object in the
second argument.

152 |

NAME

SYNTAX

DESCRIPTION

resetView

getView

goToView

goToView

goToView

setWebPageSource

getScreenHeight

resetView(String name)
resetView(FormObject graphics)

ViewBase getView(String name)
ViewBase getView(FormObject
graphics)

goToView(String name);

goToView(String name, String
graphicsname) ;

goToView(String name, FormObject
graphics);

setWebPageSource(String name,
String source)

int getScreenHeight()

Resets the view to its initial
state in the graphics contents
given by the name, name
path, or graphics form object
in the second argument.

Returns the view currently
used by the graphics contents
given by the name, name
path, or graphics form object
in the second argument.

Goes to a standard view in
main graphics window. The
parameter name is one of the
view orientation strings in the
following list:

"Xy") "XZ" H "yx") "yZ") "ZX"
,'zy".

Goes to a standard view in
the given graphics form
object graphicsname.

Goes to standard view in the
given graphics form object
graphics.

Sets the source for the form
object specified by the name
or name path in the first
argument. This method
throws an error if the name
does not referto a Web Page
form object.

Retumns the height in pixels of
the primary screen on client
system, or of the browser
window if Web Client is
used.

| 153

NAME SYNTAX DESCRIPTION

getScreenWidth int getScreenWidth() Returns the width in pixels of
the primary screen on client
system, or of the browser
window if Web Client is
used.

storeChanges storeChanges(String form) Commits the values entered
in a dialog having On request
enabled. The method takes
the name of the form as its
argument.

ALERTS AND MESSAGES

The methods alert, confirm, and request display a dialog with a text string and
optional user input. The following example uses confirm to ask the user if a direct
or an iterative solver should be used in an application. Based on the answer, the
alert function is then used to show the estimated memory requirement for the
selected solver type in a message dialog:

String answer = confirm("Which solver do you want to use?",
"Solver Selection","Direct", "Iterative");
if (answer.equals("Direct")) {

alert("Using the direct solver will require about 4GB of memory when solving.");
} else {

alert("Using the iterative solver will require about 2GB of memory when
solving.");

}

ExaMPLE CODE

The following code changes the camera zoom angle and updates the graphics for
cach change.

useView(model.view("view1"), "/formi/graphicsi");
for (int i = 0; 1 < 25; i++) {
sleep(2000);
model.view("viewl1").camera().set("zoomanglefull", 12-i*5.0/25);
useGraphics(model.geom("geomi1"), "/formi1/graphicsi");
}
This line of code displays plot group 5 (pg5) in the graphics object graphics1 in
the form with the name Temperature:

useGraphics(model.result("pg5"), "/Temperature/graphicsi");

The code below displays the mesh in the model tree node mesh1 in the graphics
object graphicsi contained in the card of a card stack. The second line runs a
zoom extents command to ensure proper visualization of the mesh.

useGraphics(model.mesh("mesh1"), "/mesh/cardstack1/cardi/graphicsi");

154 |

zoomExtents("/mesh/cardstacki/card1/graphics1");

To clear the contents of a graphics object use a call such as
useGraphics(null, "/formi/graphicsi");

The code below displays a request dialog that lets the user type in a filename for
an HTML report. If the user has typed a filename, then a report is generated.
String answerh = request("Enter filename","Filename", "Untitled.html");
if (answerh != null) {
model.result().report("rpt1").set("format","html");
model.result().report("rpt1").set("filename","user:///"+answerh);
model.result().report("rpt1").run();
}

The code below is similar to the code above, but in this case the report is saved in
Microsoft® Word® format (. docx).
String answerw = request("Enter filename","Filename", "Untitled.docx");
if (answerw != null) {
model.result().report("rpt2").set("format","docx");
model.result().report("rpt2").set("filename","user:///"+answerw);
model.result().report("rpt2").run();
}

This line of code sets the view of the graphics object form1/graphics1 to View 5,
as defined in the model tree:

useView(model.view("view5"), "formi/graphicsi");

| 155

You can use Data Access in combination with Editor Tools to create a slider or an
input field that sets the transparency level (alpha) of a plot group. The figure
below shows a Settings window of a slider with the transparency level as Source.

Editor Tools

Name: sliderl

Minimum value: 0
Maximum value: 1
MNumber of steps: 5
Orientation: Harizontal =

Tooltip:
~ Source Tyl e

= Declarations
v 4% Model (root)
7 Global Definitions
il Thermal Actuator (comp1) {comp1}

w

<

v = Definitions
v L~ View 1 {viewl}
& Transparency (transparency)
s Transparency (transparencylevel)

E Use as Source = Edit Node
Selected source:

a.5 View 1 {view1}=Transparency (transparencylevel)

Initial value: From data source =

In this case you need to create a method for updating the view that is called to
handle an event from the slider or form object. In the example above, the slider
uses a Local method defined in the Events section. This method contains one line
of code that updates the view:

useView(getView("/formi/graphics1"), "/formi/graphicsi1");

Note that different transparency levels are not supported when accessing an
application from a browser using COMSOL Server.

156 |

Note that you can also set a view from the command sequence of, for example, a

button: select a view subnode under the Views node in the editor tree and click the
Plot button under the tree.

~ Choose Commands to Run

Forms

[nliul

Local Forms
B GUl Commands
M Libraries
& Model (root)
3 Global Definitions
~ |l Thermal Actuator (comp1) {comp1}
~ Definitions

¢ v v v v

[View 1 {view1}
[+ View 6 {viewf}
i Directional Light 1 {lgt1}
Wl Directional Light 2 {Igt2}
Wl Directional Light 3 {Igt3}
¥ «[a View 7 {viewT}
» YA Geometry 1{geom1}

> g Selections
>
v

Edit Node Run [a] Plot Set Value Show
Show as Dialog Import File Enable Disable

L
Command lcon | Arguments

Use View & {view8} 8 | graphics/graphics1

oE -

To go to one of the standard views in the main Graphics window, for example in
an add-in, you can use:

goToView("xy");
In an application you can similarly use one of:

goToView("xz", "formi/graphicsi");

goToView("yz", app.form("formi1").formObject("graphics1"));
to go to the graphics object graphics1 in the form formi.

This line of code sets the URL source of the form object webpage1 to the
COMSOL web page:

setWebPageSource("/formi/webpagel", "www.comsol.com");

This line of code forms a string containing the screen width and height:

screenSize = toString(getScreenWidth()) + "-by-" +
toString(getScreenHeight());

You can present the string with an input field or a data display object using this
string as a source (the string screenSize needs to be declared first).

| 157

GUIl Command Methods

The GUI command methods correspond to the GUI Commands node in the editor
tree. The editor tree is displayed in, for example, the Choose Commands to Run
section in the Settings window for a button object in the Application Builder.

NAME SYNTAX DESCRIPTION
clearAllMeshes clearAllMeshes() Clears all meshes.
clearAllSolutions clearAllSolutions() Clears all solutions.
clearSelection clearSelection(String graphics)

environmentReflections

exit

fileOpen

fileSaveAs

printGraphics

rotateEnvironment

saveApplication

saveApplicationAs

clearSelection(FormObject graphics)

environmentReflections(String
graphicsName)
environmentReflections(FormObject
graphics)

exit()

fileOpen(String name)

boolean fileSaveAs(String file)

printGraphics(String graphicsName)
printGraphics(FormObject graphics)

rotateEnvironment (String
graphicsName)
rotateEnvironment (FormObject
graphics)

saveApplication(boolean confirm)

boolean saveApplication()

Clears the selection in the given
graphics object.

Adds environment reflections to
the given graphics object. This
method is run as a toggle action.

Exits the application.

Opens a file with the associated
program on the client.

Downloads a file to the client.
See also the section “Example
code”. The method returns a
boolean that indicates if the
operation was successful or not.

Prints the given graphics object.

Rotates the environment, that is
used for realistic reflections, to
the given graphics object. This
method is run as a toggle action.

Saves the application. The
boolean argument determines if
the user is prompted with a
confirmation dialog before saving.

Saves the application under a
different name. If the return value
is false then the user canceled the
operation and the application
was not saved.

158 |

NAME

SYNTAX

DESCRIPTION

saveApplicationCopyAs

saveApplicationOnServe
r

saveApplicationOnServe
rAs

scenelight

selectAll

skybox

transparency

zoomExtents

boolean saveApplicationCopyAs()

saveApplicationOnServer(boolean
confirm)

boolean saveApplicationOnServerAs()

sceneLight (String graphicsName)
sceneLight (FormObject graphics)

selectAll(String graphics)
selectAll(FormObject graphics)

skybox (String graphicsName)
skybox (FormObject graphics)

transparency(String graphicsName)
transparency (FormObject graphics)

zoomExtents(String graphicsName)
zoomExtents (FormObject graphics)

Saves a copy of the application.
When running the method the
user is presented with a file
browser dialog where they can
select where to save the copy.
The method returns a boolean
value where true indicates a
successful save.

Saves the application on server.
The boolean argument
determines if the user is
prompted with a confirmation
dialog before saving.

Saves the application on server
under a different name. (Or as an
MPH file.) If the return value is
false then the user canceled the
operation and the application
was not saved.

Toggles scene light in the given
graphics object.

Sets the selection to all entities in
the given graphics object.

Adds visualization of the skybox,
used for realistic reflections, to
the given graphics object. This
method is run as a toggle action.
Toggles transparency in the given
graphics object.

Makes the entire model visible
within the extent of the given
graphics object.

ExAMPLE CODE

For examples of how to use fileSaveAs, see the book Introduction to the
Application Builder. This method is frequently needed for saving files in general.

You can create an application that saves and exits automatically by running the
following lines of code, for example, after solving;:
saveModel (model, "C:\\COMSOL\\file.mph");

exit();

| 159

or

saveModel (model, "common:///file.mph");
exit();

This is useful in a COMSOL Server setting since using exit () in this way will free
up any licenses that are checked out.

Debug Methods

The debug method is used to display variable contents in the Debug Log window.

NAME SYNTAX DESCRIPTION
clearDebuglog clearDebuglog() Clears the Debug Log window.
debuglLog debugLog(arg) Prints the value of arg to the

Debug Log window. The input
argument arg can be a scalar, 1D
array, or 2D array of the types
string, double, int, or Boolean.

ExaMPLE CODE

The code below prints strings and doubles to the Debug Log window.

xcoords[i] = Math.cos(2.0*Math.PI*divid);
ycoords[i] = Math.sin(2.0*Math.PI*divid);
debugLog("These are component values for case 1:");
debugLog("x:");

debuglLog(xcoords[i]);

debugLog("y:");

debuglLog(ycoords[i]);

Note: As an alternative to debuglLog, you can use the message method to send
display strings to the Message window in COMSOL Desktop or to a Message Log
object in an app.

Methods for External C Libraries

The methods for external C libraries are used for linking Application Builder
methods with compiled C-code.

160 |

EXTERNAL METHOD

NAME SYNTAX

DESCRIPTION

external

External external(String name)

Returns an interface to an

external C (native) library given
by the name of the library
feature. The External class uses
the Java Native Interface (JNI)
framework.

For more information, see the Application Builder Reference Manual.

METHODS RETURNED BY THE EXTERNAL METHOD

The external method returns an object of type External with the following

methods:
NAME SYNTAX DESCRIPTION
invoke long invoke(String method, Object... Invokes the named native
arguments) method in the library with the
supplied arguments. Strings are
converted to char *. Retumns the
value returned by the method.
invokeWideString long invokeWideString(String method, Invokes the named native
Object... arguments) method in the library with the
supplied arguments. Strings are
converted to wchar_t *. Returns
the value returned by the
method.
close void close() Releases the library and frees

resources. If you do not call this
method, it is automatically
invoked when the external library
is no longer needed.

| 161

Progress Methods

Progress methods are used to create and update progress information in the Status

bar, in a progress form object, and in a dialog.

NAME SYNTAX

DESCRIPTION

setProgressInterval setProgressInterval (String message,
int intervalStart, int intervalEnd)

setProgress setProgress(int value, String message)

setProgress setProgress(int value)

Sets a progress interval to use
for the top-level progress and
display message at that level.
The top level will go from
intervalStart to
intervalEnd as the second
level goes from 0 to 100. As
the second level increases, the
top level is increased by
(intervalEnd -
intervalStart) * (second
level progress (0-100) /
100).

The value for intervalStart
must be between 0 and
intervalEnd, and the value for
intervalEnd must be between
intervalStart and 100.

Calling this method implicitly
resets any manual progress
previously set by calls to
setProgress().

Sets a value for the user-
controlled progress level. By
default, this is the top level, but
if a progress interval is active
(setProgressInterval has
been called and
resetProgress has not been
called after that), then it is the
second level.

Same as
setProgress(message,
value), but uses the latest
message or an empty string (if
no message has been set).

162 |

NAME

SYNTAX

DESCRIPTION

resetProgress

showIndeterminateProgr
ess

showIndeterminateProgr
ess

showProgress

showProgress

showProgress

showProgress

closeProgress

resetProgress()

showIndeterminateProgress(String
message)

showIndeterminateProgress(String
message, boolean cancelButton)

showProgress ()

showProgress(boolean modelProgress)

showProgress(boolean modelProgress,
boolean addSecondLevel)

showProgress(boolean modelProgress,
boolean addSecondLevel, boolean
cancelButton)

closeProgress()

Removes all progress levels
and resets progress to 0 and
the message to an empty
string.

Shows a progress dialog with
an indeterminate progress bar,
given message and a cancel
button.

Shows a progress dialog with
an indeterminate progress bar,
given message and an optional
cancel button.

Shows a progress dialog with a
cancel button. No model
progress is included.

Shows a progress dialog with a
cancel button and an optional
model progress.

Shows a progress dialog with a
cancel button, optional model
progress, and one or two levels
of progress information. Two
levels can only be used if
modelProgress is true.

Shows a progress dialog with
optional model progress, one
or two levels, and possibly a
cancel button. Two levels can
only be used if modelProgress
is true.

Closes the currently shown
progress dialog.

| 163

NAME SYNTAX

DESCRIPTION

startProgress startProgress(String name)
startProgress(FormObject progressBar)

setProgressBar setProgressBar(String name, int
workDone, String message)
setProgressBar (FormObject progressBar,
int workDone, String message)

setProgressBar setProgressBar(String name, int
workDone)
setProgressBar(FormObject progressBar,
int workDone)

Resets the value of the given
progress bar form object name
to 0. The progress bar to
control can be specified with
an absolute path, such as
formi/progressbari, ora
name relative to the context
from which the method was
called.

Nothing is done if no progress
bar corresponding to the given
name is found.

Sets the value of the given
progress bar form object name
in the range 0-100 and the
associated progress message.
Values out of range are
converted to 0 or 100. The
progress bar to control can be
specified with an absolute path,
such as form1/progressbari,
or a name relative to the
context from which the
method was called.

Nothing is done if no progress
bar corresponding to the given
name is found, or if the
progress bar is used for
showing model progress.

Same as above, but does not
update the progress message.

ExaMPLE CODE

showProgress(true, true, true);

/* Opens a progress dialog with cancel button showing two levels of progress.
The values shown in progress dialog will be updated to match the two levels

of progress. */

setProgressInterval("Preparing application", 0, 20);

/* Sets the current progress scale to go from 0 to 20. This means that the
top-level progress will go from O to 20 when second-level progress goes from

0 to 100. */

164 |

setProgress(0, "Init step 1");
/* Sets the second-level progress to 0 and the second-level progress message
to "Init step 1". */

// do some work

setProgress(40);
/* Sets the second-level progress to 40, this causes the top-level progress
to be updated to 8 (40% of 20). */

// do some work

setProgress(80, "Init step 2");

/* Sets the second-level progress to 80 and the progress message to "Init
step 2". The top-level message is still "Preparing application" and top-
level progress is now 16. */

// do some work

setProgressInterval("Meshing", 20, 40);

/* Sets the top-level interval to 20 - 40 and the progress message to
"Meshing" at this point the value shown at the top-level will be 20. The
second-level progress is cleared when the top-level interval is changed. */

<call-meshing algorithm here>

/* The progress messages and values from the meshing algorithm are shown at
the second-level progress. The top-level progress message will be "Meshing",
but the top-level progress advances from 20 to 40 while second-level
progress advances from 0 to 100. */

setProgressInterval("Solving", 40, 100);
/* The top-level progress message is changed to "Solving" and its value to
40.

<call-solver>

/* Similar to meshing, the progress messages and values from the solver are
shown in the second-level progress bar and the top-level progress value goes
from 40 to 100 while the solver progress goes from 0 to 100. */

closeProgress();

Application Progress Information

Progress information can be displayed in three different ways: in the Status bar, in
a progress form object, and in a dialog. Application progress information is
controlled by the setProgress methods, which take as their input an integer
between 0 and 100 and an optional message. The integer represents how far the
displayed progress bar has progressed. If no message is supplied, the last message
provided is used. For example

setProgress(10, "Computing data");
setProgress(25);

| 165

This will keep Computing data as the progress message.

Use the setProgress method by itself if you want to display custom progress in
the task and status bar. Once you have done this, that progress bar will no longer
be updated by progress information from the COMSOL model, but will be
completely dependent on further calls to setProgress for changes in its value.
Precede it with a call to showProgress to also display the built-in progress dialog,
see below.

Note that progress information from the COMSOL model will not be shown in
between calls to setProgress. Progress is reset between method calls. If you want
to combine custom steps of progress in methods with built-in model progress,
then use setProgressinterval instead.

With setProgressInterval, you can control the top two levels of progress
information. The second level can be displayed in a progress dialog and a progress
bar form object, see the code segment below. The second progress level,
controlled by your own custom progress calculation, is connected to the first level
such that one interval at the top level corresponds to the entire second level. Thus
if the interval is 0-50, when the second level progress reaches 40, for example, the
first level will be set to 20 (=(40,/100)*50).

Important uses of the method setProgressInterval are listed below:

* Combining calls to the COMSOL model so that you get continuous
progress going from 0-100.

» Computing several studies as well as evaluating several plots. Call
setProgressInterval before each call to the built-in methods with an
interval that approximates how much time each model computation takes.
For example:
setProgressInterval("Computing solution", 0, 80);
model.study("std1").run();

setProgressInterval("Plotting", 80, 100);
useGraphics(model.result("pg3"), "energy_response_plot/graphicsi1");

* Combining one or more calls to built-in COMSOL methods with custom
methods that in themselves take significant time. In this case, use
setProgressInterval as in the previous example, followed by your own
custom code with appropriate calls to setProgress. These calls should run
from 0 to 100 as they are controlling the second progress level. For example:
setProgressInterval("Computing solution", 0, 60);
model.study("std1").run();
setProgressInterval("Working", 60, 80);
setProgress(0, "Specific message about what I'm doing");

/...
// Code that does something

/...
setProgress(60);

166 |

If you, in a running application, wish to no longer use progress intervals, call
resetProgress to return to the original state. This will also reset progress to 0.

The Progress Dialog

A progress dialog can be used to display application progress as described in the
previous section. The progress dialog has the following options:

+ Whether to show model progress or not. When off, no progress from the
model part of the application is forwarded to the progress dialog.

* Whether to show one or two progress levels in the progress dialog.

e Whether to include a cancel button. Cancel also works for user-defined
methods, as it halts execution when the next line in the method is reached.

Use the showProgress methods to enable or disable these options. To close the
progress dialog, use the closeProgress method.

You can show a progress dialog with an indeterminate progress bar that keeps
spinning until you close the progress dialog. Only one progress dialog can be
shown at a time. Use the showIndeterminateProgress methods to display this
progress dialog.

The Progress Bar Form Object

The Progress Bar form object can either show overall application progress
information or customized partial progress information. If you have selected the
Include model progress checkbox in the Settings window of the Main Window node,
then the overall application progress information becomes available.

When Include model progress is selected, the progress bar will show the same
information as the progress dialog. That is, one or two levels of progress
information and a cancel button, depending on the settings in the form object.
When Include model progress is cleared, you control the progress bar through the
setProgressBar methods. These take the path name of the progress bar form
object, for example, main/progressbari.

| 167

Date and Time Methods

The date and time methods are used to retrieve the current date and time as well
as information on computation times.

NAME

SYNTAX

DESCRIPTION

currentDate

currentTime

formattedDateTime

formattedTime

sleep

timeStamp

String currentDate()

String currentTime()

String dateString =
formattedDateTime (long epochInMs)

String formattedTime(long timeInMs,
String format)

sleep(long timeInMs)

long timeStamp()

Returns the current date as a
string (formatted according
to the server's defaults) for
the current date.

Returns the current time as a
string (not including date, and
formatted according to the
server defaults).

Returns a formatted and
readable date and time from
an input given as milliseconds
since the epoch.

Returns a formatted time
using the given format. The
format can either be a time
unit or a text describing a
longer format. Supported
formats are:

"hr:min:sec', which retumns
the time in hours, minutes,
and seconds in the form X hr
Y min Z sec.

"h:min:s', which returns the
time in hours, minutes, and
seconds in the form X h'Y
min Z s.

'detailed’, which returns
the time in seconds and also
includes more readable units
for longer times.

Sleep for the specified
number of milliseconds.

Current time in milliseconds
since midnight, January 1,
1970 UTC.

168 |

NAME

SYNTAX

DESCRIPTION

getExpectedComputa
tionTime

setLastComputation
Time

getLastComputation
Time

model.setExpectedComputationTime (String
format)

model.setlLastComputationTime(long time)

String model.getLastComputationTime
(String format)

Returns a string describing
the approximate
computation time of the
application. The string can be
altered by the method
setExpectedComputationTi
me.

Set the last computation
time, overwriting the
automatically generated time.
You can use the timeStamp
method to record time
differences and set the
measured time in ms (a long
integer).

Returns the last computation
time in the given format. The
format can either be a time
unit or text describing a
longer format. Currently
supported formats are:
hr:min:sec Retumns the time
in hours, minutes, and
seconds in the format X h Y
min Z sec.

h:min:s Retumns the time in
hours, minutes, and seconds
in the format X h Y min Zs.

detailed Returns the time in
seconds and also includes
more readable units for
longer times. This format is
localized and the output is
translated to the current
language setting.

For example, you can
retrieve the time in ms by
using
getLastComputationTime ("m
s").

| 169

ExAaMPLE CODE
The following code overrides the built-in computation time that is available in the
information nodes in the model tree.

long t0 = timeStamp(); // initialize record of computation time

// code and computations

model.setLastComputationTime (timeStamp()-t0); // record computation time

If it is possible to give a rough estimate of the computation time based on the
given inputs of an application, you can update the expected computation time and
display it in an information card stack or a text object. Assume that there is an
integer input called objects that controls the number of objects in a geometry
array and that the computation roughly increases linearly with this number. The
following code adjusts the expected computation time accordingly.

// Number of minutes of computation time per object

int minutes = objects*2.1;

model.setExpectedComputationTime("About " + minutes + " minutes");
Sleep
The code below makes the application idle for 1000 ms.

long delay = 1000;
sleep(delay);

This technique can be used to display graphics in a sequence.

For more information on information nodes and information cards, as well as the
sleep method, see the book Introduction to the Application Builder.

170 |

Conversion Methods

Conversion methods are used to convert between the different data types
Booleans, integers, doubles, strings, and arrays. These methods are shorthand
versions of conversion methods in the standard Java libraries.

NAME SYNTAX DESCRIPTION

toBoolean boolean toBoolean(String str) Converts the given string to a
Boolean. (' true' returns true, all
other strings return false).

toBoolean boolean [] toBoolean(String[]... strs) Converts all the S‘trings in the
given array to Booleans ('true’
returns true, all other strings
retumn false) and retums a
Boolean array.

toBoolean boolean [][] toBoolean(String[][]... strs) Converts all the S‘trings in the
given matrix to Booleans (' true'
returns true, all other strings
retumn false) and retums a
Boolean matrix.

toDouble double toDouble(String str) Converts the given string to a
double.
toDouble double[] toDouble(String... strs) Converts all the strings in the

given array to doubles and
retums a double array.

toDouble double[][] toDouble(String[]... strs) Converts all the S‘trings in the
given matrix to doubles and
returns a double matrix.

toDouble double toDouble(float flt) Converts the given float to a
double.
toDouble double[] toDouble(float... flt) Converts all the floats in the

given array to doubles and
returns a double array.
toDouble double[][] toDouble(float[]... flt) Converts all the floats in the
given matrix to doubles and
returns a double matrix.

tolnt int tolnt(String str) Converts the given string to an
integer.
toInt int[] toInt(String... strs) Converts all the strings in the

given array to integers and
returns an integer array.

| 171

NAME

SYNTAX

DESCRIPTION

tolnt

toString

toString

toString

toString

toString

toString

toString

toString

toString

toString

int[]1[] toInt(String[]... strs)

String toString(int value)

String toString(double value)

String toString(boolean value)

String toString(double value, int digits)

String toString(double value, int
digits,boolean remove)

String toString(double value, String format)

String[] toString(double[] darray)

String[][] toString(double[][] dmatrix)

String[] toString(int[] iarray)

String[][] toString(int[][] imatrix)

Converts all the strings in the
given matrix to integers and
returns an integer matrix.

Converts the given integer to a
string.

Converts the given double to a
string.

Converts the given Boolean to a
string.

Converts the given double to a
string with the given number of
significant digits.

Converts the given double to a
string with the given number of
significant digits with trailing zeros
removed if the Boolean remove is
true. For example, 10.0000001
with number of digits set to 3 will
retum 10 rather than 10.000.

Converts the given double to a
string using the given format
specifier, which is the same as
java.util.Formatter. See the
corresponding Java format string
documentation for more
information.

Converts all the doubles in the
given array to strings and returns
a string array.

Converts all the doubles in the
given matrix to strings and
retums a string matrix.

Converts all the integers in the
given array to strings and returns
a string array.

Converts all the integers in the
given matrix to strings and
returns a string matrix.

172 |

NAME

SYNTAX

DESCRIPTION

toString

toString

String[] toString(boolean[] barray)

String[][] toString(boolean[][] bmatrix)

Converts all the Booleans in the
given array to strings and returns
a string array.

Converts all the Booleans in the
given matrix to strings and
returmns a string matrix.

Array Methods

Array methods are used to add, remove, insert, and extract subsets of 1D and 2D

arrays.

NAME

SYNTAX

DESCRIPTION

getColumn

getColumn

getColumn

getColumn

getSubMatrix

getSubMatrix

String[] getColumn(String[][] matrix, int
column)

double[] getColumn(double[][] matrix, int
column)

int[] getColumn(int[][] matrix, int column)

boolean[] getColumn(boolean[][] matrix, int
column)

String[][] getSubMatrix(String[][] matrix,
int startCol, int endCol, int startRow, int
endRow)

double[][] getSubMatrix(double[][] matrix,
int startCol,int endCol, int startRow, int
endRow)

Retumns a String[] fora
specified column in the matrix.
Useful when values have been
read from a file and only certain
columns should be shown in a
table.

Returns a double[] for a
specified column in the matrix.

Returns an int[] for a specified
column in the matrix.

Returns a boolean[] for a
specified column in the matrix.

Retumns a rectangular submatrix
of the input matrix spanning
columns from startCol to
endCol, and rows from startRow
to endRow.

Returns a rectangular submatrix
of the input matrix spanning
columns from startCol to
endCol, and rows from startRow
to endRow.

| 173

NAME SYNTAX DESCRIPTION
getSubMatrix int[][] getSubMatrix(int[][] matrix, int Returns a rectangular submatrix
startCol, int endCol, int startRow, int fthe | t matr :
endRow) of the input matrix spanning
columns from startCol to
endCol, and rows from startRow
to endRow.
getSubMatrix boolean[][] getSubMatrix(boolean[][] matrix, Retumns a redangu\ar submatrix
int startCol, int endCol, int startRow, int - : :
endRow) ’ ’ ’ of the input matrix spanning
columns from startCol to
endCol, and rows from startRow
to endRow.
insert String[] insert(String[] array, String value, Inserts an element at position
int index) index in an array and returns the
expanded array.
insert double[] insert(double[] array, double value, [nserts an element at position
int index) index in an array and returns the
expanded array.
insert int[] insert(int[] array, int value, int Inserts an element at position
index) index in an array and returns the
expanded array.
insert boolean[] insert(boolean[] array, boolean Inserts an element at position
value, int index) index in an array and returns the
expanded array.
insert String[] insert(String[] array, String[] Inserts elements in an array at
value, int[] index) positions given by the index array
and returns the expanded array.
insert double[] insert(double[] array, double[] Inserts elements in an array at
value, int[] index) positions given by the index array
and returns the expanded array.
insert int[] insert(int[] array, int[] value, int[] Inserts elements in an array at
index) positions given by the index array
and returns the expanded array.
insert boolean[] insert(boolean[] array, boolean[] Inserts elements in an array at
value, int[] index) . . .
positions given by the index array
and returmns the expanded array.
append String[] append(String[] array, String value) Addsan elementto the end of an
array and returns the expanded
array.
append double[] append(double[] array, double value) Addsan elementto the endofan

array and returns the expanded
array.

174 |

NAME

SYNTAX

DESCRIPTION

append

append

append

append

append

append

remove

remove

remove

remove

remove

remove

remove

remove

int[] append(int[] array, int value)

boolean[] append(boolean[] array, boolean
value)

String[] append(String[] array, String[]
value)

double[] append(double[] array, double[]
value)

int[] append(int[] array, int[] value)

boolean[] append(boolean[] array, boolean[]
value)

String[] remove(String[] array, int index)

double[] remove(double[] array, int index)

int[] remove(int[] array, int index)

boolean[] remove(boolean[] array, int index)

String[] remove(String[] array, int[] index)

double[] remove(double[] array, int[] index)

int[] remove(int[] array, int[] index)

boolean[] remove(boolean[] array, int[]
index)

Adds an element to the end of an
array and returns the expanded
array.

Adds an element to the end of an
array and returns the expanded
array.

Adds elements to the end of an
array and returns the expanded
array.

Adds elements to the end of an
array and returns the expanded
array.

Adds elements to the end of an
array and returns the expanded
array.

Adds elements to the end of an
array and returns the expanded
array.

Removes an element from an
array and returns the shortened
array.

Removes an element from an
array and retumns the shortened
array.

Removes an element from an
array and retumns the shortened
array.

Removes an element from an
array and returns the shortened
array.

Removes elements from an array
and returns the shortened array.

Removes elements from an array
and returns the shortened array.

Removes elements from an array
and returns the shortened array.

Removes elements from an array
and returns the shortened array.

| 175

NAME

SYNTAX

DESCRIPTION

insertRow

insertRow

insertRow

insertRow

insertRow

insertRow

insertRow

insertRow

replaceRow

replaceRow

replaceRow

replaceRow

replaceRow

replaceRow

replaceRow

String[][] insertRow(String[][] matrix,
String[] value, int rowIndex)

double[][] insertRow(double[][] matrix,
double[] value, int rowIndex)

int[][] insertRow(int[][] matrix, int[]
value, int rowIndex)

boolean[][] insertRow(boolean[][] matrix,
boolean[] value, int rowIndex)

String[][] insertRow(String[][] matrix,
String[]1[] value, int[] rowIndex)

double[][] insertRow(double[][] matrix,
double[][] value, int[] rowIndex)

int[][] insertRow(int[][] matrix, int[][]
value, int[] rowIndex)

boolean[][] insertRow(boolean[][] matrix,
boolean[][] value, int[] rowIndex)

String[][] replaceRow(String[][] matrix,
String[] value, int rowIndex)

double[][] replaceRow(double[][] matrix,
double[] value, int rowIndex)

int[][] replaceRow(int[][] matrix, int[]
value, int rowIndex)

boolean[][] replaceRow(boolean[][] matrix,
boolean[] value, int rowIndex)

String[][] replaceRow(String[][] matrix,
String[][] value, int[] rowIndex)

double[][] replaceRow(double[][] matrix,
double[][] value, int[] rowIndex)

int[][] replaceRow(int[][] matrix, int[][]
value, int[] rowIndex)

Inserts a row into a rectangular
2D array and returns the
expanded array.

Inserts a row into a rectangular
2D array and returns the
expanded array.

Inserts a row into a rectangular
2D array and returns the
expanded array.

Inserts a row into a rectangular
2D array and retumns the
expanded array.

Adds rows to a rectangular 2D
array and returns the expanded
array.

Adds rows to a rectangular 2D
array and returns the expanded
array.

Adds rows to a rectangular 2D
array and returns the expanded
array.

Adds rows to a rectangular 2D
array and returns the expanded
array.

Replaces a row in a rectangular
2D array and retums the array.

Replaces a row in a rectangular
2D array and returns the array.

Replaces a row in a rectangular
2D array and retumns the array.

Replaces a row in a rectangular
2D array and retums the array.

Replaces rows in a rectangular
2D array and returns the array.

Replaces rows in a rectangular
2D array and retums the array.

Replaces rows in a rectangular
2D array and retums the array.

176 |

NAME

SYNTAX

DESCRIPTION

replaceRow

appendRow

appendRow

appendRow

appendRow

appendRow

appendRow

appendRow

appendRow

removeRow

removeRow

removeRow

removeRow

removeRow

removeRow

boolean[][] replaceRow(boolean[][] matrix,
boolean[][] value, int[] rowIndex)

String[][] appendRow(String[][] matrix,
String[] value)

double[][] appendRow(double[][] matrix,
double[] value)

int[][] appendRow(int[]1[] matrix, int[]
value)

boolean[][] appendRow(boolean[][] matrix,
boolean[] value)

String[]1[] appendRow(String[][] matrix,
String[][] value)

double[][] appendRow(double[][] matrix,
double[][] value)

int[][] appendRow(int[][] matrix, int[][]
value)

boolean[][] appendRow(boolean[][] matrix,
boolean[][] value)

String[][] removeRow(String[][] matrix, int
rowIndex)

double[][] removeRow(double[][] matrix, int
rowIndex)

int[][] removeRow(int[][] matrix, int
rowIndex)

boolean[][] removeRow(boolean[][] matrix, int
rowIndex)

String[][] removeRow(String[][] matrix, int[]
rowIndex)

double[][] removeRow(double[][] matrix, int[]
rowIndex)

Replaces rows in a rectangular
2D array and retums the array.

Adds a row to the end of a
rectangular 2D array and retums
the expanded array.

Adds a row to the end of a
rectangular 2D array and retums
the expanded array.

Adds a row to the end of a
rectangular 2D array and returns
the expanded array.

Adds a row to the end of a
rectangular 2D array and returns
the expanded array.

Adds rows to the end of a
rectangular 2D array and retumns
the expanded array.

Adds rows to the end of a
rectangular 2D array and retums
the expanded array.

Adds rows to the end of a
rectangular 2D array and returmns
the expanded array.

Adds rows to the end of a
rectangular 2D array and retums
the expanded array.

Removes a row from a 2D array
and returns the smaller array.

Removes a row from a 2D array
and returns the smaller array.

Removes a row from a 2D array
and returns the smaller array.

Removes a row from a 2D array
and returns the smaller array.

Removes rows from a 2D array
and returns the reduced array.

Removes rows from a 2D array
and returns the reduced array.

| 177

NAME SYNTAX DESCRIPTION
removeRow int[][] removeRow(int[][] matrix, int[] Removes rows from a 2D array
rowIndex) and returns the reduced array.
removeRow boolean[][] removeRow(boolean[][] matrix, Removes rows from a 2D array
int[] rowIndex) and returns the reduced array.
insertColumn String[][] insertColumn(String[][] matrix, Adds a column into a rectangular
String[] value, int columnIndex) D array and returns the
expanded array.
insertColumn double[][] insertColumn(double[][] matrix, Adds a column into a rectangular
double[] value, int columnIndex) D array and returns the
expanded array.
insertColumn int[][] insertColumn(int[][] matrix, int[] Adds a column into a rectangular
value, int columnIndex) 2D array and returns the
expanded array.
insertColumn boolean[][] insertColumn(boolean[][] matrix, Adds a column into a rectangular
boolean[] value, int columnIndex) D array and returns the
expanded array.
insertColumn String[][] insertColumn(String[][] matrix, Adds columns to a rectangular
String[][] value, int[] columnIndex) D array and returns the
expanded array.
insertColumn double[][] insertColumn(double[][] matrix, Adds columns to a rectangular
double[][] value, int[] columnIndex) 2D array and retumns the
expanded array.
insertColumn int[][] insertColumn(int[][] matrix, int[][] Adds columns to a rectangular
value, int[] columnIndex) 2D array and retums the
expanded array.
insertColumn boolean[][] insertColumn(boolean[][] matrix, Adds columns to a rectangular
boolean[][] value, int[] columnIndex) 2D array and returmns the
expanded array.
replaceColumn String[][] replaceColumn(String[][] matrix, Replaces acolumnina
String[] value, int columnIndex) rectangular 2D array and returmns
the array.
replaceColumn double[][] replaceColumn(double[][] matrix, Replaces a columnin a
double[] value, int columnIndex) rectangular 2D array and retums
the array.
replaceColumn int[][] replaceColumn(int[][] matrix, int[] Replaces a columnin a

value, int columnIndex)

rectangular 2D array and retumns
the array.

178 |

NAME

SYNTAX

DESCRIPTION

replaceColumn

replaceColumn

replaceColumn

replaceColumn

replaceColumn

appendColumn

appendColumn

appendColumn

appendColumn

appendColumn

appendColumn

appendColumn

appendColumn

removeColumn

boolean[][] replaceColumn(boolean[][] matrix,
boolean[] value, int columnIndex)

String[]1[] replaceColumn(String[][] matrix,
String[][] value, int[] columnIndex)

double[][] replaceColumn(double[][] matrix,
double[][] value, int[] columnIndex)

int[][] replaceColumn(int[][] matrix, int[][]
value, int[] columnIndex)

boolean[][] replaceColumn(boolean[][] matrix,
boolean[][] value, int[] columnIndex)

String[][] appendColumn(String[][] matrix,
String[] value)

double[][] appendColumn(double[][] matrix,
double[] value)

int[][] appendColumn(int[][] matrix, int[]
value)

boolean[][] appendColumn(boolean[][] matrix,
boolean[] value)

String[][] appendColumn(String[][] matrix,
String[][] value)

double[][] appendColumn(double[][] matrix,
double[][] value)

int[][] appendColumn(int[][] matrix, int[][]
value)

boolean[][] appendColumn(boolean[][] matrix,
boolean[][] value)

String[][] removeColumn(String[][] matrix,
int columnIndex)

Replaces a column in a
rectangular 2D array and returmns
the array.

Replaces columns in a rectangular
2D array and retums the array.

Replaces columns in a rectangular
2D array and retums the array.

Replaces columns in a rectangular
2D array and returns the array.

Replaces columns in a rectangular
2D array and retums the array.

Adds a column at the end of a
rectangular 2D array and returmns
the expanded array.

Adds a column at the end of a
rectangular 2D array and returns
the expanded array.

Adds a column at the end of a
rectangular 2D array and returns
the expanded array.

Adds a column at the end of a
rectangular 2D array and returmns
the expanded array.

Adds columns to the end of a
rectangular 2D array and retums
the expanded array.

Adds columns to the end of a
rectangular 2D array and retumns
the expanded array.

Adds columns to the end of a
rectangular 2D array and returmns
the expanded array.

Adds columns to the end of a
rectangular 2D array and returns
the expanded array.

Removes a column from a
rectangular 2D array and returmns
the smaller array.

| 179

NAME

SYNTAX

DESCRIPTION

removeColumn

removeColumn

removeColumn

removeColumn

removeColumn

removeColumn

removeColumn

matrixSize

matrixSize

matrixSize

matrixSize

transpose

transpose

double[][] removeColumn(double[][] matrix,
int columnIndex)

int[][] removeColumn(int[][] matrix, int
columnIndex)

boolean[][] removeColumn(boolean[][] matrix,
int columnIndex)

String[][] removeColumn(String[][] matrix,
int[] columnIndex)

double[][] removeColumn(double[][] matrix,
int[] columnIndex)

int[][] removeColumn(int[][] matrix, int[]
columnIndex)

boolean[][] removeColumn(boolean[][] matrix,

int[] columnIndex)

int[] matrixSize(String[][] matrix)

int[] matrixSize(double[][] matrix)

int[] matrixSize(int[][] matrix)

int[] matrixSize(boolean[][] matrix)

String[][] transpose(String[][] matrix)

double[][] transpose(double[][] matrix)

Removes a column from a
rectangular 2D array and returmns
the smaller array.

Removes a column from a
rectangular 2D array and retums
the smaller array.

Removes a column from a
rectangular 2D array and retums
the smaller array.

Removes columns from a
rectangular 2D array and returmns
the reduced array.

Removes columns from a
rectangular 2D array and returns
the reduced array.

Removes columns from a
rectangular 2D array and returns
the reduced array.

Removes columns from a
rectangular 2D array and returmns
the reduced array.

Retums the number of rows and
columns of a matrix as an integer
array of length 2.

Returns the number of rows and
columns of a matrix as an integer
array of length 2.

Returns the number of rows and
columns of a matrix as an integer
array of length 2.

Returns the number of rows and
columns of a matrix as an integer
array of length 2.

Returns the transpose of a
matrix.

Returns the transpose of a
matrix.

180 |

NAME SYNTAX DESCRIPTION

transpose int[][] transpose(int[][] matrix) Returns the transpose of a
matrix.

transpose boolean[][] transpose(boolean[][] matrix) Returns the transpose ofa

matrix.

String Methods

String methods are used to process string variables and string arrays.

NAME SYNTAX DESCRIPTION
concat String concat(String separator, String ... Concatenates the gi\/en varargs-
strs) array of strings into a single string
using the given separator.
concat String[] concat(String colSepar, String Concatenates the gi\/en Str‘ing
rowSepar, String[]... matr) matrix (which can be given as a
varargs of rows) into a single
string. Puts colSepar between
values of columns of a row, and
rowSepar between rows.
contains boolean contains(String[] strs, String str) Returns true if the given string
array strs contains the given
string str.
find int[] find(String[] strs, String str) Returns an array with the indices
to all occurrences of str in strs.
findIn int findIn(String[] strs, String str) Returns the index to the first
occurrence of strin strs or -1 if
no match.
findIn int findIn(String str, String toFind) Returns the first index of str that
is the start of the substring
toFind. If there is no substring
matching toFind in str, -1 is
returned.
length int length(String str) Returns the length of the string
str.
replace String replace(String str, String orig, Returns a string where orig has
String replacement) been replaced by replacement.
split String[] split(String str) Returns an array of strings by

splitting the given string at spaces.

| 18]

NAME SYNTAX DESCRIPTION

split String[] split(String str, String separator) Returns an array of strings by
splitting the given string at the
given separator.

substring String substring(String str, int start, int Returns a substring with the given

length) length starting at the given

position.

unique String[] unique(String[] strs) Returns an array of strings with

the unique values in the given
array of strings.

Collection Methods

Collection methods are used to copy, compare, sort, and merge variables and

arrays.

NAME

SYNTAX

DESCRIPTION

copy

copy

copy

copy

copy

copy

String[] copy(String... toCopy)

String[1[] copy(String[]... toCopy)

double[] copy(double... toCopy)

double[][] copy(double[]... toCopy)

int[] copy(int... toCopy)

int[]1[] copy(int[]... toCopy)

Returns a copy of the given array
of strings, which can also be
specified as a varargs of strings.

Returns a copy of the given string
matrix, which can also be
specified as a varargs of rows
(string arrays).

Returns a copy of the given array
of doubles, which can also be
specified as a varargs of doubles.

Returns a copy of the given
double matrix, which can also be
specified as a varargs of rows
(double arrays).

Returns a copy of the given array
of integers, which can also be
specified as a varargs of integers.

Returns a copy of the given
integer matrix, which can also be
specified as a varargs of rows
(integer arrays).

182 |

NAME

SYNTAX

DESCRIPTION

copy

copy

equals

equals

equals

equals

equals

equals

equals

equals

boolean[] copy(boolean... toCopy)

boolean[][] copy(boolean[]... toCopy)

boolean

boolean

matr2)

boolean

boolean

equals(String[] str1, String[] str2)

equals(String[1[] matri, String[][]

equals(int[] ints1, int[] ints2)

equals(int[][] ints1, int[][] ints2)

boolean equals(double d11, double dl12, double
relErrorTolerance)

boolean

boolean

equals(double d11, double d12)

equals(double[] dbls1, double[]

dbls2, double relErrorTolerance)

boolean
dbls2)

equals(double[] dbls1, double[]

Returns a copy of the given array
of booleans, which can also be
specified as a varargs of booleans.

Returns a copy of the given
boolean matrix, which can also
be specified as a varargs of rows
(boolean arrays).

Returns true if all strings in the
given array are equal and they
have the same number of
elements.

Returns true if all strings in the
given matrix are equal and they
have the same number of
elements.

Returns true if all integers in the
given array are equal and they
have the same number of
elements.

Returns true if all integers in the
given matrix are equal and they
have the same number of
elements.

Compares whether the relative
error of two doubles is within
allowed tolerance using abs((a -
b) /b)), where b is the larger of
the doubles (by absolute value).

Same as above, but uses a default
relErrorTolerance of 0.0001.

Compares the relative errors (~
abs((a-b)/b) of elements in
the arrays pairwise and returns
true if all relative errors are
below relErrorTolerance and
the arrays have the same number
of elements.

Same as above, but uses a default
relErrorTolerance of 0.0001.

| 183

NAME

SYNTAX

DESCRIPTION

equals

equals

sort

sort

sort

sort

sort

sort

merge

boolean equals(double[][] dbls1, double[][]
dbls2, double relErrorTolerance)

boolean equals(double[][] dbls1, double[][]
dbls2)

sort(String[] strs)

sort(int[] ints)

sort(double[] doubles)

sort(String[][] strs)

sort(int[][] ints)

sort(double[][] doubles)

merge(String[]... toMerge)

Compares the relative errors (~
abs((a-b)/b) of elements in
the matrices pairwise and retums
true if all relative errors are
below relErrorTolerance and
the matrices have the same
number of elements.

Same as above, but uses a default
relErrorTolerance of 0.0001.

Sorts the given array of strings.
NOTE: The array is sorted in
place.

Sorts the given array of integers.
NOTE: The array is sorted in
place.

Sorts the given array of doubles.
NOTE: The array is sorted in
place.

Sorts the given 2D array of
strings. The columns are sorted
by their row values from top to
bottom. NOTE: The array is
sorted in place.

Sorts the given 2D array of
integers. The columns are sorted
by their row values from top to
bottom. NOTE: The array is
sorted in place.

Sorts the given 2D array of
doubles. The columns are sorted
by their row values from top to
bottom. NOTE: The array is
sorted in place.

Returns an array of strings with all
strings merged from the given
arrays.

184 |

NAME SYNTAX

DESCRIPTION

merge

merge

merge(int[]...

merge (double[]...

toMerge)

toMerge)

Returns an array of integers with
all integers merged from the two
given arrays.

Returns an array of doubles with
all doubles merged from the two

given arrays.

Model Builder Methods for Use in Add-ins

For writing add-in method code that operates on the current component, current
mesh, current physics, and so on, use the methods in the table below.

NAME

SYNTAX

DESCRIPTION

getCurrentComponent

getCurrentMesh

getCurrentNode

getCurrentPhysics

getCurrentPlotGroup

getCurrentStudy

selectNode

getCurrentComponent ()

getCurrentMesh()

getCurrentNode ()

getCurrentPhysics()

getCurrentPlotGroup()

getCurrentStudy ()

selectNode (ModelEntity entity)

Returns an object of the type
ModelNode for the current
component.

Returns an object of the type
MeshSequence for the current
mesh.

Returns an object of the type
ModelEntity for the current
component.

Returns an object of the type
Physics for the current physics
interface.

Returns an object of the type
ResultFeature for the current
component.

Returns an object of the type
Study for the current
component.

Selects a model tree node and
displays its Settings window after
the execution of a method from
the Model Builder.

These methods return the corresponding entity such that the method code in an
add-in can operate on it. When called from an application a method in this

| 185

category returns null. Also, null is returned if no entity of the corresponding type

exists such that nothing is current.

General utility methods for writing methods for add-ins are listed in the table

below.
NAME SYNTAX DESCRIPTION
createAddinForm FormFeature

createAddinForm(String tag,
String definition)

createAddinMethodCall MethodCallFeature
createAddinMethodCall (String
tag, String definition)

Creates a Settings Form node
with the given tag based on the
Form Definition node with the
given name definition. The
Form Definition must be
configured to show as Settings
form.

Creates a Method Call node with
the given tag based on the
Method Definition node with the
given name definition. The
Method Definition must be
configured to use as Method call.

To learn more about using these methods you can review the Application Builder

settings for one of the built-in add-ins by opening the corresponding MPH file.

In a typical Windows® installation the built-in add-in library is located at
C:\Program Files\COMSOL\COMSOL64\COMSOL_Multiphysics\addins

186 |

Programming Examples

This section contains examples that illustrate solving practical tasks by accessing
and manipulating the model object and using the built-in methods. Note that
additional examples of user-defined methods are provided in the Application
Libraries, accessible from the File menu.

Running the Examples

To run the code in the examples below, you can create a method for use in a model
or application. You can, for example, choose the option Blank Medel in the Model
Wizard. To create a new method, go to the Developer tab in the Model Builder
and click the New Method button in the ribbon. In the Application Builder, paste
the code into the new method. Finally, you can run the code from the Developer
tab in the Model Builder by choosing the method you just created from the Run
Method toolbar menu. Alternatively, for running a single block of code, you can
use the Java Shell window, with the benefit of not having to switch between the
Model Builder and the Application Builder.

Visualization Without Solution Data: Grid Datasets

The section “Results” on page 65 shows how to write code for various parts of the
Results node in the model tree, including Datasets, Tables, and Plot Groups. These
examples assume that you have solution data available from solving, for example,
a heat transfer, CFD, or structural mechanics problem.

You can also create visualizations without having associated solution data by either
using grid datasets or using low-level functionality only available through
methods. You can, for example, write code for plotting points and triangles
without any associated solution data. These techniques are useful when creating
applications where customized plot functionality is needed. This section shows
how to use grid datasets, and the next section shows how to use low-level
functionality.

PLOTTING A UNIT SPHERE USING A GRID DATASET

Grid datasets are available in the Model Builder and can be used in applications for
the sole purpose of visualization without any associated solution data. The code

| 187

below creates a visualization of a unit sphere as an isosurface with the z-coordinate
as color data.

model.func().create("an1", "Analytic");
model.result().dataset().create("grid1", "Grid3D");

with(model.result().dataset("grid1"));

set("source", "data");
set("parmini", -1);
set("parmax1", +1);
set("parmin2", -1);
set("parmax2", +1);
set("parmin3", -1);
set("parmax3", +1);
set("source", "function");
set("function", "an1");
endwith();

model.result().create("pgl1", "PlotGroup3D");
model.result("pgl").create("iso1", "Isosurface");

with(model.result("pg1").feature("iso1"));
set("expr", "x"2+y"2+z"2-1");
set("levelmethod", "levels");
set("levels", 0.0);

endwith();

model.result("pgl").feature("iso1").create("col1", "Color");

with(model.result("pg1").feature("iso1").feature("coll"));
set("expr', "z");

endwith();

model.result("pgl1").run();

Comments

If there is no solution-based Dataset available, then the Grid3D dataset needs to
have a Function as its Source. In the example above, a default Analytic function is
created with tag an1. A default Analytic function corresponds to f{x) = x, and its
only purpose is to give the grid dataset an evaluation context.

Note: The alternative is to solve a physics problem on a mesh and reference the
corresponding solution dataset. The method of referencing an arbitrary Function
makes it possible to create visualizations without solution data.

The source for the Grid3D dataset with tag grid1 is set to function, and finally, the
function property of gridi is set to anf.

The Grid3D dataset has options for max and min parameter bounds, shown in the
example code above. An additional grid resolution option is not shown in this
example. However, you can learn about its syntax by using Record Code from the
Model Builder.

188 |

Visualization of Points, Curves, and Surfaces

The following examples describe low-level functionality for visualization that is
only available from methods and is not associated with any solution data. For

visualization based on solution data, see the section “Results” on page 65.

The examples below illustrate using the following plot types:

Point Data
Line Data
Surface Data
Tube Data
Arrow Data

Annotation Data

Once created, the plot type names are visible in the Settings window of each plot.
In addition to the properties modified by the examples below, in the Settings
window of these plot types, you can see the number of geometric entities created,
such as number of points, line segments, and triangles. Just as for other types of
plots, you can also change the Range of color and data, as well as Coloring and Style.

PoINTS IN 2D

The following code plots a circle of points using the Point Data plot type.

// A circle of points

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 2);
ResultFeature plot = pg.create("pt1", "PointData");
int N = 17;
double[][] p = new double[2][N];
double[] color = new double[N];
double R = 1000;
for (int 1 = 0; i < N; i++) {
double angle = i*2*Math.PI/N;
p[0][i] = R*Math.cos(angle);
p[1]1[i] = R*Math.sin(angle);
color[i] = p[1][i];
}
plot.set("pointdata", p)
.set("colordata", color)
.set("coloring", "colortable");
plot.run();

Comments
The first line

String pgTag = model.result().uniquetag("pg");

| 189

creates a unique tag for the plot group to be created. This is useful if you intend
to add a varying number of plot groups in your model or application.

The line
ResultFeature pg = model.result().create(pgTag, 2);

creates a 2D Plot Group using the newly created unique tag. The second argument
to create defines the dimension of the plot group (2 for 2D, 3 for 3D, and so on).

The line
ResultFeature plot = pg.create("pti1", "PointData");

creates a plot of the type PointData. This plot type is only available through
methods.

The middle part of the example code generates the points making up the circle.
The point coordinates are stored in the 2-by-N array p, along with color data in the
array color of length N. The color data is, in this example, simply based on the
index of the points and is used to control the coloring of each point based on a
color table.

The last few lines populate the fields of the Point Data plot.

plot.set("pointdata", p)
.set("colordata", color)
.set("coloring", "colortable");

The property pointdata takes the 2-by-N array p as its input. The options for the
coloring property arc colortable or uniform.

To learn about the syntax for the additional properties available for a Point Data
plot, you can run the above code in a blank model, browse to the Settings window
for the Point Data plot, click Record Code, and change the corresponding plot
properties. Note that the name of the plot type in the Settings window of the plot
in the model tree is Point Data.

TURNING OFF MODEL HISTORY

When using this type of low-level functionality for larger sets of data, such as a
large number of points, the stored model history may become excessively large.
Because of this, it is recommended to temporarily turn oft model history recording
when using this type of functionality; see “Turning Off and Resetting The Model
History” on page 73.

POINTS IN 3D

The following code plots points in an undulating pattern in 3D using the Point
Data plot type.
// Undulating points in 3D

190 |

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("pti1", "PointData");
int N = 37;
double[][] p = new double[3][N];
double[] color = new double[N];
double R = 1000;
for (int 1 = 0; i < N; i++) {
double angle = i*2*Math.PI/N;
p[0][i] = R*Math.cos(angle);
p[1]1[i] = R*Math.sin(angle);
p[2][i] = R*Math.cos(3*angle);
color[i] = p[1]1[i];
}
plot.set("pointdata", p)
.set("colordata", color)

.set("coloring", "colortable")
.set("sphereradiusscale", 1);
plot.run();
selectNode(pg);
Comments

When plotting 3D points the line
model.result().create(pgTag, 3);

has the second argument set to 3 in order to create a 3D Plot Group. In 3D, the
point coordinates, p is a 3-by-N array.
The line

.set("sphereradiusscale", 1);

controls the radius of the sphere used to render each point.

To automatically display the newly created plot, the line
selectNode(pg);

is added last in the code segment.

To get a denser set of points, you can increase the integer N to, say, 370.

CURVE IN 3D

The following code plots line segments in the shape of a 3D helix using the Line
Data plot type.

// A 3D helix from line segments

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("line1l", "LineData");
int N = 100;
double[][] p = new double[3][N];
int[][] t = new int[2][N-1];
for (int 1 = 0; 1 < N; i++) {

double s = 4*Math.PI*i/N;

| 191

pLO][i]
pI11[4]

s/5;
Math.sin(s);

pl2][1i] Math.cos(s);
if (i > 0) {
t[0][i-1] = i-1;
t1][i-1]1 = i
}
}

plot.set("pointdata", p)
.set("elementdata", t);

plot.run();

selectNode(pg);

Comments
The line

ResultFeature plot = pg.create("line1l", "LineData");

creates a plot of the type LineData. This plot type is only available through
methods. Just as for Point Data plots, the point coordinates p is a 3-by-N array. In
addition to pointdata, the LineData plot type takes elementdata as its input. In
the example, this is represented by the 2-by-N array t and contains indexes to the
columns of p, corresponding to the start and end points of the lines.

In a similar way, line segments can be plotted in 2D by creating a 2D plot group
and by letting the point coordinates be a 2-by-N array. See also “Points in 2D” on
page 189.

TRIANGULATED SHAPE IN 2D

The following code plots triangles in the shape of'a 2D pentagon by using the
Surface Data plot type.

// A 2D pentagon from triangles

String pgTag = model.result().uniquetag("pg");

ResultFeature pg = model.result().create(pgTag, 2);

ResultFeature plot = pg.create("surfi1", "SurfaceData");

int N = 5;

double[][] p = new double[2][N+1];

int[][] t new int[3][N];

plo][0]

pr1110]

for (int 1 = 0; 1 < N; i++) {
double angle = i*2*Math.PI/N;
p[0][i+1] = Math.cos(angle);
p[1]1[i+1] = Math.sin(angle);

0:
0

t[0][i] = O;
t114] = i+1;
£[2]1[1] = 1+(i+1)%N;

}

plot.set("pointdata", p)
.set("elementdata", t);

plot.run();

192 |

selectNode(pg);

Comments
The line

ResultFeature plot = pg.create("surfi1", "SurfaceData");

creates a plot of the type SurfaceData. This plot type is only available through
methods. Just as for 2D Peint Data plots, the point coordinates p is a 2-by-N array.
In addition to pointdata, and similar to the LineData plot type, the SurfData plot
type takes elementdata as its input. In the example, this is represented by the 3-
by-N array t and contains indexes to the columns of p, corresponding to the
vertexes of the triangles. The ordering of the point indexes in the array t is not
important for 2D Surface Data plots.

FUNCTION SURFACE IN 3D
The following code plots triangles in the shape of a 3D rotationally symmetric
sinc-function surface by using the Surface Data plot type.

// A 3D sinc(r) function surface

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);

ResultFeature plot = pg.create("surfi1", "SurfaceData");
int Nx = 51;
int Ny = 51;

double[][] p = new double[3][Nx*Ny];
int[][] t = new int[3][2*(Nx-1)*(Ny-1)];
double[] color = new double[Nx*Ny];

int pos = 0

for (int i 0; i < Ny; i++) {

for (int j = 0; j < Nx; j++) {
double x = 20*(j-Nx/2)/Nx;
double y = 20*(i-Ny/2)/Ny;
double r = Math.sqrt(x*x+y*y);
double z = 4*((r == 0) ?2 1 : (Math.sin(r)/r));
p[O][pos] = x;
p[1]1[pos] = vy;
pl2][pos] = z;
color[pos] = z;
pos++;
}
}
pos = 0;

for (int i = 0; i < Ny-1; i++) {
for (int j = 0; j < Nx-1; j++) {
int p00 = Nx*i+j;
int p01 = Nx*i+j+1;
int p10 = Nx*(i+1)+j;
int p11 = Nx*(i+1)+j+1;
t[0][pos] = p0O;
t[1][pos] = pO1;
t[2][pos] = p11;

| 193

pos++;
t[0][pos] = p00O;

t[1][pos] = p11;
t[2][pos] = p10;
pos++;

}

}

plot.set("pointdata", p)
.set("elementdata", t)
.set("colordata", color)
.set("coloring", "colortable");

plot.run();

selectNode(pg);

Comments

This example is similar to “Triangulated Shape in 2D” on page 192, but with the
point array being a 3-by-N array for 3D surfaces. For Surface Data plots in 3D, the
ordering of the indexes in the elementdata array t matters. It determines the
direction of the surface normal, which is used for the lighting effect when using
Scene Light in the Graphics window. The surface normal of a triangle is determined
according to the “right-hand rule”. In mathematical terms, the surface normal is
defined as the vector product:

n= (p[z[1]]-p[[0]]) x (p[t[2]] - P[¢[0]])

where the indexes into t represent the rows in one of the columns of t and p
represents a column in the array of points p.

To ensure that the lighting effect produces expected results, the triangle surface
normal directions need to consistently point in the same direction as the intended
overall surface normal direction. As an alternative to making sure that the indexes
come in the correct order, the normal direction may be given as an additional
input to a Surface Data plot. This is shown in the next example section, Sphere in
3D.

SPHERE IN 3D

The following code plots triangles in the shape of a 3D sphere by using the Surface
Data plot type.

// A coarse sphere with user-supplied normals

int Nx = 20;

int Ny = 10;

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("surfi1", "SurfaceData");
double[][] p = new double[3][Nx*Ny];

double[][] normals = new double[3][Nx*Ny];

int[][] t = new int[3][2*(Nx-1)*(Ny-1)];

double[] color = new double[Nx*Ny];

194 |

int pos = 0;

double R = 10;

for (int i = 0; i < Ny; i++) {

for (int j = 0; j < Nx; j++) {

double theta = Math.PI*i/(Ny-1);
double phi = 2*Math.PI*j/(Nx-1);
double x = R*Math.sin(theta)*Math.cos(phi);
double y = R*Math.sin(theta)*Math.sin(phi);
double z = R*Math.cos(theta);
plO][pos] = x;

p[1][pos] = vy;
pl2][pos] = z;
normals[0][posS] = X;
normals[1][pos] = y;
normals[2][pos] = z;
color[pos] = z;
pos++;
}
}
pos = 0;

for (int 1 = 0; 1 < Ny-1; i++) {
for (int j = 0; j < Nx-1; j++) {
int p00 = Nx*i+j;
int p01 = Nx*i+j+1;
int p10 = Nx*(i+1)+j;
int p11 = Nx*(i+1)+j+1;
t[0][pos] = pOO;
t[1][pos] = p01;
t[2][pos] = p11;
pos++;
t[0][pos] = pOO;
t[1][pos] = p11;
t[2][pos] = p10;
pos++;
}
}
plot.set("pointdata", p)
.set("elementdata", t)
.set("colordata", color)
.set("normaldata", normals)
.set("coloring", "colortable");
plot.run();
selectNode(pg);

Comments

In this example, information about the surface normal direction is not given
implicitly by the triangle orientation, but instead explicitly by the parameter
normaldata by means of the 3-by-Nx*Ny array normals containing surface normal
vectors at each point. The normal vectors do not need to be normalized; only the
direction is used. The coloring of the sphere is based on the z-coordinate of each
triangle point and is stored for each point in the 3-by-Nx*Ny array color.

| 195

The sphere is constructed from a discrete grid defined in terms of spherical
coordinate angles, where each grid cell is divided into two triangles. The number
of triangles t is then given by 2* (Nx-1)* (Ny-1).

TuBE PLOT IN 3D, LOGARITHMIC SPIRAL

The following code plots a tube in 3D in the shape of a logarithmic spiral by using
the Tube Data plot type.
// A logarithmic tube spiral in 3D

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("tubel", "TubeData");
int N = 1000;
double[][] p = new double[3][N];
double[] radius = new double[N];
double[] color = new double[N];
for (int 1 = 0; 1 < N; i++) {
double par = 0.005*i;
p[0][i] = Math.exp(par)*Math.cos(10*par)
p[1]1[i] = Math.exp(par)*Math.sin(10*par)
pl2][i] = 0.1%i;
radius[i] = 0.2*Math.sqrt(i+1);
color[i] = i;
}
plot.set("pointdata", p)
.set("radiusdata", radius)
.set("colordata", color)
.set("coloring", "colortable");
plot.run();
selectNode(pg);

Comments

A Tube Data plot is similar to a Point Data, plot but with an absolute radius array
given as an argument to radiusdata. For the Point Data plot type, there is a similar
sphereradiusscale.

ARROWS IN 2D

The following code plots arrows in a circular pattern by using the Arrow Data plot

type.

// Arrows in a circular pattern in 2D

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 2);
ResultFeature plot = pg.create("arrowl", "ArrowData");
int N = 17;

double[][] p = new double[2][N];

double[][] vec = new double[2][N];

double len = 0.2;

for (int 1 = 0; 1 < N; i++) {

196 |

double angle = 2*Math.PI*i/N;
p[0][i] = Math.cos(angle);
p[1]1[i] = Math.sin(angle);
vec[O][i] = -len*p[O][i];
vec[1][i] = -len*p[1][i];

}

plot.set("pointdata", p)
.set("vectordata", vec);

plot.run();

selectNode(pg);

Comments
An Arrow Data plot associates an array of vectors, in the example vec, to each point
p.

ARROWS IN 3D

The following code plots arrows in a logarithmic spiral pattern by using the Arrow
Data plot type.

// Arrows in a logarithmic spiral pattern in 3D

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("arrowl", "ArrowData");
int N = 1000;
double[][] p = new double[3][N];
double[][] vec = new double[3][N];
double[] color = new double[N];
for (int 1 = 0; 1 < N; i++) {
double par = 0.005*i;
p[0][i] = Math.exp(par)*Math.cos(10*par)
p[1]1[i] = Math.exp(par)*Math.sin(10*par)
pl2][i] = 0.1%i;
double len = Math.sqrt(p[0][i]*p[O][il+p[1]1[il*p[1]1[i]+p[2]1[i]*p[2][1i]);
for (int j = 0; j < 3; j++) {
vec[jl[i] = 4*p[jl[il/len;
}
color[i] = 1ij;
}
plot.set("pointdata", p)
.set("vectordata", vec)
.set("colordata", color)
.set("coloring", "colortable");
plot.run();
selectNode(pg);

Comments

In this example, in addition to the example in the section “Arrows in 2D”, color
data is used based on the point index.

| 197

ANNOTATIONS IN 2D

The following code renders text strings in a circular pattern by using the
Annotation Data plot type.
// Letters in a circular pattern in 2D

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 2);

for (int 1 = 0; 1 < 26; i++) {
double angle = 2*Math.PI*i/26;
ResultFeature plot = pg.create("ann"+i, "AnnotationData");
plot.set("pos", new double[]{Math.cos(angle), Math.sin(angle)})
.set("text", "ABCDEFGHIJKLMNOPQRSTUVWXYZ".substring(i, i+1))
.set("showpoint", false);
}
pg.run();
selectNode(pg);

Comments

The property pos takes as its input an array of length 2 representing 2D
coordinates for the position of the string to be rendered. The property text takes
as its input the string to be rendered. The Boolean property showpoint determines
if'a point, at the 2D coordinate position, should be rendered or not.

ANNOTATIONS IN 3D WITH LATEX SYNTAX

The following code renders text strings with Greek letters of different colors at the
corners of a cube by using the Annotation Data plot type.

// Greek letters at the corners of a cube

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);

String[] texts = {"\\alpha", "\\beta", "\\gamma", "\\delta", "\\epsilon",
"\\zeta", "\\eta", "\\theta"};
String[] colors = {"black", "blue", "cyan", "gray", "green", "magenta", "red",
"yellow"};
for (int x = 0; x < 2; x++) {
for (int'y = 0; y < 2; y++) {
for (int z = 0; z < 2; z++) {
int index = x+2*y+4*z;
ResultFeature plot = pg.create("ann"+index, "AnnotationData");
plot.set("pos", new double[]{x, y, z})
.set("text", "$"+texts[index]+"$")
.set("latexmarkup", true)
.set("color", colors[index]);
}
}
}

pg.run();
selectNode(pg);

198 |

Comments

The Boolean property latexmarkup determines if the text should be interpreted
using LaTeX syntax or not.

Reading and Writing Data to File

The Application Builder provides several built-in methods for reading and writing
different types of files: text files, CSV-files, Excel® files (requires LiveLink™ for
Excel®), and binary files. These file methods are listed in the table “File Methods”
on page 131.

Note that easy-to-use user-interface-based techniques for reading and writing to
file are available in the Form Editor of the Application Builder. It is reccommended
that you consider those techniques first before using the programming-based ways
described in this section. For more information, see the book Introduction to the
Application Builder and “GUI Command Methods” on page 158. There, you
can also find information on the various file schemes used in the Application
Builder for reading and writing files when running applications in a web browser.

READING AND WRITING TEXT AND SPREADSHEET FILES OVERVIEW

The following built-in methods are available for reading and writing text files:

¢ readFile

¢ readMatrixFromFile

e readStringMatrixFromFile

¢ readCSVFile

e writeFile

e writeCSVFile

In addition, you can use the low-level methods available in the class CsReader to
read text files line by line or character by character. See the next section,

“Processing Text Files using the CsReader and CsWriter Classes” on page 214, for
more information.

If you have a LiveLink™ for Excel® license, then the following methods are
available for reading and writing Microsoft Excel Workbook files:

* readExcelFile

e writeExcelFile

| 199

INTRODUCTION TO READING FILES WITH A CSV-FILE EXAMPLE

Assume that you want to automate a certain thermal analysis of a circuit board by
creating an application that reads in data from a spreadsheet. Further assume that
information about the circuit board components is given by a proprictary format
in a spreadsheet with columns for component type, heat dissipation, locations, and
sizes. Assume that such a file looks like:

B,0,0,0,-1.57,350,200,1.57

B,3,30,10,0,40,10,2

¢,1,100,30,0,3,10,

c,1,110,30,0,3,10,

B,4,30,30,0,40,10,2

¢,1,200,30,0,3,10,

B,10,100,150,0,10,20,30

B,10,130,150,0,10,20,30

B,10,160,150,0,10,20,30
Each row of the spreadsheet represents a difterent component. The first column
can contain a letter, either B or C, denoting that the component can be modeled
as either a Block or a Cylinder primitive. The next column is the total heat
dissipation within the component (measured in watts). The next three columns
represent the location of the component in the global Cartesian coordinate system
(measured in millimeters). Lastly, if the row contains a block component, there are
three more columns that denote the width, depth, and height of the block. If the
row contains a cylinder component, then there are two more columns that contain
the radius and height information, respectively.

For the example shown above, the first row of the spreadsheet represents the
circuit board itself, which is 1.57 mm thick and 350 mm-by-200 mm. It is offset
from the origin by —1.57 mm in the 2 direction and does not dissipate any heat.

200 |

You can write the data in the spreadsheet out to a comma-delimited text file, also
known as a CSV-file. The user interface of the application used to read the data is
shown in the figure below.

@ Untitled.mph - O X
File
CAUsers\bjorm\Downloads\layout.csv Process File...

aa@- @ -l-zkzn cr (¢ BraBE @3

About

| 201

The Settings window for the File Import form object is shown in the figure below.

[@Preview [] populateBoard [Jformt x Settings
= —— " | s S

-
| Process File... s Name: fileimport1

< | T

- [ey Izl ¢ Style: Raised

a
oK

B e

an

lcon: None - +
Button text: Process File...

Dialog title: File import

File types:

CSV File (".csv)

Allow entering filename
~ File Destination ®

v = Declarations
T File 1 {inputFile}

Use as Source S Edit Node
Selected source:
f2 File 1 {inputFile}

Access using: upload:///inputFile

> Position and Size

> Appearance

~ Events

Ondatachange populateBoard > =

Onfocus gained: None -

In the Settings window, CSV File (*.csv) is added to the File types list. When
browsing for the file, this setting will filter out any file that is not a CSV-file.

There is also a File Declaration called File 1, which is referenced by the file scheme
syntax upload:///inputFile in the method populateBoard, which is used to read
and process the data. The method is called as an event shown at the bottom of the
Settings window of the File Import form object in the Events section.

Note that if you would like to open a file browser from a button or a menu item,
instead of using a File Import object, you can create a method that calls the built-
in method importFile; for example

importFile("filel1");

assuming there is a file declaration filef.

The method populateBoard is listed below.

String[][] D = readCSVFile("upload:///inputFile");
model.geom("geom1").feature().clear();
for (int k = 0; k < D.length; k++) {
if (D[k][O].equals("B")) { // Read in a block
model.geom("geom1").create("P"+k, "Block").set("pos", new
String[1{D[k1[2], D[k][3], D[k][4]});
model.geom("geom1").feature("P"+k).set("size", new String[]{D[k]1[5],
D[k1[6], D[KI[71});

202 |

else if (D[k][O].equals("C")) { // Read in a cylinder
model.geom("geom1").create("P"+k, "Cylinder").set("pos", new
String[]1{D[k][2], D[k][3], D[kI[4]});
model.geom("geom1").feature("P"+k).set("r", D[K][5]);
model.geom("geom1").feature("P"+k).set("h", D[k][6]);
}
model.geom("geom1").feature("P"+k).set("selresult", "on");
model.variable().remove("var"+k);
model.variable().create("var"+k).model("comp1");
model.variable("var"+k).selection().named("geomi_P"+k+"_dom");
model.variable("var"+k).set("Q", D[k][1]);
}
model.geom("geomi1").run();
zoomExtents("/formi/graphics1");

Comments

In the first line, the data read from the CSV-file is stored in the 2D array D. The
rest of the code parses this array and populates the various parts of a model object.
The application allows you to save the result as an MPH file with variables defined
for the heat sources and geometry objects defined for the components, as shown
in the figures below.

I

3 Untitled.mph
File

[SaveAs..
errererrreerrrreeverrests\layout.csy

Q@@ -zl -

| 203

e DBEBEBR > A BRI RER S W

- o ox
e tone Deions Geoney Neterls s Meh Sty .
E s B e
) E = B @
s s [
rech Eor il et
Model Builder Graphics
P R aa@- el -kl ¢r @B S- @ BN &2 “Fle- eE@E
5 o
. 20
e f
® 1
s -

Descprion:

1556823768

You can download the MPH file for this app from:

www.comsol.com/model /using-text-files-to-automate-model-preprocessing-46721

READING EXCEL FILES

The a(gplication described above can easily be extended to also read Microsoft
Excel® Workbook files. Note that this requires LiveLink™ for Excel®. In the
Settings window for the File Import form object, you can add Microsoft Excel

204 |

https://www.comsol.com/model/using-text-files-to-automate-model-preprocessing-46721

Workbook (*.xIsx) and Microsoft Excel Workbook (*.xIs) to the File types section, as
shown in the figure below.

[Q) Preview populateBoard [form1 x
v -
s
| Name: fileimport] =
Qa@-Eib-mekn d- Style: Raised S
B @g

lcon: Mone - +
Buttontext: Process File...

Dialog title: File import

File types:

CSV File (".csv)
Microsoft Excel Workbook (*axlsx)
Microsoft Excel Workbook (*xls)

Allow entering filename
~ File Destination S

v = Declarations
F File 1 {inputFile}

Use as Source Edit Node

Selected source:

5 File 1 {inputFile}

Access using: upload:///inputFile

» Position and Size

> Appearance

~ Events

Ondstachange populateBoard - = -

Onfocus gained: None - + -

The next step is to add a few lines of code in the beginning of the method
populateBoard, as shown below.

String file_name = getFilePath("upload:///inputFile");

if (file_name.endsWith(".x1s") || file_name.endsWith(".x1lsx"))
D = readExcelFile("upload:///inputFile");

else if (file_name.endsWith(".csv"))
D = readCSVFile("upload:///inputFile");

else
error("Unknown file type.");

Comments

The 2D array D can be defined as a global array in the Declarations node in the
application tree. Alternatively, it can be declared as an array that is local to the
method by adding the line

String[][] D = null;

before the if statement. Which option to choose depends on how you would like
to use the 2D array data after having read the file.

The method getFilePath returns the full path and name of the uploaded file. The
if statements control which method is used to read the file based on its file
extension. The file extension is retrieved with the Java® method endsWith(),
which belongs to the String class. Note that you can see which methods are

| 205

available for a string by typing the name of the string followed by a period and
Ctrl+Space, as shown in the figure below.

|
iy
+]
=
1]
=
']

contentEquals(CharSeguence)
contentEquals(StringBuffer)
copyValueOf(char(]}
copyValueOf(char[], int, int)
endsWith(String)
equals(Object)
equalslgnoreCase(String)
format(Locale, String, Object...)
format(String, Object...)
getBytes()

-8888888888%

WARITING CSV-FILES

You can write to a CSV-file using four different call syntaxes for the method
writeCSVFile, depending on if the contents are strings or doubles and whether
you would like to overwrite an already existing file or appending to its contents.
In the case above, the contents are a mix of numbers and characters, so the 2D
array storing the information needs to be a string array.
Assume that we would like to move one of the components, say, the second to last
one, in the file listed above. We would like to change the corresponding line in the
file from

B,10,130,150,0,10,20,30

to
B,10,130,140,0,10,20,30

This corresponds to a change in the y-coordinate of one of the blocks from 150 to
140.

The following code shows how to make this change and then write data on this
format, assuming that the array D has been declared as a global variable in the
Declarations node, as described above.

int[] sz = matrixSize(D);

D[sz[0]-2][3] = "140.0";
writeCSVFile("temp:///my_layout.csv", D);
fileSaveAs("temp:///my_layout.csv");

Comments

The first line stores the size of the 2D array (or matrix) D in a 1-by-2 array (or
vector) sz. The second line sets the string value of the y-coordinate of the block
of the second-to-last row in D.

206 |

The line
writeCSVFile("temp:///my_layout.csv", D);

writes the data to a file my_layout.csv in a temporary folder whose location is
determined by the Preferences of either COMSOL Multiphysics or COMSOL
Server, depending on which software is used to run the application. For example,
in a typical Windows® installation of COMSOL Multiphysics, the location will be
similar to

C:\Users\paul\AppData\Local\Temp\

where the username is paul.

WRITING FILES IN GENERAL

Note that as a first step in the example above, the file is written to a temporary file
using the writeCSVFile method. This step is done automatically by the
application. In the second step, the method fileSaveAs opens a file browser and
lets the user of the application choose the file location; for example, a folder on
the computer’s local file system or to a network folder. This extra step is needed
in order for the application to function in a web browser. Due to the security
settings of a typical web browser, the application is not permitted to automatically
save a file to an arbitrary location. Instead, the application is allowed to save to a
few specific locations, including the temp folder, whose location is specified in the
Preferences window. The other locations are the user and common folders, also
specified in the Preferences window. For more information, see the book
Introduction to the Application Builder.

WARITING EXCEL FILES

Ifyou have licensed LiveLink™ for Excel®, then you can write to a Microsoft Excel
Workbook file in a way that is similar to that of a CSV-file, with the exception that
the append option is not available. The following code, corresponding to the
previous CSV-file example, shows how to write to an Excel file.

int[] sz = matrixSize(D);

D[sz[0]-2][3] = "140.0";
writeExcelFile("temp:///my_layout.xlsx", D);
fileSaveAs("temp:///my_layout.xlsx");

READING MATRIX FILES

Reading files with numerical data in matrix format is easiest when using the
readMatrixFromFile method. This method assumes that the file has the
spreadsheet format, as available in the model tree Export node. The example below
shows a file on the spreadsheet format.

% Model: my_model.mph
% Version: COMSOL 6.0.0.278

| 207

o°

Date: Nov 1 2020, 8:00

% Dimension: 1
% Nodes: 5
% Expressions: 1
% Description: Line graph
% X y
.2 -0.45
.11 -0.3

.0440468877558806 -0.38655264416650392
.041666666666667 -0.49166666666666667
.02 -0.15

[gy

The first few lines with comments start with the character % and are ignored by the

readMatrixFromFile method. You can optionally omit such lines and just have the

numerical part of a file read by readMatrixFromFile. Assume that this file is

uploaded to an application using a File Import form object and a File declaration

file1. The following code can then be used to read the data into a double array p.
double p[][] = readMatrixFromFile("upload:///file1”);

The code below shows how to both import and visualize these points in an
application that, in addition to a File Import form object and a File declaration file,
has a form form1 and a graphics object graphicsi.

double p[][] = readMatrixFromFile("upload:///file1");
double pt[][] = transpose(p);

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 2);
ResultFeature plot = pg.create("pti1", "PointData");

plot.set("pointdata", pt);
plot.run();

useGraphics(model.result(pgTag), "formi/graphics1");

Reading files on the spreadsheet format as a string array can be done with the
method readStringMatrixFromFile. Also, in this case, the comment lines will be
ignored. The code below shows how you can replace the first few lines in the
above example using readStringMatrixFromFile instead of readMatrixFromFile.
String p[][] = readStringMatrixFromFile("upload:///filel1");
double pt[][] = transpose(toDouble(p));
The method readStringMatrixFromFile is most useful when parts of the read file
contains text.

WARITING MATRIX FILES

To write numerical matrix data to file, you can use the method writeFile. Assume
that you want to write a matrix of random 2D coordinate values to a file on the
spreadsheet format; for example:

208 |

-0.3604014719437022

0.06964952539192892

-0.043869911848460674 -0.14152948348300798

0.08279441507358754

0.4419748551931647
0.15830016844077643
0.38236182707603905

0.3101282179426158

0.4139106589169702
-0.08445989494858042
0.4837445802317204

The code below shows how to do this.

int N = 100;

double[][] p = new double[N][2];

for (int k = 0; k < N; k++) {
p[k][0] = Math.random()-0.5;
plk]l[1] = Math.random()-0.5;

}

writeFile("temp:///my_data.txt", p);

fileSaveAs("temp:///my_data.txt");

The resulting file can now be read back in and plotted by using the code of the
previous example. The result, in an application, may look like the figure below.

@ Untitied.mph

CACOMSOL\my_data txt

QQqAar L B0 @8

08

About

This example is part of a collection available for download:

www.comsol.com/model /application-programming-guide-examples-140771

The relevant files for this example are:
e writing_matrix_file.mph

e my_data.txt

Note that you can append data to an already existing file by providing an
additional Boolean input argument; for example:

writeFile("temp:///my_data.txt", p,true);
fileSaveAs("temp:///my_data.txt");

| 209

https://www.comsol.com/model/application-programming-guide-examples-140771

If you would like to export a matrix with a mix of numeric and text data, you can
use the writeFile method with a string array instead of a double array. The syntax
for this case is otherwise identical to that of the double array shown in the example
above.

READING A TEXT FILE TO A STRING

For reading text files into a string, you can use the method readFile. A
straightforward use of readFile is for previewing a text file; for example, before
importing and parsing it, as illustrated by the example application in the figure
below.

@ Untitled.mph = O X
CACOMSOL\text_data_filetxt Browse...
File Contents
% Model: thermal_actuator_simplified.mph
% Version: COMSOL 6.3.0.335
% Date: Apr18 2025, 10:32
% Dimension: 3
% Nodes: 11733
% Expressions: 1
% Description: Temperature
% Length unit: pm
% x y z T(K)
0.3810970544231538 44.785467468426475 0.5709178153714317 293.9336890600043
04551612607522232 44.838540844600876 0.2863313080606898 293.93306519709716
0.6277901355601577 44.60270829182081 0.5113795674167958 293.93273450605307
0.16763099977086143 44.55422183957106 0.3529255432384397 293.93550940354882
0.6601613508655677 44.943687339214634 0.5789349672417191 293.9317111482178
0.44608092424188805 44.83257051203564 0.7950400243438849 293.93328443676624
0.7421411372203838 44.96618259500262 0.2546823415002297 293.93112200978373
0.2928932188134586 44.70710678118656 0 293.9342128741982
0.07646339000421445 44.38351027365312 O 293.9366427275665
047710045619735406 44.434071784671936 0 293.93478339020106
0.03101621703935703 44.247124317698685 0.2718495028786515 293.93772250515275
0.6164807263468868 44.92353660099578 0 293.93187837423403
0.8641989740731739 44.67677571879551 0 293.9300697224333
0.99999999999999938 44.99999999999939 0 293.9291901468935
NARIIATTE1TACTAREN AA RITIRIANNNINEDR n 02 N0 NRANN00
About

210 |

This application has two form objects: a File Import form object referencing a File
declaration file1 and a Text form object referencing a string str declared in the
Declarations node as a global variable.

[@ Preview [Jform1 X [F] readString [Main Window Settings
= — 2 Y
> —
Browse.— Name: text] =]
File Contents [] Editable
Wrap text
P

v Source D +

~ = Declarations
~ ab String
sl str

@ Model (root)

Use as Source Edit Node
Selected source:

abe String=str

Initial value: ~ From data source -

The File Import form object has an Event that calls the method readString upon
data change.
This method has one line of code, as shown below.

str = readFile("upload:///filel");

Since the Text object is referencing the global string str, the contents of the file
are displayed in the Text object immediately after import.

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771

The relevant files for this example are:

* reading_text_file to_string.mph

* text_data_file.txt

Parsing of smaller text files can be done with readFile in combination with the
many text processing methods available in the String class. However, it is often
more efficient to use methods in the CsReader class, as described in the section
“Processing Text Files using the CsReader and CsWriter Classes” on page 214,
especially for larger text files. The reason is that when using the readFile method,
the entire file is read into a string with all its contents kept in memory; whereas
when using the CsReader class methods, only small portions of the file are kept in
memory at any given time.

| 211

https://www.comsol.com/model/application-programming-guide-examples-140771

If you would like to parse smaller text files using readFile, then the built-in
“String Methods” on page 181 are useful. The example code below illustrates
using the built-in methods findIn, substring, split, as well as the regular Java®
methods System.getProperty and String.startswWith. The example parses the
header of a text file containing polygon information to retrieve information about
the number of points of each polygon in the main body of the file (not shown) as
well as the number of properties (for example, color or material property). The
header portion of the file may look like the example below.

Demo file for string parsing
Created on May 1st 2018
begin_header
number_of_points 4
number_of_properties 4
end_header

The figure below shows an extension of the previous demonstration app that
parses this type of file.

@ Untitled.mph = O X
CACOMSOL\simple_string_parsing_demo_file.txt Browse...
Parse File

File Summary
Mumber of points: 4
Mumber of properties: 4

File Contents

Demao file for string parsing
Created on May 1st 2018
begin_header
number_of_points 4
number_of_properties 4
end_header

About

The code for parsing the header is listed below. It stores the number of points and
properties in the variables numPoints and numProperties, respectively. To keep
things simple, no error handling is done. For example, the code assumes that there
is exactly one instance of begin_header and end_header.

212 |

numPoints = 0; // Integer variable declared in Declarations
numProperties = 0; // Integer variable declared in Declarations

fileContents = readFile("upload:///file1"); // String variable declared in
Declarations

String eol = System.getProperty("line.separator"); // Finds the system end of
line

int headerBeginIndex = findIn(fileContents, "begin_header");
int headerEndIndex = findIn(fileContents, "end_header");

String headerContents = substring(fileContents, headerBeginIndex,
headerEndIndex-headerBeginIndex); // Converts to string array by splitting at
each line
String[] headerContentsArr = split(headerContents, eol);
int ix = 1;
String[] headerRowArr = new String[2];
do {
// Split each line at space.
headerRowArr = split(headerContentsArr[ix], " ");

if (headerRowArr.length == 2) {
if (headerRowArr[0].trim().equalsIgnoreCase("number_of_points"))
numPoints = toInt(headerRowArr[1]);
if (headerRowArr[0].trim().equalsIgnoreCase("number_of_properties"))
numProperties = toInt(headerRowArr[1]);

}
ix++;
} while (ix < headerContentsArr.length);
This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant files for this example are:
e simple_string_parsing.mph

* simple_string_parsing_demo_file.txt

The Java® String class has many methods for text processing. See the online
Java® documentation for more information.

WRITING A STRING TO A TEXT FILE

The following example shows how to use the method writeFile to write a string
to file.

String contents = "# Created by me\r\n"
+"# Version 1.0 of this file format \r\n"
+"# Body follows\r\n"
+"0 1 \r\n"
+"2 3\r\n"
+"4 5\r\n";

writeFile("temp:///my_data.txt", contents);
fileSaveAs("temp:///my_data.txt");

| 213

https://www.comsol.com/model/application-programming-guide-examples-140771

The use of the file scheme syntax temp:/// is described above in the earlier
examples of this section. The end-of-line characters of this example are for
Windows®; see also “Special Characters” on page 11.

To append additional data to the same file, for example:
String contents_2 = "6 7\r\n"
478 9\r\n"
+'10 11\r\n";
use an additional Boolean input argument, which appends data when set to true:

writeFile("temp:///my_data.txt", contents_2, true);
fileSaveAs("temp:///my_data.txt");

PROCESSING TEXT FILES USING THE CSREADER AND CSWRITER CLASSES

The most efficient and flexible way to read and write to a text file is to use the
methods in the CsReader and CsWriter classes, respectively. However, using the
methods of these classes is more complicated than using any of the built-in
methods described above.

The csReader class inherits all public methods of the abstract Java® class Reader.
In a similar way, the CsWriter class inherits all public methods of the abstract
Java® class Writer. This means that when using these classes, you get access to a
large number of methods for processing text files. These methods are not
documented here, but you can find a lot of information with regards to using these
methods online as well as in books on Java® programming. In addition, you can
see which methods are available by using code-completion Ctrl+Space.

READING TEXT FILES USING THE CSREADER CLASS

The example code below shows how to parse the text file header of the earlier
example by using the CsReader class instead of readFile. Just like in the previous
example, the header may look like:

Demo file for string parsing
Created on May 1st 2018
begin_header
number_of_points 4
number_of_properties 4
end_header

and the corresponding code is listed below (compare with the example “Reading
a Text File to a String” on page 210).
numPoints = 0; // Integer variable declared in Declarations
numProperties = 0; // Integer variable declared in Declarations
maxHeaderLength = 100; // Integer variable declared in Declarations
CsReader reader = openFileStreamReader("upload:///filel1");

String line; // Each line in the file

214

String[] lineArr; // The contents of each line in an array
int 1i = 0; // Line counter

boolean begin_header_found = false;
boolean end_header_found = false;

while (!begin_header_found && 1i < maxHeaderLength && ((line = reader.readlLine())
I= null)) {
if (line.trim().startsWith("begin_header"))
begin_header_found = true;
lit+;
}
while (begin_header_found && !end_header_found && 1li < maxHeaderLength && ((line
= reader.readLine()) != null)) {
lineArr = split(line, " ");
if (lineArr[0].trim().equalsIgnoreCase("number_of_points"))
numPoints = toInt(lineArr[1]);
if (lineArr[0].trim().equalsIgnoreCase("number_of_properties"))
numProperties = toInt(lineArr[1]);
if (line.trim().startsWith("end_header"))
end_header_found = true;
lit+;

}
reader.close();

if (!begin_header_found || !end_header_found)
error("File does not have the right format.");

Comments
The line

CsReader reader = openFileStreamReader("upload:///filel1");
opens a Java® character stream and assigns it to the object reader belonging to
the class CsReader.
The while loop condition contains the statement

(line = reader.readLine()) != null)
which is reading a line from the character stream and storing the result in the string
line. A line is considered to be terminated by one of the characters carriage return
\r, line feed \n, or the composite \r\n. If there are no more lines to read, then
null is returned.
For more information on the string methods used in this and earlier examples,
including findIn, substring, and split, see the section “Writing a String to a
Text File” on page 213.
The line

reader.close();

closes the stream permanently.

| 215

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant files for this example are:

e text_file_parsing.mph

e simple_string_parsing_demo_file.txt

Note that you can see which additional methods are available for the reader object

by using Ctrl+Space, as shown in the figure below.
CsReader reader = openfileStreamReader("upload filel"™);

7 read r'.|
A

& closel)
Strig lines() ile
Strl@ mark(int readAheadLimit) of each line in an array

2 markSuppeorted()
@ read()

bool® read(CharBuffer argl)
@ read(char(] argl}

= whil®@ read({char[] cbuf, int off, int len) maxHeaderLength && ({line
if@ read(char(]) n_header"})
begin_header_found = true;
T1i++;
1;

By using Ctrl+Space following a string, you can see the many additional methods
available for strings, including the trim method used in the example above:

String line; // Each lime in the file

9 line.
@ tolowerCase()
St tolowerCase(locale) ' line in an array
ing taString()
2 tolpperCase()
2 tolpperCase(Locale)
& trim()
-] wh® getClass) wderLength &% ((1ir
@ notify())
& notifyAll])
1i++;

b

WARITING TEXT FILES USING THE CSWRITER CLASS

The example of the section “Reading Matrix Files” on page 207 uses an example
on the spreadsheet data format. This section contains an example that writes a file

216 |

https://www.comsol.com/model/application-programming-guide-examples-140771

on the sectionwise format, the other primary format in COMSOL Multiphysics for
saving results data. Data on the sectionwise format can, for example, be read into
an Interpolation Curve geometry primitive. A file on the sectionwise format may
look like this:

% Version: COMSOL 6.0.0.278
% Date: Nov 1 2020, 8:00
% Description: Interpolation curve
% Coordinates

-1.1 -0.8

1.2 -0.9

0.9 1.3

-0.8 1.05

% Elements (segments)

1 2

2 3

3 4

The first few lines with comments start with the character % and are ignored when
imported as an Interpolation Curve. The first section containing data starts on the
line after % Coordinates. The second section containing data starts on the line
after % Elements (segments). Note that the strings Coordinates and Elements
(segments) are not necessary but each section containing data will be assumed to
start after each block of comments, regardless of what comes after the character %.
There may be additional blocks of data when, for example, exporting Contour plot
data.

The following example code uses a CsWriter stream to write interpolation curve
data to a text file. A template point set p is copied in a circular pattern for a given
radius R and number of copies nCopies.

CsWriter writer = openFileStreamWriter("temp:///my_curve.txt");

int nCopies = 10;

double[][] p = {{-1.2, -0.9}, {0.9, -1.1}, {1.3, 0.8}, {-0.9, 1.0}}; // template
int template_length = p.length;

double R = 10;

double px, py;

double pi = Math.PI;

String line;

int i1, i2;

String header = "% Version:\tCOMSOL 6.0.0.278\r\n"
+ Date:\tMay 5 2018, 8 : 00\r\n"

+"% Description:\tInterpolation curve\r\n"

+"% Coordinates:\r\n";

oy

writer.append(header)

for (int j = 0; j < nCopies; j++) {
for (int i = 0; i < template_length; i++) {
px = p[i][0];
py = p[il[1];
px = px+R*Math.cos(2*pi*j/nCopies);

| 217

py = py+R*Math.sin(2*pi*j/nCopies);
line = toString(px)+"\t"+toString(py)+"\r\n";
writer.append(line);

}
}

writer.append("% Elements (segments):\r\n");

for (int j = 0; j < nCopies; j++) {

for (int i = 0; i < template_length; i++) {
i1 = i+1;
i2 = (i+1)%template_length+1;
i1 = it1+j*template_length;
i2 = i2+j*template_length;
line = toString(it)+"\t"+toString(i2)+"\r\n";
writer.append(line);

}

}
writer.flush();

writer.close();

fileSaveAs("temp:///my_curve.txt");

Comments
The line
CsWriter writer = openFileStreamWriter("temp:///my_curve.txt");
opens a Java® character stream and assigns it to the object writer belonging to
the class CsWriter.
The line
writer.append(header)
appends the contents of the string header to the (empty) file my_curve. txt.
The line

writer.flush();

writes the contents of the character stream buffer to file and empties the buffer but
does not close the stream permanently. At this point, you can still write more data
to the stream.

The line

writer.close();

closes the stream permanently. If you wish to write additional data to the file, you
have to open the stream again and append additional data.

218 |

Just as described above for the reader object, you can see which additional
methods are available for the writer object by using Ctrl+Space, as shown in the
figure below.

CsWriter writer = openFileStreamWriter("temp:///my curve.txt");

writer.
@ append(CharSequence)
int @ append(CharSeguence, int, int)
‘:"WI@ append(char)
:::I checkError()
o dowt® €lose0
10 dout® flushQ
11 stri@ format(Locale, String, Object..)
12 int @ format(String, Object..)

(93 S UV Y

o

1.1}, {1.3, @.8}, {-0.9, 1.8}}; // template

-

[+4]

13 @ print(Object)

14 Stri@ print(String) L4.8.123\r\n"
15 + S TETE T E YT I TO OO

16 +"% Description:\tInterpolation curve\rin"

17 +"% Coordinates:\r\n";

You can import the resulting interpolation data as an Interpolation Curve by
selecting the Sectionwise option for Data format. This can be done for a 2D
geometry object or for a Work Plane in 3D. The figure below shows the data
imported to a 2D model.

Mesages progresz Log
119681568

This example is part of a collection available for download:

www.comsol.com/model /application-programming-guide-examples-140771

1219

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:

e write_interpolation_curve_data.mph

WARITING BINARY FILES

You write data to a binary file by using the methods of the class CsBinaryWriter
in a way that is somewhat similar to that of writing text using CsWriter. However,
instead of writing strings and characters, you are writing bytes. To see how many
bytes each data type requires, see the table in the section “Primitive Data Types”
on page 8.

The example code below writes random 3D point data to a binary file. Each point
coordinate is stored as a double and takes 8 bytes to store. The first 4 bytes of the
file stores the number of points in the file as an int.

To conveniently convert between the regular data types, such as double, int, and
byte arrays, the Java® library method java.nio.ByteBuffer is needed. This
method is not part of the standard methods available in the Method Editor and
you need to use the fully qualified Java® class name java.nio.ByteBuffer, as
shown in the example code below.

byte[] bytes8 = new byte[8];

byte[] bytes4 = new byte[4];

CsBinaryWriter bwriter = openBinaryFileStreamWriter("temp:///
my_binary_file.dat");

int N = 1000;

java.nio.ByteBuffer.wrap(bytes4).putInt(N);
bwriter.write(bytes4);

double p[][] = new double[N][3];

for (int k = 0; k < N; k++) {
p[k][0] = Math.random();
java.nio.ByteBuffer.wrap(bytes8).putDouble(p[k][0]);
bwriter.write(bytes8);

p[kl[1] = Math.random();
java.nio.ByteBuffer.wrap(bytes8).putDouble(p[k][1]);
bwriter.write(bytess8);

plkl[2] = Math.random();
java.nio.ByteBuffer.wrap(bytes8).putDouble(p[k]l[2]);
bwriter.write(bytes8);
bwriter.flush();

}

bwriter.close();
fileSaveAs("temp:///my_binary_file.dat");
Comments
The first two lines declare byte arrays of size 8 and 4, respectively

The line

220 |

CsBinaryWriter bwriter = openBinaryFileStreamWriter("temp:///
my_binary_file.dat");

opens a Java® byte stream.

The line
int N = 1000; // The number of points

denotes the number of points written to file.

The line
ByteBuffer.wrap(bytes4).putInt(N);

uses the imported ByteBuffer method to convert the integer N to a byte array
bytes4 of length 4.
The line

bwriter.write(bytes4);

writes the value of N to file.
The for-loop creates N points and writes each x-, y-, and z-coordinate as doubles
using a byte array bytess of length 8.
The line
bwriter.flush();

empties the byte buffer and the last two lines

bwriter.close();

fileSaveAs("temp:///my_binary_file.dat");
close the byte stream and display a file browser to the user to select a location to
save the binary file.

READING BINARY FILES

Based on the data format of the previous example, the code below reads a
corresponding binary file and plots the points as 3D point data.
byte[] bytes8 = new byte[8];

byte[] bytes4 = new byte[4];
CsBinaryReader breader = openBinaryFileStreamReader("upload:///filel1");

breader.read(bytes4);
int N = java.nio.ByteBuffer.wrap(bytes4).getInt();

double p[][] = new double[N][3];
for (int k = 0; k < N; k++) {
breader.read(bytes8);
p[k][0] = java.nio.ByteBuffer.wrap(bytes8).getDouble();

breader.read(bytes8);
p[k][1] = java.nio.ByteBuffer.wrap(bytes8).getDouble();

| 221

breader.read(bytes8);
p[k][2] = java.nio.ByteBuffer.wrap(bytes8).getDouble();

}

breader.close();
double pt[][] = transpose(p);

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("pti1", "PointData");

plot.set("pointdata", pt);
plot.run();

useGraphics(model.result(pgTag), "formi/graphics1");

Comments
The line
CsBinaryReader breader = openBinaryFileStreamReader("upload:///filel1");
opens a Java® byte stream based on a File declaration file1, typically referenced
in a File Browser form object, as in the earlier examples on reading text files.

The two lines

breader.read(bytes4);
int N = ByteBuffer.wrap(bytes4).getInt();

read the first 4 bytes and convert them to an int N.

The following for-loop reads chunks of 8 bytes into the byte array bytess,
converts them and stores the results in a 2D double array p.

The line
breader.close();
closes the byte stream.

The last section of the example code plots the data and is similar to the example
in “Reading Matrix Files” on page 207.

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

¢ reading_and_writing_binary_data.mph

222 |

https://www.comsol.com/model/application-programming-guide-examples-140771

This files demonstrates reading and writing binary point data using a Settings Form
in the Model Builder, as shown in the figure below.

Bo = iy - o x

L

12768] 14568

ADDITIONAL COMMENTS ON READING AND WRITING BINARY FORMATS

When processing binary files, there are two formats in which bytes can be stored:
little endian and big endian, respectively. By default, Java® uses the big endian
format. For example, the line

p[k][2] = ByteBuffer.wrap(bytes8).getDouble();

is the same as
p[kl[2] = ByteBuffer.wrap(bytes8).order(ByteOrder.BIG_ENDIAN).getDouble();

In case the format you are reading is on the little endian format, the corresponding
line should be

p[kl[2] = ByteBuffer.wrap(bytes8).order(ByteOrder.LITTLE_ENDIAN).getDouble();

Converting Interpolation Curve Data

The following method converts a geometry Interpolation Curve to an Interpolation
function (by creating an interpolation table). The method demonstrates extracting

| 223

geometry information from the underlying parameterization of an edge. The edge
does not have to be an Interpolation Curve but can be any single edge.

The curve is checked for being a function curve with monotonously growing x
coordinates, which is required in order to be able to convert to an interpolation
function. Note that since an interpolation curve is represented using splines, even
though the interpolation points form a monotonous sequence, the resulting curve
may not; hence, the second consistency check (the first check can potentially be

skipped).
// Convert using N points
int N = 100;

double monoTol = 1e-6;
int edgeNum=1;

// Update and get geometry information
model.component("comp1").geom("geom1").run("fin");
GeomSequence geom1 = model.component("compi").geom("geomi");
GeomFeature ic1 = geomi.feature("ic1");

double[][] curvePoints = ic1.getDoubleMatrix("table");

int len = curvePoints.length;

double minX = curvePoints[0][O0];
double maxX = curvePoints[len-1][0];
double scale = maxX-minX;

double scaledTol = monoTol*scale;

for (int 1 = 1; i < len; i++) {
if ((curvePoints[i][0]-curvePoints[i-1][0]) < scaledTol) {
error("Curve needs to be a function curve with monotonously growing Xx
coordinates.");

224 |

}
}

double minMaxS[] = geoml.edgeParamRange (edgeNum);
double minS = minMaxS[O0];
double maxS = minMaxS[1];

double sList[] = new double[N];
for (int k = 0; k < N; k++) {
sList[k] = (double) (N-1-k)/(double) (N-1)*minS+k/(double) (N-1)*maxS;

}
double[][] XY = geoml.edgeX(1, sList);

for (int j = 1; j < N; j++) {
if ((XY[j1[0]1-XY[j-1]1[0]) < scaledTol) {
error("Curve needs to be a function curve with monotonously growing Xx
coordinates.");

}
}

// Create interpolation table
model.func().create("int1", "Interpolation");
with(model.func("int1"));

set("funcname", "int1");

set("interp", "cubicspline");

set("extrap", "linear");
endwith();

model.func("int1").set("table", toString(XY));

Comments
The method assumes that there is a geometry sequence geom1 with an
interpolation curve ic1. It further assumes that there are no other geometry
features and that the geometry object has a single edge. The integer N determines
how granular the interpolation table should be. It is assumed that there is only one
edge in the geometry sequence (edgeNum). Note that the curve parameter range
may not be the unit interval (minS does not have to be 0.0 and maxs does not have
to be 1.0). To run the method more than once, you can create a cleanup method
that contains the lines:

model.func().remove("int1");

model.result().remove("pgl1");

for removing previously created model tree nodes.

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

e converting_curve_to_function.mph

| 225

https://www.comsol.com/model/application-programming-guide-examples-140771

Plotting Points on a Parametric Surface

The following method retrieves coordinate values for a regularly sampled
parametric surface and plots the corresponding points using a Point Data plot. The
method demonstrates extracting geometry information from the underlying
parameterization of a surface. The example assumes that a parametric surface
geometry object has already been created.

v

12 11

05 03

JEEEEY

// Sample and plot N-by-N points on a parametric surface
int N = 20;
int faceNum = 1;

// Update and get geometry information
model.component("comp1").geom("geom1").run("fin");
GeomSequence geom1 = model.component("compi").geom("geomi");
GeomFeature ps1 = geomi.feature("psi1");

double minMaxS[] = geoml.faceParamRange(faceNum);
double minS1 = minMaxS[O0];
double maxS1 = minMaxS[1];
double minS2 = minMaxS[2];
double maxS2 = minMaxS[3];

double si1List[] = new double[N];
double s2List[] = new double[N];
for (int k = 0; k < N; k++) {
siList[k] = (double) (N-1-k)/(double) (N-1)*minS1+k/(double) (N-1)*maxSi;
s2List[k] = (double) (N-1-k)/(double) (N-1)*minS2+k/(double) (N-1)*maxS2;
}

226 |

double s12List[][] = new double[N*N][2];
for (int 1 = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
s12List[i+N*j][0] = siList[i];
s12List[i+N*j][1] = s2List[j];
}

}
double[][] XY = geoml.faceX(faceNum, s12List);

// Plot points
String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("pti1", "PointData");
double[][] p = new double[3][N*N];
double[] color = new double[N*N];
for (int 1 = 0; i < N*N; i++) {
p[O][i] = XY[i][O
p11[i] = XY[i][1
pl2][i] = XY[i][2
color[i] = p[1][1i
}
plot.set("pointdata", p)
.set("colordata", color)

3
)

3

)

.set("coloring", "colortable")
.set("sphereradiusscale", 1);
plot.run();
selectNode(pg);

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

¢ surface_points.mph

Defining a Parametric Sweep

This example shows how to automate the setup of a Parametric Sweep by
specifying the sweep parameters and their values programmatically.

| 227

https://www.comsol.com/model/application-programming-guide-examples-140771

Assume that we start from a file output. txt on the COMSOL Spreadsheet format
which corresponds to the output of a design of experiments (DoE) study, as
shown in the figure below.

% Model: thermal_actuator_simplified_DOE.mph

% Version: COMSOL 6.3.8.335

% Date: May 20 2825, 14:33

% Table: Design Data (QoIl-2) {tbl3} -

% dw (um) DV (V) compl.maxopl(T) compl.intopl(solid.disp)
25.50454949697162 3.805687642725162 373.2212548702561 3.8257349372546806E-7
17.468671849531766 1.4697397345513465 313.25048282324643 7.732485967283544E-8
18.78860807641181 3.3210276804843897 391.896993669815 3.786589895881099E-7
21.66778761561682 2.1665085434119487 335.85873515651837 1.658148166252236E-7
38.0848516156333474 2.670382681941675 354.9167628164862 2.8653056700467287E-7
31.95512040322993 0.7523835418710179 298.25359663640467 1.8960247212796185E-8
35.037880127623026 3.5011362289481093 398.2182778850843 3.54445208992936724E-7
22.558489974385555 3.976987601767621 431.1540698514672 5.3130415594422551E-7
23.996500036971935 1.1987198998966186 306.3242984238318 5.849138792448468E-8
29.080872423188556 3.777720027812895 416.4802744511956 4.697575161529692E-7
15.884285970813458 2.4734859589372084 349.38428381835334 2.1562253214856397E-7
37.27766257708829 0.997925418377444 301.998331429077 2.994182257772048E-8
39.762213823779284 4,206468621289461 440.7823728312756 4.766185329309543E-7
33.34611501537875 4.496618241322228 462.912927795650815 6.166921400446574E-7
26.30385892147541 4.915878834948295 497.0555186106453 7.559615087288%08E-7
34.52792435543927 1.9094486637254343 325.4896362763589 1.1091056424223514E-7
208.147673897527678 0.5120698483332385 295.5923925271519 9.525459806292485E-9
18.1285@7793834395 4.,717349251563936 485.55128494418566 7.292399411173065E-7
31.129300996017987 2.771422142921289 360.6356683704387 2.5230588848432844E-7
28.291617977455072 1.8001928508733944 322.3141760241563 1.86726886513393E-7

The first two columns are the input parameters and values to this study and the
last two columns are the output. Say that we now would like to create a parametric
sweep based on the two input columns. How do we bring this data into a
Parametric Sweep?

There are several ways of doing this and below are two examples.

The first example reads parameter values for the parameters dw and DV from a text
file. It converts each column into a space-separated string and then configures a
parametric sweep for the Sweep type option Specified combinations. It uses the
built-in readStringMatrixFromFile method and the inserts the contents into the
parametric sweep node in the current study by setting the properties plistarr,
pname, and punit accordingly. In this case the file output.txt is stored in the
model, under Libraries > Files, and is accessed using the file scheme syntax
embedded:///output.txt.

String[][] p = readStringMatrixFromFile ("embedded:///output.txt");

String[] pardwArray = getColumn(p, 0);

String[] parVArray = getColumn(p, 1);

String pardw = String.join(" ", pardwArray);

String parV = String.join(" ", parVArray);
model.study("std1").feature("param").set("plistarr", new String[]{pardw, parV});
model.study("std1").feature("param").set("pname", new String[]{"dw", "DV"});
model.study("std1").feature("param").set("punit", new String[]{"um", "V"});

The corresponding file is available for download (see below).

228 |

The second example reads the parameter values for the parameters dw and DV from
the same text file and formats them into the parametric sweep file format readable
from the user interface. Each row is constructed as:

<param_name> "vall val2 ..." [unit]

The resulting two-line table is written to a file that can be loaded as a sweep
definition from the Parametric Sweep table.

double[][] p = readMatrixFromFile ("embedded:///output.txt");
double[] pardw = getColumn(p, 0);
double[] parV = getColumn(p, 1);

int len = pardw.length+2; // +2 for parameter name and unit string, respectively
String[][] parSweep = new String[2][len];
parSweep[0][0] = "dw \"";
parSweep[1][0] = "DV \"";
for (int k = 1; k < len-1; k++) {
parSweep[0][k] = toString(pardw[k-1],4);
parSweep[1][k] = toString(parV[k-1]1,4);

}
parSweep[O][len-1] = "\" [um]";
parSweep[1][len-1] = "\" [V]";

String[][] fileContents = new String[2][1];
fileContents[0][0] = ""; // Not null
fileContents[1][0] = "";

for (int k = 0; k < len; k++) {
fileContents[0][0] = fileContents[O][0]+" "+parSweep[0][k];
fileContents[1][0] = fileContents[1][0]+" "+parSweep[1][k];
}

writeFile("temp:///parfile.txt", fileContents);
fileSaveAs("temp:///parfile.txt");

The figure below shows the results of importing the parametric sweep file.

Settings

Parametric §

ep
= Compute ¥ Update Solution
Label: Parametric Sweep =l

~ Study Settings

Sweep type: Specified combinations =
" Parameter name Parameter value list Parameter unit
dw (Height of the cold arm) ~ | 25.50 17.47 18.79 21.67 38.04 31.96 35.04 22.56 24.00 29.08 15.88... |(um
DV (Applied voltage) ~ | 3.006 1.470 3.321 2.167 2,670 0.7524 3.501 3.977 1,199 3.778 2.473... |V
+5 V- |

Note: the syntax
String out = toString(double value, int digits)

| 229

is used to format the numeric value in a string to a specified number of significant
digits.

This example is part of a collection available for download:

www.comsol.com/model /application-programming-guide-examples-140771

The relevant file for this example is:

e thermal_actuator_simplified_read_parameters.mph

Using Selections

USING SELECTIONS FOR EDITING GEOMETRY OBJECTS

The following method generates a plate with an array of cylinders. The cylinders
may be used, for example, in a difference operation to create an array of holes in
the plate.

GeomSequence geom = model.component("comp1").geom("geomi");
geom.create("blk1", "Block");

geom.feature("blk1").set("size", new int[]{10, 10, 1});
geom.create("start_cyl1", "Cylinder");
geom.feature("start_cyl1").set("pos", new double[]{2.5, 2.5, 0});
geom.create("arr1", "Array");
geom.feature("arr1").selection("input").set("start_cyli");
geom.feature("arrt1").set("fullsize", new int[]{2, 2, 1});
geom.feature("arr1").set("displ", new int[]{5, 5, 0});
geom.run("arri");

230 |

https://www.comsol.com/model/application-programming-guide-examples-140771

The resulting geometry is shown in the figure below.

G128

Assume now that the resulting geometry, from the previous step, corresponds to
an imported geometry object and that you would like to replace the cylinders with
larger cylinders before subtracting and generating the holes. Furthermore, assume
that the cylinder objects are generated by an external software in such a way that,
although you know these objects are cylinders, they are represented as generic
geometry objects with no information on radius, height, or position. The
following method finds the array of cylinders, extracts coordinate information for
cach cylinder, deletes the cylinders, creates a new array of wider cylinders, and

| 231

finally subtracts the cylinders from the plate. The resulting geometry is shown in
the figure below.

TsGe|1GE

The method exemplifies retrieval of geometry object names, coordinate
information, and the use of selections. To start from another geometry object
(which is also necessarily a plate with cylinders), you can replace the string tag in
the variable plateAndCylinders accordingly.

double
double
double
double
String

selTol = 1e-2; // Selection tolerance
newR = 1.25; // New cylinder radius
newH = 1; // New cylinder height
plateThickness = 1; // Plate thickness
plateAndCylinders = "arri";

// Update and split geometry
model.component("comp1").geom("geom1").run("fin");

GeomSequence geom = model.component("compi").geom("geomi");
geom.run(plateAndCylinders);

geom.create("spl1", "Split");
geom.feature("spli1").selection("input").set(plateAndCylinders);
geom.run("spl1");

// Find extents of geometry in x,y,z directions
double[] bBox = geom.getBoundingBox();

double
double
double
double
double
double

MinX = bBox[O0];
MaxX = bBox[1];
MinY = bBox[2];
MaxY = bBox[3];
MinZ = bBox[4];
MaxZ = bBox[5];

// Define scaled coordinate tolerance

232 |

double scale = Math.max(Math.max(MaxX-MinX, MaxY-MinY), MaxZ-MinZ);
double scaleSelTol = scale*selTol;

// Create box selection based on geometry extents
geom.create("boxsell", "BoxSelection");
with(geom.feature("boxsell"));
// Select boundaries inside box in X-Y direction using tolerance
set("xmin", MinX+scaleSelTol);

set("xmax", MaxX-scaleSelTol);
set("ymin", MinY+scaleSelTol);
set("ymax", MaxY-scaleSelTol);
set("zmin", MinZ-scaleSelTol);
set("zmax", MaxZ+scaleSelTol);
set("condition", "inside");
set("entitydim", -1); // Select objects
endwith();

geom.run("boxsell");

// Get object names
String[] so = geom.selection("boxsell").objects();
int nso = so.length;

// Extract cylinder parameters
double[] MinXC = new double[nso];
double[] MaxXC = new double[nso];
double[] MinYC = new double[nso];
double[] MaxYC = new double[nso];
double[] MinZC = new double[nso];
double[] MaxZC = new double[nso];
double[] bBoxC = new double[6];
for (int i = 0; i < nso; i++) {

bBoxC = geom.obj(so[i]).getBoundingBox();

MinXC[i] = bBoxC[O0];

MaxXC[i] = bBoxC[1];

MinYC[i] = bBoxC[2];

MaxYC[i] = bBoxC[3];

MinZC[i] = bBoxC[4];

MaxZC[i] = bBoxC[5];
}

double[] radius = new double[nso];
double[] xc = new double[nso];
double[] yc = new double[nso];
double[] zc = new double[nso];
double[] hc = new double[nso]

double ry;
double tol = scale*1e-6; // Tolerance check for skew cylinders, optional
consistency check
for (int 1 = 0; i < nso; i++) {
xc[i] (MaxXC[i]+MinXC[i])/2;
yc[i] = (MaxYC[i]+MinYC[i])/2;
zc[i] = (MaxZC[i]+MinzC[i])/2;
hc[i] = MaxZC[i]-MinzZC[i];
radius[i] = (MaxXC[i]-MinXC[i])/2;
ry = (MaxYC[i]-MinYC[i])/2;

| 233

if (Math.abs(radius[i]-ry) > tol)
error("Object is not a circular cylinder.");

}

// Delete all cylinder objects
geom.create("dell", "Delete");
geom.feature("dell").selection("input").init();
geom.feature("dell").selection("input").set(so0);
geom.run("dell");

// Add new cylinders
String[] cylname = new String[nso];
for (int i = 0; i < nso; i++) {
cylname[i] = "cyl"+toString(i+1);
geom.create(cylname[i], "Cylinder");
with(geom.feature(cylname[i]));
set("r", newR);
set("h", newH+2*scaleSelTol);

set("pos", new double[]{xc[i], yc[i], plateThickness-2*zc[i]-scaleSelTol});

endwith();
}

// Combine all cylinders into one object
geom.create("uni1", "Union");
geom.feature("unit1").selection("input").set(cylname);
geom.run("unit");

// Difference between all objects and cylinders
geom.create("dift1", "Difference");

String[] objs = geom.objectNames();
geom.feature("dif1").selection("input").set(objs);
geom.feature("dif1").selection("input2").set("uni1");
geom.run("dif1");

Comments
The method assumes that the input geometry objects have the same structure as
the plate with cylinders example above. Note that to clear the geometry sequence,
you can create a method with the line

model.component ("comp1").geom("geomi1").feature().clear();

This can be useful if you are running the main method from above repeatedly,
since you need to clear the geometry sequence before each run.
The first of the lines

geom.feature("dell").selection("input").init();

geom.feature("dell").selection("input").set(so0);

initializes the selection to be empty of type object. The second line then selects all
objects with names in the array so. In general, a call to init() without input
argument means that the selection is for objects and init (n), where n=0,1,2, or 3,
means that the selection is for points, edges, faces, and domains, respectively. Note

234 |

that in some cases n=-1 is used to denote the object level (instead of an empty
input argument); see the Programming Refervence Manual.

The figure below shows an example based on a larger array of cylinders.

S BDBEUR > N BOEEE SR
e

stils Py weh sy Res

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant files for this example are:

¢ plate_with_four_cylinders.mph

e plate_with_four_hundred_cylinders.mph

SELECTING AND PARTITIONING EDGES FOR A CYLINDER OBJECT

The following two examples show how to make selections for a geometry feature
that partitions the edges in a geometry. In this case the geometry is a cylinder
object but the method is applicable to any geometry object as shown in the
subsequent section.

The first example generates a cylinder and then inserts a PartitionEdges feature
("pare1") to subdivide four specific cylinder edges at parametric positions 0.25,
0.50, and 0.75 along their lengths, runs the partition, and then selects the
partition feature in the Model Builder for further operations. You can, for
example, use such a partition, under the Mesh node, to select edges for mesh
refinement.

clearModel(model);
model.component().create("comp1", true);
ModelNode compi = model.component("compi");

| 235

https://www.comsol.com/model/application-programming-guide-examples-140771

compi.geom().create("geomi", 3);

GeomSequence geom1 = compl.geom("geomi");
geomi.create("cyll", "Cylinder");
geomi.feature("cyll").set("r", 0.5);
geomi.feature("cyll").set("h", 2);
geomi.feature("cyll").set("pos", new double[]{0, 0, -1});
geomi.run("cyll");

geomi.create("parel", "PartitionEdges");
geoml.feature("parel").selection("edge").set("cyl1", 4, 5, 8, 11);
geomi.feature("parel").setIndex("param", 0.25, 0);
geomi.feature("paretl").setIndex("param", 0.5, 1);
geomi.feature("parel").setIndex("param", 0.75, 2);
geoml.run("parel");

selectNode(geomi.feature("parel"));

).
) -
).
) -

The second example is identical apart from the selection part, which is now
replaced by a call to the method al1, which selects all available edges.

clearModel(model);

model.component().create("comp1", true);

ModelNode comp1 = model.component("compi1");
compi.geom().create("geomi", 3);

GeomSequence geom1 = compl.geom("geomi");
geomi.create("cyll", "Cylinder");
geomi.feature("cyltl").set("r", 0.5);
geomi.feature("cyll").set("h", 2);
geomi.feature("cyll").set("pos", new double[]{0, 0, -1});
geomi.run("cyltl");

geomi.create("parel", "PartitionEdges");
geomi.feature("parel").selection("edge").all();
geomi.feature("parel").setIndex("param", 0.25, 0);
geomi.feature("parel").setIndex("param", 0.5, 1);
geomi.feature("parel").setIndex("param", 0.75, 2);
geomi.run("parel");
selectNode(geomi.feature("parel"));

236 |

The all method can be used for most geometry features for selecting all geometric
entities (domains, boundaries, edges, points). The following picture shows the
results of the second example, zoomed in on one of the edges.

- o x
a
R
% & -
ot A et Ademet e
ey | oo = =
suar s
Graphics
aa@- @@ L.t L B ®. @58 *2@. B-EFre-2E@ T c-ad
- @ bt Ot o

b PationEdges =]
—parel 120
+ edge selecion pel

Edges o parvon

' [
s
Srchngih
e

Buit it COMSOL 630335 (i, My 2, 2025, 15515

13561186

To view all available selection methods, type

geomi.feature("pareil").selection("edge")

then press Ctrl + Space. The code-completion popup below will list the options,
as shown in the figure below:

cleariodel (model);

model.component().create(compl”, true);

ModelNode compl = model.component(”compl™);
compl.geom().create("geonl”, 3);

GeomSequence geoml ompl.geom(“geoml®);
geoml.create("cyll", "Cylinder®);
geoml.feature("cy11").set("r", 8.5);

geoml.feature(cyll”).set("h", 2);
geoml.feature("cyll").set("pos", new double[1{@, @, -1});
geoml.run(cyll");

geoml.create(“parel”, "Partitionfdges");
geoml.feature“parel”).selection(“edge").|
geoml.Feature("parel").setIndex("paran@ add(String oname, int entity, int... entities)
geoml . feature(“parel”).setIndex("parang
geoml . Feature("parel").setIndex("parang
geoml.run(“parel”);

add(String oname, intf] entities)
2dd(String... onames)

setectioge(geont. Feature(“pare1®)); |0 2dEtingllename, intlJ] entites)
@)
@ all(String oname) Sets the selection to be all entities of the given object. Does not affect the selection on other
@ all(String[] onames) objects.
@ clear()
@ clear(String oname) Parameters:

oname Object name

Returns: GeomObjectSelection
Geometry object selection

This example is part of a collection available for download:

www.comsol.com/model /application-programming-guide-examples-140771

| 237

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:

e cylinder_edge_partition_and_selections.mph

SELECTING AND PARTITIONING EDGES FOR GENERAL OBJECTS

The following examples are similar to the ones in the previous section but show
how to make selections for a geometry feature that partitions the edges in one of
several geometry objects. This example features a cone and a block object.

The first example shows how to select and partition all edges of all objects.
clearModel(model) ;

// Create a 3D component and geometry
model.component().create("compl", true);
ModelNode comp1 = model.component("comp1");
compi.geom().create("geomi", 3);
GeomSequence geom1 = compl.geom("geomi");

// Create a cylinder object

geomi.create("cyll", "Cylinder");
geomi.feature("cyltl").set("r", 0.5);
geomi.feature("cyll").set("h", 2);
geomi.feature("cyll").set("pos", new double[]{0, O, -1});
geomi.run("cyll");

// Create a block object
geomi.create("blk1", "Block");
geomi.run("blk1");

// Get the names of all objects
String[] objs = model.component("comp1").geom("geom1").objectNames();
debuglLog(objs); // Display all object names in the Debug Log window

// Create an edge partition feature
geoml.create("parel", "PartitionEdges");
geomi.feature("parel").selection("edge").all(objs);

// Note, also the following syntax would work:
// geomi.feature("parel").selection("edge").all();

geomi.feature("parel").setIndex("param", 0.25, 0);
geomi.feature("parel").setIndex("param", 0.5, 1);
geomi.feature("parel").setIndex("param", 0.75, 2);
geomi.run("parel");

selectNode(geomi.feature("parel"));

The call to:

geomi.feature("parel").selection("edge").all(objs);

is very similar to using Ctrl+A in the user interface for selecting all edges.

To instead select all edges of just the second object (the block), use:

geoml.feature("parel").selection("edge").all(objs[1]);

238 |

Finally, to partition just 4 of the second object’s edges, use:
int[] edges = new int[]1{1, 2, 3, 4};
geomi.feature("parel").selection("edge").set(objs[1], edges);

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

e geom_edge_partition_and_selections.mph

USING SELECTIONS TO MEASURE GEOMETRIC OBJECTS

The following example creates a cone of base radius 1 and height 1 and measures
its various geometric properties. This code uses selections based on geometric
entity numbers, however, the selection techniques from the previous section can
also be used.

// Clear the model
clearModel(model);

// Create a 3D component and geometry
model.modelNode().create("comp1");
model.geom().create("geom", 3);

// Add a cone to the geometry

ModelNode comp1l = model.component("comp1");
GeomSequence geom = compl.geom("geom");
geom.create("conel", "Cone");
geom.feature("conel").set("specifytop", "radius");
geom.feature("conel").set("rtop", 0);
geom.run("conel");

// Build the geometry
model.geom("geom").run();

// Measure the properties of the geometry

// Select the volumetric domain of the cone object
geom.measure().selection().init(3);
geom.measure().selection().set("conel", 1);

// Measure properties from domain selection

double vol = geom.measure().getVolume(); // The volume of the cone

double volArea = geom.measure().getBoundaryArea(); // The total boundary area of
the cone based on the domain selection

// Select all of the boundaries of cone object
geom.measure().selection().init(2);
geom.measure().selection().all();

// Measure properties from boundary selection (all)

double bndArea = geom.measure().getArea(); // The total boundary area of the cone
based on selecting all boundaries

| 239

https://www.comsol.com/model/application-programming-guide-examples-140771

// Select one of the boundaries of the cone object (the bottom surface of the cone)
geom.measure().selection().init(2);
geom.measure().selection().set("conel", 2);

// Measure properties from boundary selection (boundary 2)
double boundaryPerimeterLength = geom.measure().getBoundaryVolume();

// Select the edges of the bottom surface of the cone
geom.measure().selection().init(1);

int[] edges = new int[]{1, 3, 5, 8}; // The list of edges stored in an array
(vector)

geom.measure().selection().set("conel1", edges);

// geom.measure().selection().set("cone1", 1, 3, 5, 8); // Alternative syntax

// Measure properties from edge selection (edges 1,3,5,8)
double edgePerimeterLength = geom.measure().getLength(); // The total boundary
area of the cone based on selecting all boundaries

// Select two of the vertices: the apex and one of the bottom surface vertices
geom.measure().selection().init(0);

int[] vertices = new int[]{1, 3}; // The list of vertices stored in an array
(vector)

geom.measure().selection().set("conel", vertices);

// Measure properties from vertex selection (vertices 1,3)
double[] dist = geom.measure().getVtxDistance(); // d[0] is the distance, and
d[i] is the distance in the ith coordinate (i = 1, 2, 3).

// Select the apex vertex
geom.measure().selection().set("conel", 3);

// Get the coordinates for the apex vertex (3)
double[] coord = geom.measure().getVtxCoord();

// Display the results in the Debug Log window

debugLog("Cone volume = "+vol);

debugLog("Cone area, from domain selection = "+volArea);

debuglLog("Cone area, from boundary selection = "+bndArea);

debuglLog("Cone bottom surface perimeter length from boundary selection = "+
boundaryPerimeterLength);

debuglLog("Cone bottom surface perimeter length from edge selection = "+
edgePerimeterLength);

debuglLog("Distance between two points = "+dist[0]);

debuglLog("X-distance between two points = "+dist[1]);
debuglLog("Y-distance between two points = "+dist[2]);
debuglLog("Z-distance between two points = "+dist[3]);

debuglLog("X-coordinate of apex vertex = "+coord[0]);
debuglLog("Y-coordinate of apex vertex = "+coord[1]);
debuglLog("Z-coordinate of apex vertex = "+coord[2]);

// Note that you can also display the results in the Messages window, for example:
message("Cone volume = "+vol);

The syntax:

geom.measure().selection().init(0);
geom.measure().selection().init(1);

240 |

geom.measure().selection().init(2);

geom.measure().selection().init(3);
is used to change the selection mode to vertices, edges, boundaries, and domains,
respectively.
The syntax:

geom.measure().selection().set("cone1", 1, 3, 5, 8);

is equivalent to:
int[] edges = new int[]{1, 3, 5, 8};
geom.measure().selection().set("conel", edges);
and follows the general pattern:

geom.measure().selection().set(objectName, entityNumbers);

where objectName is the name of the geometry object and entityNumbers is an
integer vector of geometric entity numbers (vertices, edges, boundaries, or
domains).

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

* measure_cone.mph

For examples of measuring similar quantities for the entire model using Results
tools, see “Measuring Model Quantities” on page 244.

USING SELECTIONS ON THE FINALIZED GEOMETRY

Selections applied to the finalized geometry differ from those applied to individual
geometry objects within the geometry sequence under the Geometry node.
Finalized geometry selections are used by Model Builder nodes such as Materials,
Mesh, and physics interfaces like Heat Transfer in Solids. They are also used under a
model component, such as Component |, for defining Variables, Nonlocal Couplings,
and other features that operate on the finalized geometry.

The following example sets up and runs a 3D stationary heat transfer simulation,
using selections defined by direct reference to geometric entity numbers.

clearModel(model);

model.component().create("compl", true);
model.component("compi").geom().create("geom1", 3);
model.component("comp1").geom("geom1").geomRep("comsol");
model.component("compi").mesh().create("mesh1");

model.component("comp1").geom("geom1").create("cyl1", "Cylinder");
model.component("comp1").geom("geom1").feature("cyl1").set("h", 0.1);
model.component("compi").geom("geom1").feature("cyl1").set("r", 0.005);
model.component ("comp1").geom("geom1").run();

| 241

https://www.comsol.com/model/application-programming-guide-examples-140771

model.component("comp1").geom("geomi1").create("arr1", "Array");
model.component("comp1").geom("geom1").feature("arr1").selection("input").set("
cyli");

model.component("comp1").geom("geom1").feature("arr1").set("fullsize", new
int[1{8, 8, 1});
model.component("comp1").geom("geom1").feature("arr1").set("displ", new
double[]{0.02, 0.02, 0});

model.component ("comp1").geom("geom1").run();

model.component("comp1").physics().create("ht", "HeatTransfer", "geomi");

model.component("comp1").material().create("mat1", "Common");
model.component ("comp1").material("mat1").label("Steel AISI 4340");
model.component("comp1").material("mat1").propertyGroup("def").set("density",
"7850[kg/m"31");
model.component("comp1").material("mat1").propertyGroup("def").set("heatcapacit
y", "475[J/(kg*K)1");
model.component("comp1").material("mat1").propertyGroup("def")
.set("thermalconductivity", new String[]{"44.5[W/(m*K)]1", "0", "O", "O",
"44.5[W/(m*K)]", "0", "0", "O", "44.5[W/(m*K)]"});

model.func().create("rn1", "Random");
model.func("rn1").set("type", "uniform");
model.func("rn1").set("nargs", 3);
model.func("rn1").set("mean", 0.5);

model.component ("comp1").physics("ht").create("temp1", "TemperatureBoundary",
2);

model.component("comp1").physics("ht").feature("temp1").set("T0", "300[K]");
int[] bnds = new int[]{3, 7, 11, 21, 25, 29, 39, 43, 47};

model.component ("comp1").physics("ht").feature("temp1").selection().set(bnds);

model.component("comp1").physics("ht").create("hs1", "HeatSource", 3);

int[] doms = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9};

model.component ("comp1").physics("ht").feature("hs1").selection().set(doms);
model.component("comp1").physics("ht").feature("hs1").set("Q0", "1e6*(1+
rni(x,y,z))");

model.study().create("std1");

model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/ht", true);
model.study("std1").createAutoSequences("all");
model.sol("sol1").runAll();

model.result().create("pgl", "PlotGroup3D");
model.result("pg1").label("Temperature (ht)");
model.result("pgl1").feature().create("voll", "Volume");
model.result("pgl1").feature("voll").set("colortable", "HeatCameraLight");
model.result("pgl").run();

The following lines illustrate how selections are applied to boundary surfaces in a

physics interface:

model.component ("comp1").physics("ht").create("temp1", "TemperatureBoundary",
2);

model.component("comp1").physics("ht").feature("temp1").set("T0", "300[K]");
int[] bnds = new int[]{3, 7, 11, 21, 25, 29, 39, 43, 47};

242 |

model.component ("comp1").physics("ht").feature("temp1").selection().set(bnds);

In the first line, the final argument 2 specifies that the selection targets entities of
dimension 2, that is, boundary surfaces. Aside from this dimension specification,
the syntax is similar to selections applied to individual geometry objects.

Similarly, selections for volumetric domains are specified as follows:

model.component("comp1").physics("ht").create("hs1", "HeatSource", 3);
int[] doms = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9};
model.component("comp1").physics("ht").feature("hs1").selection().set(doms);
model.component ("comp1").physics("ht").feature("hs1").set("Q0", "1e6*(1+
rni(x,y,z))");
Here, the argument 3 in the first line refers to entities of dimension 3,
corresponding to domains (volumes) in the geometry.

To use named explicit selections instead of directly referencing entity numbers in
physics features, replace the previous code blocks with the following:

model.component ("comp1").selection().create("sel1", "Explicit");
model.component ("comp1").selection("sel1").geom(2);
model.component("comp1").selection("sel1").label("Temperature Boundaries");
int[] bnds = new int[]{3, 7, 11, 21, 25, 29, 39, 43, 47};

model.component ("comp1").selection("sel1").set(bnds);

model.component ("comp1").physics("ht").create("temp1", "TemperatureBoundary",
2);

model.component ("comp1").physics("ht").feature("temp1").set("T0", "300[K]");
model.component ("comp1").physics("ht").feature("temp1").selection().named("sell

")

model.component ("comp1").selection().create("sel2", "Explicit");
model.component("comp1").selection("sel2").geom(3);

int[] doms = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9};
model.component("comp1").selection("sel2").label("Heat Source Domains");
model.component ("comp1").selection("sel2").set(doms);

model.component("comp1").physics("ht").create("hs1", "HeatSource", 3);
model.component("comp1").physics("ht").feature("hs1").selection().named("sel2")

éodel.component(“comp1").physics(“ht").feature("hs1").set("QO“, "1e6* (1+
rni(x,y,z))");
Selections created with model.component ("comp1").selection() can be placed
anywhere earlier in the code, as long as they are defined before the finalized
geometry is created. This approach is generally preferred, as named explicit
selections promote reuse and improve the clarity of the model structure.

To retrieve the geometric entities associated with physics feature selections, you
can use the inputEntities() method. This should be done after either of the
selection creation methods, whether by direct entity numbers or named explicit
selections, has been called. The following code demonstrates this:

// Retrieve the geometric entities for the Temperature Boundary selection

| 243

int[] entitiesT =

model.component ("comp1").physics("ht").feature("temp1").selection().inputEntiti
es();

debuglLog("Geometric entities for the temperature boundary selection:");
debuglLog(entitiesT);

// Retrieve the geometric entities for the Heat Source selection
int[] entitiesHS =
model.component ("comp1").physics("ht").feature("hs1").selection().inputEntities

)3
debuglLog("Geometric entities for the heat source domain selection:");
debuglLog(entitiesHS);

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

* heat_transfer_in_cylindrical_rod_array_selections.mph

Measuring Model Quantities

For measuring geometric and mass properties of a finalized geometry, use the
Measure options under Results > Evaluation Group or Results > Derived Values. Note
that, for historical reasons, Derived Values are referred to as Numerical in the
COMSOL API. The Evaluation Group option is a more recent addition to
COMSOL Multiphysics and is the recommended option. The examples below
applies to the Thermal Microactuator Simplified model, which you can find in the
Application Libraries at COMSOL Multiphysics > Multiphysics.

The complete example, including the method code, is part of a collection available
for download:

www.comsol.com/model /application-programming-guide-examples-140771

The relevant file for this example is:

¢ thermal_actuator_simplified_measure.mph

The two code listings below computes the following quantities, using Evaluation
Group and Derived Values, respectively:

* Volume of the entire model (domain 1)

 Surface are of boundary 3

* Length of edge (line) 173

« Distance between vertices 155 and 167

» Mass of the entire model (domain 1)

* Center of mass coordinates

244 |

https://www.comsol.com/model/application-programming-guide-examples-140771
https://www.comsol.com/model/application-programming-guide-examples-140771

The first four quantities use purely geometry measure features: MeasureVolume,
MeasureSurface, MeasureLine, MeasureDistance.

The last two use the MassProperties feature, which also recomputes volume, so
you see the volume twice (once from MeasureVolume, once from MassProperties).

Unit sources:

* Length and distance units are inherited from the Geometry node’s unit
setting.

* Volume and area units come from the model’s Unit System, defined at the
root node.

Using Evaluation Group
// Create the Evaluation Group

model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// — 1) Volume —

model.result().evaluationGroup("eg1").create("meas1", "MeasureVolume");
model.result().evaluationGroup("eg1").feature("meas1").set("unit", "um"3");
model.result().evaluationGroup("egl1").feature("meas1").selection().set(1);
model.result().evaluationGroup("eg1").run();

double[][] volumeResult = model.result().evaluationGroup("eg1").getReal();
double volume = volumeResult[0][O0];

String volumeUnit =
model.result().evaluationGroup("eg1").feature("meas1").getString("unit");
debugLog("Volume: "+volume+" "+volumeUnit);

/| — 2) Surface area —
model.result().evaluationGroup("egl1").create("meas2", "MeasureSurface");
model.result().evaluationGroup("eg1").feature("meas2").set("unit", "um~2");
model.result().evaluationGroup("eg1").feature("meas2").selection().set(3);
model.result().evaluationGroup("eg1").run();

double[][] areaResult = model.result().evaluationGroup("eg1").getReal();
double area = areaResult[O0][1];

String areaUnit =
model.result().evaluationGroup("eg1").feature("meas2").getString("unit");
debuglLog("Surface area: "+area+" "+areaunit);

// — 3) Line length —

model.result().evaluationGroup("eg1").create("meas3", "MeasureLine");

model.result().evaluationGroup("eg1").feature("meas3").set("unit", "um");

model.result().evaluationGroup("egl1").feature("meas3").selection().set(173);
).

model.result().evaluationGroup("eg1").run();

double[][] lengthResult = model.result().evaluationGroup("eg1").getReal();
double length = lengthResult[0][2];

String lengthUnit =
model.result().evaluationGroup("eg1").feature("meas3").getString("unit");
debugLog("Line length: "+length+" "+lengthUnit);

/| — 4) Distance between two points —

| 245

model.result().evaluationGroup("eg1").create("meas4", "MeasureDistance");
model.result().evaluationGroup("eg1").feature("meas4").set("unit", "um");
model.result().evaluationGroup("eg1").feature("meas4").selection().set(155,
167);

// Alternative syntax:

// int[] vertices = new int[]{155, 167};

/1
model.result().evaluationGroup("eg1").feature("meas4").selection().set(vertices
)5

model.result().evaluationGroup("eg1").run();

double[][] distResult = model.result().evaluationGroup("eg1").getReal();
double distance = distResult[0][3];

String distUnit =
model.result().evaluationGroup("eg1").feature("meas4").getString("unit");
debuglLog("Distance: "+distance+" "+distUnit);

// — 5) Mass properties —
model.result().evaluationGroup("egl1").create("mass1", "MassProperties");
model.result().evaluationGroup("eg1").feature("mass1").selection().set(1);
model.result().evaluationGroup("egl1").feature("mass1").setIndex("unit", "um~3",
0);

model.result().evaluationGroup("eg1").feature("mass1").setIndex("unit", "mg",
1);
model.result().evaluationGroup("eg1").feature("mass1").setIndex("unit", "um",
2);

// Enable volume, mass and center-of-mass contributions
model.result().evaluationGroup("eg1").feature("mass1").setIndex("contributionen
abled", true, 0);
model.result().evaluationGroup("eg1").feature("mass1").setIndex("contributionen
abled", true, 1);
model.result().evaluationGroup("eg1").feature("mass1").setIndex("contributionen
abled", true, 2);

model.result().evaluationGroup("eg1").run();

double[][] massResult = model.result().evaluationGroup("eg1").getReal();
double massVolume = massResult[0][4];

double massMass = massResult[0][5];

double cmX = massResult[O][6];

double cmY = massResult[0][7];

double cmZ = massResult[0][8];

// Retrieve the unit strings
String[] massUnits =
model.result().evaluationGroup("eg1").feature("mass1").getStringArray("unit");

debuglLog("Mass volume: "+massVolume+" "+massUnits[O0]);
debuglLog("Mass: "+massMass+" "+massUnits[1]);

debugLog("CofM x: "+cmX+" "+massUnits[2]);

debugLog("CofM y: "+cmY+" "+massUnits[2]);

debugLog("CofM z: "+cmzZ+" "+massUnits[2]);

selectNode (model.result().evaluationGroup("egl1").feature("meas1"));

Using Derived Values

// — 1) Volume —

246 |

model.result().numerical().create("meas1", "MeasureVolume");
model.result().numerical("meas1").set("unit", "um~3");
model.result().numerical("meas1").selection().set(1);

double[][] volumeResult model.result().numerical("meas1").getReal();
double volume = volumeResult[0][O0];

String volumeUnit = model.result().numerical("meas1").getString("unit");
debugLog("Volume: "+volume+" "+volumeUnit);

/| — 2) Surface area —
model.result().numerical().create("meas2", "MeasureSurface");
model.result().numerical("meas2").set("unit", "um~2");

model.result().numerical("meas2").selection().set(3);

double[][] surfaceResult = model.result().numerical("meas2").getReal();
double area = surfaceResult[O0][O];

String areaUnit = model.result().numerical("meas2").getString("unit");
debuglLog("Surface area: "+areat+" "+areaUnit);

// — 3) Line length —
model.result().numerical().create("meas3", "MeasureLine");
model.result().numerical("meas3").set("unit", "um");

model.result().numerical("meas3").selection().set(173);

double[][] lineResult = model.result().numerical("meas3").getReal();
double length = lineResult[O0][O0];

String lengthUnit = model.result().numerical("meas3").getString("unit");
debugLog("Line length: "+length+" "+lengthUnit);

// — 4) Distance between two points —
model.result().numerical().create("meas4", "MeasureDistance");
model.result().numerical("meas4").set("unit", "um");

model.result().numerical("meas4").selection().set (155, 167);

double[][] distanceResult = model.result().numerical("meas4").getReal();
double distance = distanceResult[0][O0];

String distanceUnit = model.result().numerical("meas4").getString("unit");
debuglLog("Distance: "+distance+" "+distanceUnit);

// — 5) Mass properties —
model.result().numerical().create("mass1", "MassProperties");
model.result().numerical("mass1").selection().set(1);

model.result().numerical("mass1").setIndex("unit", "um~3", 0);
model.result().numerical("mass1").setIndex("unit", "mg", 1);
model.result().numerical("mass1").setIndex("unit", "um", 2);

// Enable volume, mass and center?of?mass contributions

model.result().numerical("mass1").setIndex("contributionenabled", true, 0);
model.result().numerical("mass1").setIndex("contributionenabled", true, 1);
model.result().numerical("mass1").setIndex("contributionenabled", true, 2);

double[][] massResult = model.result().numerical("mass1").getReal();
double massVolume = massResult[0][O0];

double massMass = massResult[1][O0];

double cmX = massResult[2][0];

double cmY = massResult[3][0];

double cmZ = massResult[4][0];

// Retrieve the unit strings
String[] massUnits = model.result().numerical("mass1").getStringArray("unit");

| 247

debuglLog("Mass volume: "+massVolume+" "+massUnits[O0]);
debuglLog("Mass: "+massMass+" "+massUnits[1]);
debugLog("CofM x: "+cmX+" "+massUnits[2]);
debugLog("CofM y: "+cmY+" "+massUnits[2]);
debugLog("CofM z: "+cmzZ+" "+massUnits[2]);

selectNode (model.result().numerical("meas1"));

Comments

Note that when using Derived Values, the massResult array comes back transposed
compared to the array returned by an Evaluation Group.

Instead of using the ASCII letter u for the micro-prefix, you can embed the

Unicode micro sign (\u00b5) in your unit strings. For example:
model.result().evaluationGroup("eg1").feature("meas1").set("unit",
"\u00b5m~3") ;

This forces the output to render um~3 rather than um*3.

Rather than hard-coding geometric entity numbers (for example 155, 167), define
a named Explicit selection and reuse it. For example:

// Create the Evaluation Group
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Create Explicit named selections

model.component ("comp1").selection().create("sel4", "Explicit");
model.component("comp1").selection("sel4").geom(0);

model.component ("comp1").selection("sel4").label("Short Distance");
int[] vertices = new int[]{155, 167};

model.component ("comp1").selection("sel4").set(vertices);

// —— Distance between two points —
model.result().evaluationGroup("eg1").create("meas4", "MeasureDistance");
model.result().evaluationGroup("egl1").feature("meas4").set("unit", "\uOOb5m");

model.result().evaluationGroup("eg1").feature("meas4").selection().named("sel4"
)5

model.result().evaluationGroup("eg1").run();

double[][] distResult = model.result().evaluationGroup("eg1").getReal();
double distance = distResult[0][O0];

String distUnit
model.result().evaluationGroup("eg1").feature("meas4").getString("unit");
debuglLog("Distance: "+distance+" "+distUnit);

Note: If you use the Record Code or Record Method tools, the generated code will
match the default user interface behavior, it writes all evaluated results into
Evaluation Group tables or Table objects. It will not include direct assignments into
double[][] arrays or double variables as shown above. The 2D array format is
needed because each evaluation feature can compute multiple expressions or
perform parametric sweeps.

248 |

To account for the circumferential contribution in revolved geometries, set the
intvolume flag on a surface measure (and similar for other measures):

model.result().evaluationGroup("egl1").feature("meas2").set("intvolume", true);

This treats the surface integral as a revolved volume.

Using Numerical Results in a Model or Application

The numerical results retrieved using the API are stored in standard Java variables,
such as double and String. This allows you to use them directly in custom model
method code to automate modeling workflows. Similarly, these variables can be
linked to Declarations in the Application Builder for use in simulation apps. For
example, a double variable storing a length can be connected to a Data Display or
Input Field form object, making it visible or editable to the app user. To see an
example of this in practice, open the Tuning Fork demo application from the
Application Libraries at COMSOL Multiphysics > Applications.

Getting Numerical Data

This section provides several examples of how to retrieve general numerical data
from models using method code. The examples cover different types of studies
including parametric sweeps, time-dependent (transient) simulations, and
eigenfrequency analyses.

| 249

GETTING VALUES AT A POINT

This example is based on the Steady-State 2D Heat Transfer with Conduction
tutorial model, which you can find in the Application Libraries at COMSOL
Multiphysics > Heat Transfer.

Settings Graphics
aaa- i

o EPe

> nhert syl

aseancs

Because it is a stationary (steady-state) simulation, it represents one of the simplest
scenarios for demonstrating results evaluation.

The examples below, including method code, is part of a collection available for
download:

www.comsol.com/model /application-programming-guide-examples-140771

The relevant file for this example is:

* heat_convection_2d_get_value_at_point.mph

The following code evaluates the temperature at the location defined by a Cut
Point 2D feature, demonstrating how to use both an Evaluation Group and a Derived
Values feature:

Evaluation Group

// Define a 2D point dataset
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);

// Create an Evaluation Group
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

250 |

https://www.comsol.com/model/application-programming-guide-examples-140771

// Add an EvalPoint feature to that group
model.result().evaluationGroup("eg1").create("pevi", "EvalPoint");
model.result().evaluationGroup("egl1").feature("pevi").set("data", "cpti1");

// Set the expression to be the temperature T
model.result().evaluationGroup("eg1").feature("pevi1").setIndex("expr", "T", 0);

// Set the unit using Unicode

model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "\u00bOC", 0);

// (Or ASCII: "degC" instead)

// Run the group so the feature gets evaluated
model.result().evaluationGroup("eg1").run();

// Read back the number and unit

double[][] pointResult = model.result().evaluationGroup("eg1").getReal()

double pointValue = pointResult[O0][O];

String pointValueUnit = model.result().evaluationGroup('"egl1")
.feature("pev1").getString("unit");

// Display result
debuglLog("Value at point: "+pointValue+" "+pointValueUnit);

// Alternative Messages window syntax: message("Value at point: "+pointValue+"
"+pointValueUnit);

// (Optional) select it in the Model Builder
selectNode (model.result().evaluationGroup("egl1").feature("pevi"));

Derived Values

// Define a 2D point dataset
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);

// Add an EvalPoint feature to Derived Values
model.result().numerical().create("pevi", "EvalPoint");
model.result().numerical("pev1").set("data", "cptl");

// Set the expression to be the temperature T
model.result().numerical("pev1").setIndex("expr", "T", 0);

// Set the unit using Unicode
model.result().numerical("pev1").setIndex("unit", "\u00bOC", 0); // Unicode unit
syntax

// (Or ASCII: "degC" instead)

// Read back the number and unit

double[][] pointResult = model.result().numerical("pev1").getReal();

double pointValue = pointResult[0][O0];

String pointValueUnit = model.result().numerical("pevi1").getString("unit");

// Display result
debuglLog("Value at point: "+pointValue+" "+pointValueUnit);

| 251

// Alternative Messages window syntax: message("Value at point: "+pointValue+"
"+pointValueUnit);

// (Optional) select it in the Model Builder
selectNode (model.result().numerical("pevi"));

Note: If you use the Record Code or Record Method tools, the generated code will
match the default user interface behavior, it writes all evaluated results into
COMSOL table objects. It will not include direct assignments into double[][]
arrays or double variables as shown above. The 2D array format is needed because
each evaluation feature can compute multiple expressions or perform parametric
sweeps.

Evaluating Two Quantities with an Evaluation Group

You can evaluate multiple quantities at once by using an Evaluation Group. In this
example, both the temperature and the effective thermal conductivity are
evaluated at the point by modifying the middle portion of the previous example:

// Set the expressions to be the temperature T and the effective thermal
conductivity
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr",
"ht.kmean", 1);

// Set the unit for Temperature using Unicode

model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "\uOObOC", 0);

// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "W/ (m*K)", 1);

// Run the group so the feature gets evaluated
model.result().evaluationGroup("eg1").run();

// Read back the numbers and units

double[][] pointResult = model.result().evaluationGroup("eg1").getReal();

double pointValuel = pointResult[0][0]; // Temperature

double pointValue2 = pointResult[O0][1]; // Thermal conductivity

String[] pointValueUnitArray = model.result().evaluationGroup('"eg1")
.feature("pev1").getStringArray("unit");

// Display result
debuglLog("Value at point: "+pointValuel+" "+pointValueUnitArray[O0]);
debuglLog("Value at point: "+pointValue2+" "+pointValueUnitArray[1]);

The results and units are retrieved as elements of arrays, corresponding to the
evaluated expressions.

This example is part of a collection available for download:

www.comsol.com/model /application-programming-guide-examples-140771

252 |

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:

* heat_convection_2d_get_value_at_point_2_expression.mph

This file also includes a corresponding method that demonstrates the use of
Derived Values.

Evaluating Quantities For a Parametric Sweep

Building on the previous example, the figure below shows the results of a
parametric sweep where the rectangle height parameter h1 is varied in four steps:
0.9,1.0,1.1,and 1.2 m.

Messages Progress Log

BES (g BS BSD g @

\
e-3 s

BEEoER BH-~

h1 (m) | Temperature (*C}, Point: (0.6, 0.2) | Mean effective thermal conductivity (W/(m*K]), Point: (0.6, 0.2)
0.90000 |18.187 52.000

1.0000 |18.265 52.000
11000 |18.272 52.000
1.2000 |13.340 52.000

For parametric sweeps, such output can also be generated programmatically using
a custom method, as demonstrated in the figure below where the results are
written to the Debug Log.

Debug Log

CIRNc

Parameter: 0.9 m

Temperature at point: 18.187109113310555 °C
Conductivity at point: 52.0 W/ (m*KE)
Parameter: 1.0 m

Temperature at point: 18.265040746500574 °C
Conductivity at point: 52.0 W/ (m*KE)
Parameter: 1.1l m

Temperature at point: 18.272132734965794 °C
Conductivity at point: 52.0 W/ (m*KE)
Parameter: 1.2 m

Temperature at point: 18.33985062607462 °C
Conductivity at point: 52.0 W/ (m*KE)

The following code snipped shows how this can be achieved for an Evaluation
Group in a method.

// Create a CutPoint2D dataset at (x=0.6, y=0.2) using the parametric sweep
dataset dset2
model.result().dataset
model.result().dataset
model.result().dataset
model.result().dataset
sweep

.create("cpt1", "CutPoint2D");
"cpt1").set("pointx", 0.6);
"cpt1").set("pointy", 0.2);
"cpt1").set("data", "dset2"); // Use data from parametric

// Create an Evaluation Group named egl
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

| 253

// Add an EvalPoint feature pevi to the group
model.result().evaluationGroup("eg1").create("pevi", "EvalPoint");
model.result().evaluationGroup("egl1").feature("pevi").set("data", "cpt1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr"
"ht.kmean", 1);

// Set the unit for temperature (Unicode)

model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "\u00bOC", 0);

// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "W/(m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units

double[][] pointResult = model.result().evaluationGroup("eg1").getReal();

String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
.feature("pevi1").getStringArray("unit");

// Retrieve the unit for the sweep parameter
String parUnit = model.study("std1").feature("param").getString("punit");

// Loop over the sweep and print results
int lengthSweep = pointResult.length;
for (int k = 0; k < lengthSweep; k++) {

// Extract values

double pointValueO = pointResult[k][O]; // Sweep parameter value (rectangle
height)

double pointValuel pointResult[k][1]; // Temperature

double pointValue2 = pointResult[k][2]; // Thermal conductivity

// Display the evaluated results

debuglLog("Parameter: "+pointValueO+" "+parUnit);

debuglLog("Temperature at point: "+pointValuei+" "+pointValueUnitArray[O0]);
debuglLog("Conductivity at point: "+pointValue2+" "+pointValueUnitArray[1]);}

// (Optional) select it in the Model Builder
selectNode(model.result().evaluationGroup("eg1").feature("pevi"));

Note that the evaluation results are stored in the 2D array pointResult in the same
order as shown in the Evaluation Group table in the user interface. The first index
corresponds to the sweep parameter index, and the second index corresponds to
the evaluated expressions. By default, each row begins with the sweep parameter
value, followed by the results of the specified expressions.

This example is part of a collection available for download:

www.comsol.com/model /application-programming-guide-examples-140771

254 |

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:

* heat_convection_2d_get_value_at_point_one_parameter_sweep.mph

Parametric Sweep with Specific Combinations: Two or More Parameters

Continuing with the Steady-State 2D Heat Transfer with Conduction tutorial
model, suppose a parametric sweep is performed over two parameters: the
rectangle height h1 and the boundary temperature 70. Assume the Sweep type is
set to Specific combinations, with the following values:

* Rectangle height h1: 0.9, 1.0, 1.1,and 1.2 m
* Boundary temperature T0: 100, 150, 200, and 200 degC (°C)
Note: When using Specific combinations, the parameter lists must have the same

length, in this case 4 simulation runs, with each entry representing one
combination.

The figure below shows the Parametric Sweep settings used for this configuration
Settings

Parametric Sweep

= Compute ' Update Solution
Label: Parametric Sweep =

~ Study Settings

Sweep type: Specified combinations -
" Parameter name Parameter value list Parameter unit
h1 (Height) * 09101112 m
T0 (Boundary temperature) — « | 100 150 200 200 =C
+ = = |

| 255

We can now use a breakpoint in the Method Editor to stop the code execution at
the assignment of the pointResult array and display the results using the Data
Viewer window:

Data Viewer
Etv El~ |88

MName Value

» P Parameters 1

> <@ model Model (id=743)
~ gsg?; pointResult double[][] Size: 4 = 4 (id=744)

~ B2 [0] double[] Length: 4 (id=964)
a5 [0] 09
as [1] 100.0
85 [2] 18.187109113310555
as [3] 52.0

~ B2 1] double[] Length: 4 (id=965)
a5 [0] 1.0
a5 [1] 150.0
8.5 [2] 27.39756111975089
as [3] 52.0

~ B2 [2] double[] Length: 4 (id=966)
as [0] 1.1
8.5 [1] 200.0
8.5 [2] 36.544265469931645
as [3] 52.0

~ B2 [3] double[] Length: 4 (id=967)
a5 [0] 12
8.5 [1] 200.0
8.5 [2] 36.67970125214907
as [3] 52.0

For information on using breakpoints, see the book Introduction to the
Application Builder.

The code in this case will resemble the one-parameter sweep case. Only the latter
part of the code, where the results are processed, needs to be modified, as shown
below:

// Retrieve units for sweep parameters
String[] parUnit = model.study("std1").feature("param").getStringArray("punit");

/| For specific combinations, each row of pointResult already contains h1, TO,
T, and ht.kmean
for (int k = 0; k < pointResult.length; k++) {

double h1 = pointResult[k][O];

double TO = pointResult[k][1];

double temperature = pointResult[k][2];

double conductivity = pointResult[k][3];

debuglLog("h1 = "+h1+" "+parUnit[O0]);

debugLog("TO = "+TO+" "+parUnit[1]);
debugLog(" Temperature at point: "+temperature+" "+pointValueUnitArray[O0]);

256 |

debugLog(" Thermal conductivity: "+conductivity+" "+pointValueUnitArray[1]);
debugLog("");
}

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant files for this example are:

* heat_convection_2d_get_value_at_point_two_parameter_sweep_specific_combinations.
mph
* heat_convection_2d_get_value_at_point_four_parameter_sweep_specific_combinations

.mph

The four-parameter example includes two dummy parameters to demonstrate that
the same approach applies when using the Specific combinations option with more
than two parameters.

Parametric Sweep with All Combinations: Two Parameters

Continuing with the Steady-State 2D Heat Transfer with Conduction tutorial
model, assume now that the Sweep type is set to All combinations, with the
following values:

* Rectangle height h1: 0.9,1.0, 1.1, and 1.2 m
* Boundary temperature T0: 100, 150, and 200 degC (°C)
This results in 4x3=12 simulation runs, covering all combinations of the two

parameters. The figure below shows the Parametric Sweep scttings used for this
configuration.

Settings
Parametric Sweep

= Compute ' Update Solution
Label: Parametric Sweep =

~ Study Settings

Sweep type: All combinations -
" Parameter name Parameter value list Parameter unit
h1 (Height) ~ (09101112 m
T0 (Boundary temperature) = | 100 150 200 degC
+ = i |

Programmatically, this corresponds to a nested for-loop. This loop is indexed,
starting from 1. Once an Evaluation Group has been created, the indices can be
retrieved using the following call:

| 257

https://www.comsol.com/model/application-programming-guide-examples-140771

double[][] sweepIndices =
model.result().evaluationGroup("eg1").feature("pev1").getDoubleMatrix("loopleve
;el))L,JgLog(sweepIndices) H

The corresponding output for the array sweepIndices in the Debug Log window is:
{{1, 2, 3}, {1, 2, 3, 4}}

However, in the following example this array will not be needed.

258 |

We can use a breakpoint in the Method Editor to stop the code execution at the
assignment of the pointResult array and display the results using the Data Viewer

window:
Data Viewer
=tv Sl
Mame

~ P Parameters 1
> BSw
» 85 hl
» 85 T0
> <@ model
w s=z pointResult
~ 222 [0]
=5 [0]
== [1]
=5 [7]
8.5 [3]
~ 22 [1]
=5 [0]
== [1]
=5 [7]
=5 3]
22 [2]
=5 [0]
== [1]
a5 [2]
8.5 [3]
~ 222 [3]
=5 [0]
== [1]
=5 [7]
8.5 [3]
22 4]
22 5]
22 [6]
22 [
22 [8]
22 [9]
22 [10]

== [11]

v w [w v v v v |

285

Value

0.6m

10m

373.15K

Model (id=725)

double[][] Size: 12 x 4 (id=728)
double[] Length: 4 (id=945)
09

100.0

18.187109113310355

52.0

double[] Length: 4 (id=948)
09

150.0

27.280663669965747

52.0

double[] Length: 4 (id=947)
09

200.0

36.37421822662004

52.0

double[] Length: 4 (id=948)
1.0

100.0

18.265040746500574

52.0

double[] Length: 4 (id=949)
double[] Length: 4 (id=950)
double[] Length: 4 (id=951)
double[] Length: 4 (id=952)
double[] Length: 4 (id=953)
double[] Length: 4 (id=954)
double[] Length: 4 (id=955)
double[] Length: 4 (id=956)

Note that the pointResult array has dimensions [12][4], where:

+ The first index corresponds to the parameter combination, with the sweep
ordered such that T0 varies fastest (that is, inner loop), and h1 varies slowest

(outer loop).

| 259

» Each row contains:
- Column 0: h1
- Column 1: 10
- Column 2: Computed temperature at the point

- Column 3: Effective thermal conductivity at the point

In the output, you can confirm this organization:
* Rows [0-2] all have h1 = 0.9, with T0 = 100, 150, 200
* Rows [3-5] have h1 = 1.0, again sweeping over the same T0 values

e and so on...

This structure follows the row-major order of all combinations: for each value of
h1, all values of T0 are iterated through.

The following code snippet shows how data can be retrieved in a method.

// Optionally make sure to use Unicode label for temperature in parametric sweep
model.study("std1").feature("param").setIndex("punit", "\u00bOC", 1);

// Create a CutPoint2D dataset at (x=0.6, y=0.2) using the parametric sweep
dataset dset2
model.result().dataset
model.result().dataset
model.result().dataset
model.result().dataset
sweep

.create("cpt1", "CutPoint2D");
"cpt1").set("pointx", 0.6);
"cpt1").set("pointy", 0.2);
"cpt1").set("data", "dset2"); // Use data from parametric

// Create an Evaluation Group named egl
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Add an EvalPoint feature pevi to the group
model.result().evaluationGroup("eg1").create("pevi", "EvalPoint");
model.result().evaluationGroup("eg1").feature("pevi").set("data", "cpti1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr",
"ht.kmean", 1);

// Use description labels that are easy to use with Java's string utilities (using
underscore)
model.result().evaluationGroup("eg1").feature("pevi").setIndex("descr"
"Point_temperature", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("descr"
"Point_thermal_conductivity", 1);

// Set the unit for temperature (Unicode)

model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "\uOObOC", 0);

// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity

260 |

model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "W/ (m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units

double[][] pointResult = model.result().evaluationGroup("eg1").getReal()

String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
.feature("pev1").getStringArray("unit");

// Retrieve the units for the sweep parameters
String[] parUnits =
model.study("std1").feature("param").getStringArray("punit");

// Retrieve the description labels from the Evaluation Group column headers,
assuming they use underscore in their names
String[] columnHeaders =
model.result().evaluationGroup("eg1").getColumnHeaders();
String[] headerNames = new String[columnHeaders.length];
for (int i = 0; i < columnHeaders.length; i++) {

headerNames[i] = columnHeaders[i].split(" ")[O];

}

// Loop over each row of results

for (int i = 0; i < pointResult.length; i++) {
double h1 = pointResult[i][O0];
double TO = pointResult[i][1];
double pointTemperature = pointResult[i][2];
double pointConductivity = pointResult[i][3];

debugLog(headerNames[0]+" = "+h1+" "+parUnits[O0]+" , "+headerNames[1]+" = "+
TO+" "+parUnits[1]);
debugLog(headerNames[2]+": "+pointTemperature+" "+pointValueUnitArray[0])

H
debugLog(headerNames[3]+": "+pointConductivity+" "+pointValueUnitArray[1]);
debugLog("");

}

// Optionally select it in the Model Builder
selectNode (model.result().evaluationGroup("egl1").feature("pevi"));

The (abridged) output from this code is as follows:

h1 =0.9m , TO = 100.0 °C
Point_temperature: 18.187109113310555 °C
Point_thermal_conductivity: 52.0 W/(m*K)

h1 =0.9m, TO = 150.0 °C
Point_temperature: 27.280663669965747 °C
Point_thermal_conductivity: 52.0 W/ (m*K)

h1 =0.9m , TO = 200.0 °C
Point_temperature: 36.37421822662094 °C
Point_thermal_conductivity: 52.0 W/ (m*K)

ht =1.0m , TO = 100.0 °C
Point_temperature: 18.265040746500574 °C

| 261

Point_thermal_conductivity: 52.0 W/ (m*K)

ht =1.2m , TO = 200.0 °C
Point_temperature: 36.67970125214907 °C
Point_thermal_conductivity: 52.0 W/ (m*K)

This example is part of a collection available for download:

www.comsol.com/model /application-programming-guide-examples-140771

The relevant file for this example is:

* heat_convection_2d_get_value_at_point_two_parameter_sweep_all_combinat
ions.mph

Parametric Sweep with All Combinations: Three or More Parameters

Expanding on the previous example, let us now introduce a dummy parameter
pari, for demonstration purposes.

Settings
Parametric Sweep

= Compute (* Update Solution
Label: Parametric Sweep =

~ Study Settings

Sweep type: All combinations >
" Parameter name Parameter value list Parameter unit

h1 (Height) * 109101112 m

T0 (Boundary temperature) = | 100150 200 degC

parl (Dummy parameter) =12 kg

ti+EVE DL

262 |

https://www.comsol.com/model/application-programming-guide-examples-140771

As before, we can use a breakpoint in the Method Editor to pause execution at the
assignment of the pointResult array and inspect the contents using the Data
Viewer window.

Data Viewer
Etv Elv 15

MName Value

~ P Parameters 1

» 85w 0.6m

> 85 hil 1.0m

> 85 T0 373.15K

> 85 parl 1.0kg

> <# model Model (id=915)
~ gsg?; pointResult double[][] Size: 24 = 5 (id=916)

~ B2 [0] double[] Length: 5 (id=920)
B.5 [:-] 09
a5 [1] 100.0
a5 [2] 1.0
a5 [3] 18.187109113310355
as [4] 52.0

~ B2 1] double[] Length: 5 (id=921)
B.5 [:-] 09
a5 [1] 100.0
a5 [2] 2.0
a5 [3] 18.187109113310355
as [4] 52.0

~ B2 [2] double[] Length: 5 (id=922)
a5 [0] 0.9
a5 [1] 150.0
85 [2] 1.0
a5 [3] 27.280663669965747
as [4] 52.0

~ B2 [3] double[] Length: 5 (id=923)
8.5 [0] 09
a5 [1] 150.0
a5 [2] 2.0
a5 [3] 27.280663669965747
as [4] 52.0

» B2 4] double[] Length: 5 (id=924)

Note that the pointResult array has dimensions [24][5], where:

 The first index corresponds to the parameter combination, with the sweep
ordered such that pari varies fastest (that is, inner loop), then T0 varies
intermediately, and h1 varies slowest (outer loop).

| 263

» Each row contains:
- Column 0: h1
- Column 1: 70
- Column 2: part
- Column 3: Computed temperature at the point

- Column 4: Effective thermal conductivity at the point

The code used for a two-parameter sweep with the All Combinations option can be
generalized as follows, by modifying the latter part of the loop:
// Previous code
/...
/// Loop over each row of results
int numSweepParams = 3; // or headerNames.length - number of result expressions
for (int i = 0; i < pointResult.length; i++) {
// Print all sweep parameters in one line
String paramLine = "";
for (int p = 0; p < numSweepParams; p++) {
if (p > 0) paramLine += " , ";
paramLine += headerNames[p]+" = "+pointResult[i][p]+" "+parUnits[p];

}
debuglLog(paramLine);

// Print evaluated results
for (int j = 0; j < pointValueUnitArray.length; j++) {
debugLog(" "+headerNames[numSweepParams+j]+": "+
pointResult[i] [numSweepParams+j]+" "+pointValueUnitArray[j]);

}
debuglog("");

}
This code generalizes to more than three parameters.
This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant files for this example are:
* heat_convection_2d_get_value_at_point_three_parameter_sweep_all_combinations.mph

* heat_convection_2d_get_value_at_point_four_parameter_sweep_all_combinations.mph
The second example demonstrates the case of four parameters.

Parametric Sweep that Includes an Auxiliary Sweep

A model can include nested parametric sweeps, consisting of an outer sweep and
an inner sweep, where the inner sweep typically represents physics-related
parameters, such as material properties or boundary conditions, rather than
geometric dimensions or mesh settings. One common type of inner sweep is the
auxiliary sweep. For example, in the Steady-State 2D Heat Transfer with
Conduction tutorial model, the boundary temperature can be assigned as an

264 |

https://www.comsol.com/model/application-programming-guide-examples-140771

auxiliary sweep parameter, whereas the rectangle height, being a geometric
property, cannot.

The process of extracting results using an Evaluation Group remains essentially the
same, even when an auxiliary sweep is used.

Assume again that the parameters take the following values:
* Rectangle height h1: 0.9,1.0, 1.1, and 1.2 m
* Boundary temperature T0: 100, 150, and 200 degC (°C)

The outer sweep is defined as shown in the figure below.

Settings
Parametric Sweep
= Compute ' Update Solution

Label: Parametric Sweep 5

~ Study Settings

Sweep type: Specified combinations -
L] . =

Parameter name Parameter value list Parameter unit

h1 (Height) v (09101112 m

+ 5V~ |
The auxiliary sweep (inner sweep) is defined in settings window for Step I:
Stationary as shown in the figure below.

~ Study Extensions

Auxiliary sweep

Sweep type: Specified combinations -
L . =
Parameter name Parameter value list Parameter unit
T0 (Boundary temperature) | 100 150 200 =C
+ = i |

The following code snippet shows how data can be retrieved in a method.

// Optionally make sure to use Unicode label for temperature in parametric sweep
model.study("std1").feature("stat").setIndex("punit", "\uOObOC", 0); //
Auxiliary sweep unit

// Create a CutPoint2D dataset at (x=0.6, y=0.2) using the parametric sweep
dataset dset2

model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cptl1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);

| 265

model.result().dataset("cpt1").set("data", "dset2"); // Use data from parametric
sweep

// Create an Evaluation Group named egl
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Add an EvalPoint feature pev1i to the group
model.result().evaluationGroup("eg1").create("pevi", "EvalPoint");
model.result().evaluationGroup("egl1").feature("pevi").set("data", "cpt1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr"
"ht.kmean", 1);

// Use description labels that are easy to use with Java's string utilities (using
underscore)
model.result().evaluationGroup("eg1").feature("pevi").setIndex("descr"
"Point_temperature", 0);
model.result().evaluationGroup("eg1").feature("pevi").setIndex("descr"
"Point_thermal_conductivity", 1);

// Set the unit for temperature (Unicode)

model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "\uOObOC", 0);

// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "W/ (m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units

double[][] pointResult = model.result().evaluationGroup("eg1").getReal();

String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
.feature("pev1").getStringArray("unit");

// Retrieve the unit for the sweep parameters

// Since h1 is the only parameter in the outer sweep, retrieve its unit directly
as a string
String parUnit = model.study("std1").feature("param").getString("punit");

// Retrieve the unit for the auxiliary sweep parameter
String auxUnit = model.study("std1").feature("stat").getString("punit");

// Retrieve the description labels from the Evaluation Group column headers,
assuming they use underscore in their names
String[] columnHeaders =
model.result().evaluationGroup("eg1").getColumnHeaders();
String[] headerNames = new String[columnHeaders.length];
for (int i = 0; i < columnHeaders.length; i++) {

headerNames[i] = columnHeaders[i].split(" ")[O];

}

266 |

// Loop over each row of results

for (int i = 0; i < pointResult.length; i++) {
double h1 = pointResult[i][O];
double TO = pointResult[i][1];
double pointTemperature = pointResult[i][2];
double pointConductivity = pointResult[i][3];

debugLog(headerNames[0]+" = "+h1+" "+parUnit+" , "+headerNames[1]+" = "+TO+"
"+auxunit);

debugLog(headerNames[2]+": "+pointTemperature+" "+pointValueUnitArray[0]);

debugLog(headerNames[3]+": "+pointConductivity+" "+pointValueUnitArray[1]);

debugLog("");

}

// Optionally select it in the Model Builder
selectNode (model.result().evaluationGroup("egl1").feature("pevi"));

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

¢ heat_convection_2d_get_value_at_point_one_parameter_sweep_plus_auxilia
ry_sweep.mph

COMPUTING THE AVERAGE ALONG A BOUNDARY IN A PARAMETRIC SWEEP

Continuing with the Steady-State 2D Heat Transfer with Conduction tutorial
model, consider the case of a parametric sweep over one parameter: the rectangle
height. Suppose now that we want to compute the average temperature along the
right boundary of the rectangle.

In this case, a point dataset is not required, but aside from that, the code remains
very similar to the approach demonstrated earlier. One important detail is to
ensure that the correct dataset corresponding to the parametric sweep is used. In
this example, that is the dataset with the tag dset2.

The following code snippet shows how to use an Evaluation Group to retrieve the
average temperature on a boundary within a method.

// Create the Evaluation Group and set it to use the parametric sweep dataset
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
model.result().evaluationGroup("egl").set("data", "dset2"); // Set sweep dataset

// Add an AvLine feature to the Evaluation Group to compute average values along
a boundary

model.result().evaluationGroup("eg1").create("avi", "AvLine");

// model.result().evaluationGroup("eg1").feature("avi").set("intsurface",
true); // Needed if an axisymmetric model
model.result().evaluationGroup("eg1").feature("avi").selection().set(4); //
Apply to boundary 4

// Set expressions and units

| 267

https://www.comsol.com/model/application-programming-guide-examples-140771

model.result().evaluationGroup("egl1").feature("avi").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("avi").setIndex("expr"
"ht.kmean", 1);

model.result().evaluationGroup("eg1").feature("avi").setIndex("unit",
"\uo0b0OC", 0);
model.result().evaluationGroup("eg1").feature("avi").setIndex("unit", "W/
(m*K)", 1);

// Set optional labels
model.result().evaluationGroup("eg1").feature("avi").setIndex("descr"
"Avg_temperature", 0);
model.result().evaluationGroup("eg1").feature("avi").setIndex("descr"
"Avg_thermal_conductivity", 1);

// Run the Evaluation Group
model.result().evaluationGroup("eg1").run();

// Retrieve results and units

double[][] resultArray = model.result().evaluationGroup("eg1").getReal();

String[] resultUnits = model.result().evaluationGroup("eg1")
.feature("av1").getStringArray("unit");

// Retrieve sweep parameter unit
String parUnit = model.study("std1").feature("param").getString("punit");

// Loop over results

for (int i = 0; i < resultArray.length; i++) {
double sweepVal = resultArray[i][0]; // Sweep parameter (h1)
double avgTemp = resultArray[i][1]; // Average temperature
double avgCond = resultArray[i][2]; // Average conductivity

debuglLog("Parameter: "+sweepVal+" "+parUnit);
debugLog(" Average temperature: "+avgTemp+" "+resultUnits[0]);
debugLog(" Average conductivity: "+avgCond+" "+resultUnits[1]);

}
This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:
* heat_convection_2d_get_value_at_point_one_parameter_sweep_global.mph
The feature type used in the Evaluation Group for computing an average along a

line is AvLine. Similar feature types exist for other combinations of geometric
entities and evaluation operations, as summarized in the table below.

FEATURE TYPE DESCRIPTION

AvVolume Computes the average of an expression over a domain
AvSurface Computes the average over a boundary (2D surface in 3D)
AvLine Computes the average over an edge (curve in 2D/3D)

268 |

https://www.comsol.com/model/application-programming-guide-examples-140771

FEATURE TYPE DESCRIPTION

IntVolume Integrates an expression over a domain
IntSurface Integrates over a boundary surface

IntLine Integrates over an edge

MaxVolume Computes the maximum value within a domain
MaxSurface Computes the maximum over a boundary
MaxLine Computes the maximum along an edge
MinVolume Computes the minimum value within a domain
MinSurface Computes the minimum over a boundary
MinLine Computes the minimum along an edge

COMPUTING GLOBAL QUANTITIES IN A PARAMETRIC SWEEP

Continuing with the Steady-State 2D Heat Transfer with Conduction tutorial
model and a parametric sweep over the rectangle height, suppose we now want to
compute a global quantity, for example, the number of degrees of freedom
(DOFs) in the model for each parameter value. (A global quantity is one that is
not associated with a specific geometric entity.)

This value will vary throughout the sweep because, as the rectangle height
changes, the mesh is regenerated and the number of mesh elements, and thus the
number of DOFs, changes.

The variable name for the number of DOFs is numberofdofs.

The following code snippet shows how to use an Evaluation Group to retrieve the
number of degrees of freedom at each step of a parametric sweep within a method.

// Create the Evaluation Group and set it to use the parametric sweep dataset
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
model.result().evaluationGroup("eg1").set("data", "dset2"); // Set sweep dataset

// Add a Global Evaluation feature to the Evaluation Group
model.result().evaluationGroup("egi1").create("gevi", "EvalGlobal");

// Set the expression to evaluate: number of DOFs
model.result().evaluationGroup("eg1").feature("gevi").set("expr", new
String[]{"numberofdofs"});

// Optional: Set a label and unit
model.result().evaluationGroup("eg1").feature("gevi").set("descr", new
String[]{"Number of degrees of freedom"});
model.result().evaluationGroup("eg1").feature("gevi").set("unit", new
String[]{"1"});

// Run the evaluation group for all sweep points
model.result().evaluationGroup("eg1").run();

| 269

// Retrieve the results (1 column: DOFs, 1 row per sweep point)
double[][] dofResults = model.result().evaluationGroup("eg1").getReal();

// Retrieve the unit for the sweep parameter
String parUnit = model.study("std1").feature("param").getString("punit");

// Loop through results

for (int i = 0; i < dofResults.length; i++) {
double h1 = dofResults[i][0]; // Sweep parameter (h1)
int ndof = (int) dofResults[i][1]; // Number of DOFs
debugLog("h1 = "+h1+" "+parUnit);
debugLog(" Number of DOFs: "+ndof);

}

Note: As an alternative to using Evaluation Group features such as AvLine and
MaxVolume, you can define a nonlocal coupling operator under Component >
Definitions > Nonlocal Couplings, and then evaluate it as a global quantity.

This example is part of a collection available for download and is included in the
same file as the previous example, “Computing the Average Along a Boundary in
a Parametric Sweep” on page 267.

NESTED PARAMETRIC SWEEP NODES

Instead of using a single Parametric Sweep feature with the All combinations or
Specified combinations option, you can use multiple nested Parametric Sweep
nodes. Accessing results from a nested sweep is very similar to retrieving data from
a sweep that uses only one Parametric Sweep node.

Consider the earlier example where the sweep type is set to All combinations, with
the following parameter values:

* Rectangle height h1: 0.9,1.0, 1.1, and 1.2 m
* Boundary temperature T0: 100, 150, and 200 degC (°C)

270 |

This sweep can also be performed by nesting two Parametric Sweep nodes, as
illustrated in the figures below.

Model Builder Settings
— t st ty B~ Parametric Sweep
(= Compute ' Update Solution
~ @ heat_convection_2d_get value_at_point two_pare | abel: Parametric Sweep =
~ () Global Definitions
P; Parameters 1 {default] ~ Study Settings
= Materials
>) Component 1 (comp 1) {comp 1} Sweep type: All combinations B
~ ~do Study 1 {std 7} "
Parameter name Parameter value list Parameter unit

Parametric Sweep 2 {param2}
Parametric Sweep {param} T0 (Boundary temperature) ~ || 100150 200 e
[= Step 1: Stationary (stat}
>[It Solver Configurations
> EJ Job Configurations

~ {# Results i \ o |
Model Builder Settings
— + & Ete R A Parametric Sweep
e = Compute (¥ Update Solution
~ 4 heat_convection_2d_get_value_at_point_two_par: | abel: Parametric Sweep 2 B8
Py
~ (i) Global Definitions
Pi Parameters 1 {default} w Study Senings
= Materials
> G Component 1 (comp 1) feomp 1} Sweep type: Specified combinations -
~ ~db Study 1 {std 1} W
Parameter name Parameter value list Parameter unit

Parametric Sweep 2 {param2}
Parametric Sweep {param} h1 (Height) *||091.01.11.2 m
[= Step 1: Stationary {stat}

> [Tre Solver Configurations

> 4 Job Configurations
~ @ Results + \ - |

» ¢85 Confinuratinns

The following code snippet shows how to retrieve data from such a nested sweep.
While the process is similar to the single-node case, there are some minor
differences.

// Optionally make sure to use Unicode label for temperature in parametric sweep
model.study("std1").feature("param").setIndex("punit", "\u0OObOC", 0);
model.study("std1").feature("param2").setIndex("punit", "m", 0);

// Create a CutPoint2D dataset at (x=0.6, y=0.2) using the parametric sweep
dataset dset2

model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);
model.result().dataset("cpt1").set("data", "dset2"); // Use data from parametric
sweep

// Create an Evaluation Group named egi
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Add an EvalPoint feature pevil to the group
model.result().evaluationGroup("egl1").create("pevi", "EvalPoint");

| 271

model.result().evaluationGroup("egl1").feature("pevi").set("data", "cpt1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr"
"ht.kmean", 1);

// Use description labels that are easy to use with Java's string utilities (using
underscore)
model.result().evaluationGroup("eg1").feature("pevi").setIndex("descr"
"Point_temperature", 0);
model.result().evaluationGroup("eg1").feature("pevi").setIndex("descr"
"Point_thermal_conductivity", 1);

// Set the unit for temperature (Unicode)

model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "\u0OObOC", 0);

// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "W/ (m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units

double[][] pointResult = model.result().evaluationGroup("eg1").getReal();

String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
.feature("pev1").getStringArray("unit");

// Retrieve the units for the sweep parameters
String parUnit1 = model.study("std1").feature("param").getString("punit");
String parUnit2 = model.study("std1").feature("param2").getString("punit");

// Retrieve the description labels from the Evaluation Group column headers,
assuming they use underscore in their names
String[] columnHeaders =
model.result().evaluationGroup("eg1").getColumnHeaders();
String[] headerNames = new String[columnHeaders.length];
for (int i = 0; i < columnHeaders.length; i++) {

headerNames[i] = columnHeaders[i].split(" ")[O];

}

// Loop over each row of results

for (int i = 0; i < pointResult.length; i++) {
double h1 = pointResult[i][O0];
double TO = pointResult[i][1];
double pointTemperature = pointResult[i][2];
double pointConductivity = pointResult[i][3];

debugLog(headerNames[0]+" = "+h1+" "+parUnit2+" , "+headerNames[1]+" = "+TO0+"
"+paruniti);

debugLog(headerNames[2]+": "+pointTemperature+" "+pointValueUnitArray[O0]);

debugLog(headerNames[3]+": "+pointConductivity+" "+pointValueUnitArray[1]);

debugLog("");

272 |

}

// Optionally select it in the Model Builder
selectNode (model.result().evaluationGroup("egl1").feature("pevi"));

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

* heat_convection_2d_get_value_at_point_two_parameter_sweep_nested_featu
re_nodes.mph

NESTED PARAMETRIC SWEEP NODES, RAGGED SWEEP

In certain cases, the nested node option gives you additional flexibility. For
example, you can perform sweeps where the inner parameter is a function of the
outer parameter. This results in an irregular sweep where some parameter
combinations are missing. Other names for this type of sweep are jagged or ragged
sweep.

The following example of a spinning aluminum disk demonstrates a sweep over a
geometry with a varying number of holes depending on the hole radius. The
example is available for download (see below) and demonstrates accessing results
for a ragged sweep.

// Set number of displayed digits
int digits = 4;

// Set parametric sweep units
model.study("std1").feature("param").setIndex("punit", "1", 0);
model.study("std1").feature("parami").setIndex("punit", "m", 0);

// Create an Evaluation Group named eg1 and set it to the parametric sweep dataset
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
model.result().evaluationGroup("eg1").set("data", "dset2");

// Create an average surface evaluation feature
model.result().evaluationGroup("eg1").create("av1l", "AvSurface");
model.result().evaluationGroup("eg1").feature("avi").selection().set(1);

// Set expressions to evaluate and their units
model.result().evaluationGroup("eg1").feature("av1").setIndex("expr"
"solid.disp", 0);
model.result().evaluationGroup("eg1").feature("av1").setIndex("expr"
"solid.mises", 1);
model.result().evaluationGroup("eg1").feature("avl").setIndex("unit",
"\uo0b5m", 0);
model.result().evaluationGroup("eg1").feature("av1").setIndex("unit", "MPa",
1);

// Use description labels that are easy to use with Java's string utilities (using
underscore)

| 273

https://www.comsol.com/model/application-programming-guide-examples-140771

model.result().evaluationGroup("eg1").feature("avi").setIndex("descr"
"Displacement_magnitude", 0);
model.result().evaluationGroup("eg1").feature("avi").setIndex("descr"
"von_Mises_stress", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units

double[][] pointResult = model.result().evaluationGroup("eg1").getReal();

String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
.feature("av1").getStringArray("unit");

// Retrieve the units for the sweep parameters

// String parUnit1 = model.study("std1").feature("param").getString("punit"); /
/ parUnit1 is not needed since it is 1 (the unit of the number of holes)

String parUnit2 = model.study("std1").feature("parami").getString("punit");

// Retrieve the description labels from the Evaluation Group column headers,
assuming they use underscore in their names
String[] columnHeaders =
model.result().evaluationGroup("eg1").getColumnHeaders();
String[] headerNames = new String[columnHeaders.length];
for (int i = 0; i < columnHeaders.length; i++) {

headerNames[i] = columnHeaders[i].split(" ")[O];

}

// Loop over each row of results

for (int i = 0; i < pointResult.length; i++) {
int numHoles = (int) (pointResult[i][0]);
String holeRadius = toString(pointResult[i][1], digits);
String avDisp = toString(pointResult[i][2], digits);
String avStress = toString(pointResult[i][3], digits);

debugLog(headerNames[0]+" = "+numHoles+" , "+headerNames[1]+" = "+holeRadius+
" "+parUnit2);

debugLog(headerNames[2]+": "+avDisp+" "+pointValueUnitArray[O0]);

debugLog(headerNames[3]+": "+avStress+" "+pointValueUnitArray[1]);

debugLog("");
}

// Optionally select it in the Model Builder
selectNode (model.result().evaluationGroup("egl1").feature("avi"));

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

¢ spinning_disk_ragged_sweep_nested_feature_nodes.mph

274 |

https://www.comsol.com/model/application-programming-guide-examples-140771

RETRIEVING DATA FROM A TRANSIENT SIMULATION

This example is based on the Axisymmetric Transient Heat Transfer tutorial
model, which you can find in the Application Libraries at COMSOL Multiphysics >
Heat Transfer.

This is a transient (time-dependent) simulation and retrieving transient data is very
similar to that of a parametric sweep. You will notice that the code below is very
similar to the example in “Evaluating Quantities For a Parametric Sweep” on page
253.

// Remove any existing features
model.result().evaluationGroup().remove("egl1");
model.result().dataset().remove("cpt1");

// Create a CutPoint2D dataset at (R=0.1 (pointx), Z=0.3 (pointy))
// Note, this is an axisymmetric model
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.1);
model.result().dataset("cpt1").set("pointy", 0.3);

// Create an Evaluation Group named egi
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Add an EvalPoint feature pevi to the group
model.result().evaluationGroup("eg1").create("pevi", "EvalPoint");
model.result().evaluationGroup("egl").feature("pevi").set("data", "cpti1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pevi").setIndex("expr",
"ht.kmean", 1);

// Set or confirm the unit for time (optional, defaults to seconds)
model.study("std1").feature("time").set("tunit", "s");

// Set the unit for temperature (Unicode)

model.result().evaluationGroup("eg1").feature("pevi").
setIndex("unit", "\u00bOC", 0);

// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("egi").feature("pevi").
setIndex("unit", "W/ (m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("egl1").run();

// Retrieve evaluated values and their corresponding units

double[][] pointResult = model.result().evaluationGroup("eg1").getReal()

String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
.feature("pev1").getStringArray("unit");

// Retrieve the unit for the transient parameter
String timeUnit = model.study("std1").feature("time").getString("tunit");

| 275

// Loop over output times (that is, times stored in the solution), which may
differ from internal solver steps

int lengthTimeList = pointResult.length;

for (int k = 0; k < lengthTimeList; k++) {

// Extract values

double pointValueO = pointResult[k][O0]; // Time value (similar to a sweep
parameter value)

double pointValuel pointResult[k][1]; // Temperature

double pointValue2 = pointResult[k][2]; // Thermal conductivity

// Display the evaluated results
debugLog("Time: "+pointValueO+" "+timeUnit);
debuglLog("Temperature at point: "+pointValuei+" "+pointValueUnitArray[O0]);
debuglLog("Conductivity at point: "+pointValue2+" "+pointValueUnitArray[1]);
debugLog("");

}

// (Optional) select it in the Model Builder
selectNode (model.result().evaluationGroup("egl1").feature("pevi"));

The (abridged) output from this code is as follows:

Time: 0.0 s
Temperature at point: 5.307062156134634E-5 °C
Conductivity at point: 52.0 W/ (m*K)

Time: 10.0 s
Temperature at point: 0.002430733497874371 °C
Conductivity at point: 52.0 W/ (m*K)

Time: 20.0 s
Temperature at point: 0.056482830296829434 °C
Conductivity at point: 52.0 W/ (m*K)

Time: 380.0 s
Temperature at point: 410.03241468409624 °C
Conductivity at point: 52.0 W/ (m*K)

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

* heat_transient_axi_get_value_at_point_.mph

ACCESSING THE LENGTH OF A PARAMETRIC LIST

There are multiple ways to retrieve the number of parameters or time steps in a
solution. In the previous examples, calls such as:

double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
int lengthSweep = pointResult.length;

276 |

https://www.comsol.com/model/application-programming-guide-examples-140771

can be used to retrieve the length of the sweep.

An alternative for an Evaluation Group is:

int nOfRows = model.result().evaluationGroup("eg1").getNRows();

which returns the number of rows in the corresponding result table.

If you instead have access to a Plot Group (for example, with the tag pg1), you can
use:

int lengthOfSweep = model.result("pgl").getStepCount(0);

Here, the argument to getStepCount represents the parameter index. However,
note that getStepCount belongs to a different part of the API that is more tightly
linked to the solution data structures. As a result, the ordering of parameters
differs from that of an Evaluation Group.

For sweeps involving 1, 2, or 3 parameters, the order is simply the reverse of that
used in an Evaluation Group. For 4 parameters, however, the last two parameters
are combined into a single sequence. Alternatively, you can think of it as the first
two parameters being grouped together.

To illustrate this, consider a sweep over the parameters h1, T0, par1, and par2, as
shown in the figure below.

Settings
Parametric Sweep

= Compute ' Update Solution
Label: Parametric Sweep =

~ Study Settings

Sweep type: All combinations -
" Parameter name Parameter value list Parameter unit
h1 (Height) * 09101112 m
T0 (Boundary temperature) * || 100 150 200 =C
parl (Dummy parameter 1) > |12 kg
par2 (Dummy parameter 2] > |34 kg
+ = i |

| 277

A corresponding 2D Plot Group setting is shown in the figure below.

Settings
2D Plot Group
B Plot = 4= = =} = ~

Label: Temperature (ht) 1 E
v Data

Dataset: Study 1/Parametric Solutions 1 (sol2) {dset2} » =9
Parameter value (h1 (m), TO (*C)): 1: h1=0.9 m, TO=100°C -
Parameter value (parl (kg)): 2 -
Parameter value (par2 (kg)): 3 -

Here, we can see that the first two parameters hl and TO are grouped together.
An expanded view of this list is presented in the following figure.

Settings
2D Plot Group
B Plot = 4= = =} = ~

Label: Temperature (ht) 1 =
v Data
Dataset: Study 1/Parametric Solutions 1 (sol2) {dset2} » =9
Parameter value (h1 (m), TO (*C)): 1: h1=0.9 m, TO=100°"C =
Parameter value (parl (kg)): 1: h1=0.3 m, T0=100"C
2: h1=0.9 m, TD=130°C
Parameter value (par2 (kg)): 2 h1=0.9 m. T0=200°C
. 4 h1=1m, T0=100°C
> Selection S hi=1m T0=150°C
> Title G h1=1m, T0=200°C
T:h1=1.1m, T0=100°C
plotsEtings 8 h1=11 m, T0=150°C
View: Automatic 3 (] oy TE=2LIRE
10: h1=1.2 m, TO=100°C
x-axis label: [] 11:h1=1.2 m, T0=150°C
y-axis label: [12: h1=1.2 m, T0=200°C

This list contains 4x3=12 entries, which is reflected by the value returned by:
int lengthOfSweep = model.result("pgl").getStepCount(2);

278 |

The figure below show all the returned values for the inputs 0, 1, and 2, using the
Java Shell window.

Java Shell
a= | =t

= \

-

~

int lengthOfSweep = model.result("pg2™).getStepCount(@);
123 lengthOfSweep ==> 2

int lengthOfSweep = model.result("pg2™).getStepCount(l);
123 lengthOfSweep ==> 2

int lengthOfSweep = model.result("pg2™).getStepCount(2);
123 lengthOfSweep ==> 12

»

> Run | = ¢

ACCESSING A SUBSET OF A LIST OF OUTPUT TIMES

A list of output times can be very long and there could be reasons to access only
the solutions for a subset. Consider the example in the section “Retrieving Data
from a Transient Simulation” on page 275. Recall that this example uses a point
evaluation at a cut point.

To access a subset of output times based on index, you can use the following
syntax:

model.result().evaluationGroup("eg1").feature("pevi").setIndex("looplevelinput"
, "manualindices", 0);

model.result().evaluationGroup("eg1").feature("pevi").setIndex("looplevelindice
s", "range(5,10,45)", 0);
To access a subset of output times based on interpolated times, you can use the
following syntax:

model.result().evaluationGroup("eg1").feature("pevi1").setIndex("looplevelinput"
, "interp", 0);
model.result().evaluationGroup("eg1").feature("pevi").setIndex("interp",
"range(11.5,0.5,25.5)", 0);
Note that for interpolated times, the time values given as input do not need to
match the output times of the Time Dependent study step.

If you want to clear the Debug Log window before running the method, you can
call the clearDebugLog() method.

However, keep in mind that the primary purpose of these examples is not to print
results to the Debug Log window, but rather to illustrate how data can be retrieved,
processed, and used in other methods or incorporated into simulation apps.

This example is part of a collection available for download:

| 279

www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

e heat_transient_axi_get_value_at_point_subset.mph

As an alternative to using an Evaluation Group, one can instead use a SolutionInfo
object. This technique is more general but also more advanced.

The example below illustrates how the first and last time output times can be
retrieved from a model using this technique.

// Use a SolutionInfo object to retrieve the first and last output times
SolverSequence sol = model.sol("sol1");

SolutionInfo info = sol.getSolutioninfo();

int[] indx1 = info.getIndices(0, new int[]{0}); // Not needed but used for
demonstration purposes

double[][] values = info.getVals(0, new int[]{0});

double firstTime = values[0][0];

double lastTime = values[O][indx1.length-1];

The the methods getIndices and getVals are described in more detail in the

Programming Reference Manualin the section SolutionInfo Object and its
Methods.

UPDATE A CHOICELIST DYNAMICALLY FOR OUTPUT TIMES

The following method updateOutputTimeList is part of an app where a Combo
Box form object is used to select the output time used for evaluation and
visualization.

// Set dummy expression 1 and use an Evaluation Group to evaluate first and last
times

model.result().evaluationGroup().create("eg1", "EvaluationGroup");
EvaluationGroupFeature egl = model.result().evaluationGroup("eg1");
egl.create("gevil", "EvalGlobal");
egl.feature("gevil").setIndex("expr", 1, 0);

egl.run();

// Get first and last output times
eg1.setIndex("looplevelinput", "first", 0);
egl.run();

double firstTime = egl1.getReal()[0][0];

egl.setIndex("looplevelinput", "last", 0);
egl.run();
double lastTime = egl1.getReal()[0][O0];

// Calculate N evenly spaced times
int N = numberOfOutputTimes;
double[] times = new double[N];
for (int 1 = 0; 1 < Nj; i++) {
times[i] = firstTime+i*(lastTime-firstTime)/(N-1);

}

280 |

https://www.comsol.com/model/application-programming-guide-examples-140771

// Convert to string and interpolate
String[] timeStrs = new String[N];
for (int 1 = 0; 1 < N; i++) {

timeStrs[i] = toString(times[i], digits);
}

String interpList = String.join(" ", timeStrs);

// Set expression to evaluate (average)

model.result().evaluationGroup().create("eg2", "EvaluationGroup");
EvaluationGroupFeature eg2 = model.result().evaluationGroup("eg2");
eg2.create("av1l", "AvVolume");

eg2.feature("avi").setIndex("expr", "T", 0);
eg2.set("data", "revi");

eg2.setIndex("looplevelinput", "interp", 0);
eg2.setIndex("interp", interpList, 0);
eg2.run();

// Update choicelist and the current output time used for plot and evaluation

app.declaration("choicelist1").setList(timeStrs, timeStrs);

outputTimeStr = timeStrs[N-1];

changeOutputTime();
The method evaluates a dummy expression, "1", to retrieve the first and last
output times. As an alternative, one can use the SolutionInfo method described
in the section “Accessing a Subset of a List of Output Times” on page 279.

The call

app.declaration("choicelist1").setList(timeStrs, timeStrs);
is used to dynamically update choicelist1, which is used by a Combo Box in the
app’s user interface.

The code for the changeOutputTime method is as follows.

EvaluationGroupFeature eg2 = model.result().evaluationGroup("eg2");
eg2.setIndex("interp", outputTimeStr, 0);
eg2.run();

double[][] pointResult = eg2.getReal();
pointValue = toString(pointResult[0][1], digits);

model.result("pg4").setIndex("looplevel", "interp", 0);
model.result("pg4").set("interp", outputTimeStr);
model.result("pg4").run();

model.result("pg2").setIndex("looplevel", "interp", 0);
model.result("pg2").set("interp", outputTimeStr);
model.result("pg2").run();

This example is part of a collection available for download:

www.comsol.com/model /application-programming-guide-examples-140771

| 281

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant files for this example are:

* heat_transient_axi_get_average_value_for_subset_evaluation_group_app.m
ph
* heat_transient_axi_get_average_value_for_subset_solution_info_app.mph

ACCESSING EIGENFREQUENCY DATA

This example is based on the Tuning Fork tutorial model, which you can find in
the Application Libraries at COMSOL Multiphysics > Structural Mechanics.

This is a combined parametric and eigenfrequency simulation that is also very
similar to that of a parametric sweep. You will notice that the code below is very
similar to the example in “Evaluating Quantities For a Parametric Sweep” on page
253.

The code below evaluates the eigenfrequencies for a subset of parameter values
from a parametric sweep, using a Global Evaluation feature inside an Evaluation
Group.

// Remove existing features if needed
model.result().evaluationGroup().remove("egl1");

// Create the Evaluation Group and set it to use the parametric sweep dataset
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
model.result().evaluationGroup("egl1").set("data", "dset2"); // Set sweep dataset

// Add a Global Evaluation feature to the Evaluation Group
model.result().evaluationGroup("eg1").create("gevi", "EvalGlobal");

// Set the expression to evaluate a dummy expression 1
model.result().evaluationGroup("eg1").feature("gevi").setIndex("expr", "1", 0);

model.result().evaluationGroup("eg1").setIndex("looplevelinput",
"manualindices", 0);
model.result().evaluationGroup("eg1").setIndex("looplevelindices", "7 8 9", 0);

model.result().evaluationGroup("egl1").setIndex("looplevelinput", "manual", 1);
model.result().evaluationGroup("eg1").setIndex("looplevel", "1 2 3", 1);

// Run the evaluation group for all sweep points
model.result().evaluationGroup("eg1").run();

// Retrieve the unit for the sweep parameter
String parUnit = model.study("std1").feature("param").getString("punit");

// Retrieve the unit for the eigenfrequency parameter
//String auxUnit = model.study("std1").feature("stat").getString("punit");
String efqUnit = model.study("std1").feature("eig").getString("eigunit");

// Retrieve the results
double[][] efgResults = model.result().evaluationGroup("egl1").getReal();

// Loop through results

282 |

for (int i = 0; i < efqResults.length; i++) {
double L = efqResults[i][O0]; // Sweep parameter (L)
double efq = efqResults[i][1]; // Eigenfrequency (resonant frequency)
debugLog ("L = "+L+" "+parUnit);
debugLog(" Eigenfrequency: "+efq+" "+efqUnit);
debugLog("");
}

Specifically it creates an Evaluation Group named eg1 and sets its dataset to dset2,
which contains results from a parametric eigenfrequency sweep.

It uses dummy expression 1 to trigger evaluation at the selected sweep points. It
manually selects which parametric indices and eigenmode indices to evaluate:

* looplevelindices = "7 8 9" sclects specific parameter values (for example,
geometry or material settings).

* looplevel = "1 2 3" selects specific eigenmodes at each sweep point.

The Evaluation Group is then run, and the output table contains:
e The parameter value (L) used in the sweep.

» The corresponding eigenfrequency for each selected mode.
Finally, the code logs each parameter and eigenfrequency pair. The

cigenfrequencies vary with the parameter L, due to the fact that the resonance
frequency is a function of the length of the tuning fork.

The (abridged) output from this code is as follows:

L =0.078 m
Eigenfrequency: 451.12805182824405 Hz

L =0.078 m
Eigenfrequency: 692.8198415933232 Hz

L =0.078 m
Eigenfrequency: 1678.173090553073 Hz

L = 0.07875 m
Eigenfrequency: 1657.9561032429424 Hz

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

¢ tuning_fork_get_eigenfrequency_data.mph

| 283

https://www.comsol.com/model/application-programming-guide-examples-140771

Recursion and Recursively Defined Geometry Objects

Methods can support recursion by having a function calling itself in a recursive
loop. The following examples create recursive CAD geometry models of a
Sierpinski carpet in 2D and a Menger sponge in 3D.

SIERPINSKI CARPET

The following method, create_carpet, initiates the recursion to a certain
recursive level according to a user-defined Parameter mslevel, defined under
Global Definitions in the Model Builder. It sets a limit at 5 levels in order to avoid
creating an exceedingly large geometry. The method assumes that you have
created a 2D Component and that you have declared an integer scalar variable
counter.
int level = (int) model.param().evaluate("mslevel");
if (level < 1)
error("Carpet level needs to be at least 1.");
if (level > 5)
error("Carpet level needs to be at most 5.");
counter = 0;
model.component ("comp1").geom("geomi").feature().clear();
model.component ("comp1").geom("geom1").autoRebuild("off");
double cx0 = 0, cy0 = 0;
double si0 = 1;
carpet(level, cx0, cy0, si0);
model.component("comp1").geom("geom1").runPre("fin");

The method create_carpet in turn calls the main recursive function carpet, listed
below, using four input arguments for the recursion level, the center x- and y-
coordinates, and the current side length.

284 |

The input
below.

arguments are defined in the method’s Settings window, as shown

Settings

Mame: carpet

[] Show in Madel Builder

~ Inputs and Output

Inputs
k2 MName
level
o
Y

si

l’
Output: M

Type Default Description Unit
Integer - Recursive level
Double - Center x coordinate
Double bl Center y coordinate
Double - Sguare side length
one -

The code for the method carpet is shown below.

int 1 =
double p
String s
int 11;
for (int
for (i
posx
posy
stri
if (
if

level;
0SX, posy, sift;
trix;

i=0; 1< 3; i++) {
nt j =0; j <3; j++) {
= CcX+i*si-si;
= cy+j*si-si;
X = toString(i)+toString(j);
(Math.abs((i-1))+Math.abs((j-1))) > 0) {
(1 ==1) {
counter = counter+i;
model.component("comp1").geom("geom1").create("sq"+strix+"C"+
toString(counter), "Square");
with(model.component("comp1").geom("geomi1").feature("sq"+strix+"C"+
toString(counter)));
set("base", "center");
set("size", new double[]{si});
set("pos", new double[]{posx, posy});
endwith();
model.component("comp1").geom("geomi1").feature("sq"+strix+"C"+
toString(counter)).label("Square"+strix+"C"+toString(counter));
else {
11 = 1-1;
si1 = si/3;
carpet(l1, posx, posy, sil);

| 285

}

The figure below shows the resulting geometry for a level-3 carpet.

s B
e

&

|
AH= b =l T

1268119568

Note that the number of square geometry objects defined for the level 3 carpet is
512. The number of geometry objects for a level-N carpet is 8. This means that
for the maximum level 5 set by the method create_carpet, the resulting geometry
has 32,768 geometry objects.

MENGER SPONGE

The methods for the Sierpinski carpet readily generalize to 3D. However, in 3D,
you need to be careful not to generate more objects than your computer can
handle. The method assumes that you have created a 3D Component and that you
have declared an integer scalar variable counter.

The following method, create_sponge, initiates the recursion.

int level = (int) model.param().evaluate("mslevel");
if (level < 1)

error("Sponge level needs to be at least 1.");
if (level > 3)

error("Sponge level needs to be at most 3.");
counter = 0;
model.component("comp1").geom("geom1").feature().clear();
model.component ("comp1").geom("geom1").autoRebuild("off");
double ¢cx0 = 0, cy0 = 0, cz0 = 0;
double si0 = 1;
sponge(level, cx0, cy0, cz0, si0);
model.component("comp1").geom("geom1").runPre("fin");

286 |

The method sponge, shown below, is called by the above method and recursively
creates a Menger sponge.

int 1 = le

double pos

String str
int 11;

for (int i

for (int

for (i

posx

posy

posz

stri

if (

if

vel;
X, posy, posz, sii;
ix;

= 0; i< 3; i++) {

] =05 3 <35 j++) {

nt kK = 0; k < 3; kt++) {
= cx+i*si-si;
= cy+j*si-si;
= cz+k*si-si;
X = toString(i)+toString(j)+toString(k);
(Math.abs((i-1))+Math.abs((j-1))+Math.abs((k-1))) > 1) {
(L ==1) {
counter = counter+i;
model.component("comp1").geom("geom1").create("blk"+strix+"C"+
toString(counter), "Block");
with(model.component("comp1").geom("geom1").feature("blk"+strix+"C"+
toString(counter)));

set("base", "center");
set("size", new String[]{toString(si), toString(si),
toString(si)});
set("pos", new double[]{posx, posy, posz});
endwith();

model.component ("comp1").geom("geom1").feature("blk"+strix+"C"+
toString(counter)).label("Block"+strix+"C"+toString(counter));

else {
11 =1-1;
sil = si/3;

sponge (11, posx, posy, posz, sil);

| 287

The figure below shows the resulting geometry for a level-2 sponge.

Model Builder

e puzce
B Mesmges - proges o

In this case, the number of geometry objects grows with the level N as 20" and
the level-2 sponge shown above has 400 block geometry objects.

Note that if you have any of the add-on products for additional CAD
functionality, you can export these geometry objects on standard CAD formats.
Without add-on products, you can export the meshed geometry to any of the
supported mesh formats.

You can download the MPH files for these examples from:

www.comsol.com/model /recursion-and-recursively-defined-geometry-objects-75461

Mesh Information and Statistics

You can retrieve a variety of mesh information and statistical quantities, such as
clement quality, the total number of elements, the total mesh volume, and so on.
The figure below shows part of an application displaying such information.

Number of elements: 79492
Tet min quality: 0.1405
Tet mean quality: 0.6532
Tet min volume: 2.815E-13
Mesh volume: 6.354E-6

288 |

https://www.comsol.com/model/recursion-and-recursively-defined-geometry-objects-75461

Assuming that you would like to link the various mesh quantities to variables
declared under the Declarations node, the corresponding method code would
include the following lines of code:

a = model.component("comp1").mesh("mesh1").getNumElem();

b = model.component("comp1").mesh("mesh1").getMinQuality("tet");
¢ = model.component("comp1").mesh("mesh1").getMeanQuality("tet");
d = model.component("comp1").mesh("mesh1").getMinVolume("tet");

e = model.component("comp1").mesh("mesh1").getVolume("tet");

For more information on available mesh quantities, see the COMSOL
Multiphysics Programming Reference Manual.

Accessing Higher-Order Finite Element Nodes

The extended mesh data structure contains information related to the finite
element method including, for example, the placement of higher-order element
nodes. The extended mesh information is contained in the class XmeshInfo and
provides information about the numbering of elements, nodes, and degrees of
freedom (DOFs) in the extended mesh and in the matrices returned by the
Assemble feature and the solvers. For detailed information on XmeshInfo, see the
Programming Reference Manual.

The following example method illustrates how to use the extended mesh
information to plot higher-order nodes in a few important special cases. Note that
general functionality for this is built-in when creating a Mesh Plot under Results
while also using a Study as the referenced Dataset.

| 289

The example below covers cases with one model component, one geometry, and
a subset of physics combinations. If you apply it to other cases, you will get an
€ITor message.

e DE YR >
e bome
G G

Pot Pl

Model Builder
StisEraes

Graphics
Qaar-@ brkkn ¢ @ €He-@ED 8-

Mesh Volume: von Mises sress (MPa)

nw@iasie

// Note that this method is only implemented for one component and one geometry
and does not work for all physics combinations.

String stdTag = model.study().uniquetag("stdfe");
model.study().create(stdTag);

model.study(stdTag).label("FE Nodes Study "+stdTag.substring(5));
model.study(stdTag) .showAutoSequences("sol");

String solTag = model.sol().uniquetag("sol");
model.sol().create(solTag);

model.sol(solTag).create("st1", "StudyStep");
model.sol(solTag).create("v1", "Variables");

SolverFeature step = model.sol(solTag).feature("vi");

XmeshInfo xmi = step.xmeshInfo();
try {
XmeshInfoNodes testnodes = xmi.nodes();
} catch (Exception e) {
error("Cannot access finite element data. Only implemented for one geometry and
stationary studies.");
}
XmeshInfoNodes mynodes = xmi.nodes();
double[][] coords = mynodes.gCoords();
int[] coordsize = matrixSize(coords);

int sdim = 0;
if (coordsize[0] == 3) {

290 |

sdim = 3;
} else if (coordsize[0] == 2) {
sdim = 2;
} else
error("The geometry of the first component is not 2D or 3D.");

String mesh = "mesh"+stdTag;
model.result().dataset().create(mesh, "Mesh");

String pgTag = model.result().uniquetag("pgfe");
ResultFeature pg = model.result().create(pgTag, sdim);
model.result(pgTag).label("FE Nodes Plot "+pgTag.substring(4));
String nodes = pgTag;
model.result(nodes).create("mesh", "Mesh");
if (sdim == 3) {
with(model.result(nodes).feature("mesh"));
set("data", mesh);
set("meshdomain", "volume");
endwith();
} else {
with(model.result(nodes).feature("mesh"));
set("data", mesh);

set("meshdomain", "surface");

endwith();

}

with(model.result(nodes).feature("mesh"));
set("elemcolor", "none");
set("wireframecolor", "gray");
set("elemscale", 0.999);

endwith();

with(model.result(nodes));
set("edges", true);
set("data", mesh);
endwith();

ResultFeature plot = pg.create("pti1", "PointData");
plot.set("pointdata", coords)

.set("coloring", "uniform")
.set("color", "red");
plot.run();
selectNode(pg);
Comments

The first few lines of the method set up a solver step object step, which is used to
extract the extended mesh information. The extended mesh information, which
contains information on the higher-order nodes, is extracted in the line

XmeshInfo xmi = step.xmeshInfo();

The lines

XmeshInfoNodes mynodes = xmi.nodes();
double[][] coords = mynodes.gCoords();

| 291

int[] coordsize = matrixSize(coords);
access and store the finite element node coordinates in a 2-by-coordsize (2D) or
3-by-coordsize (3D) array.
The following code segments set up a mesh dataset and an associated mesh plot.

The last section uses the low-level PointData plot type to visualize the finite
clement nodes. For more information on this plot type, see “Points in 3D” on
page 190.

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

¢ loaded_spring.mph

Accessing System Matrices and Vectors

You can gain low-level access to the finite element system matrices and vectors by
adding nodes of the types Assemble and Input Matrix under a Study node.

The example below shows how to set up and solve a 2D electrostatics problem on
the unit square [0,1]-by-[0,1]. After the original problem is solved, the load
vector is modified at a user-defined coordinate. The code searches for the degree
of freedom closest to the target user-defined coordinate and modifies the load
vector to a user-defined value. The physical interpretation of the modified load is
that of an added volume charge.

To run the example code below, first use the Model Wizard to create a blank
model. Then, add a new method and paste the example code below. Finally, run

292 |

https://www.comsol.com/model/application-programming-guide-examples-140771

the method. You can try changing the variable values in the Initializations section
at the beginning of the code and run again.

Graphics
aa@- @ L.

// Initializations

double x_load = 0.2; // Target x-coordinate for load

double y load = 0.2; // Target y-coordinate for load

double load = 1e-9; // Load, volume charge

double dist = 10.0; // Distance to (x_load,y_load) from degree of freedom
int index = 0; // Index of the degree of freedom closest to (x_load,y load)

// Clear any previous model
clearModel(model);

// Create a new model component
model.modelNode().create("comp1");

// Create the 2D geometry

model.geom().create("geomi", 2);
model.geom("geom1").feature().create("sql", "Square");
model.geom("geom1").run();

// Create the mesh

model.mesh().create("meshi1", "geomi");
model.mesh("mesh1").feature().create("fre1", "FreeTri");
model.mesh("mesh1").run();

// Setup the electrostatics physics problem

model.physics().create("es", "Electrostatics", "geomi");
model.physics("es").feature().create("gndi", "Ground", 1);
model.physics("es").feature("gnd1").selection().set(new int[]{1});
model.physics("es").feature().create("sfcd1", "SurfaceChargeDensity", 1);

model.physics("es").feature("sfcd1").selection().set(new int[]1{4});
// Add a varying distributed charge density along the rightmost boundary

| 293

model.physics("es").feature("sfcd1").set("rhogs", "1e-9*y");

// The following two lines using the ccn1 feature are only needed in version 6.2
and earlier versions
//model.component("comp1").physics("es").feature("ccn1").set("epsilonr_mat",
"userdef");
//model.component("comp1").physics("es").feature("ccn1").set("epsilonr", "1");

// Change to first-order shape functions, to keep things simple
model.component ("comp1").physics("es").prop("ShapeProperty").
set("order_electricpotential", 1);

// Create and run the study.

model.study().create("std1");
model.study("std1").feature().create("stat1", "Stationary");
model.study("std1").run();

// Create a 2D plot group with a surface plot for the original problem
model.result().create("pgl", 2);

model.result("pgl").set("data", "dset1");
model.result("pgl").feature().create("surf1", "Surface");

selectNode(model.result("pg1")); // Set focus on the plot node

// Create a reusable solver feature variable
SolverFeature solft;

model.study().create("std2"); // Create a Study 2 node
model.sol().create("sol2"); // Create a dataset Solution 2
// Create a Solver configurations node under Study 2
model.sol("sol2").study("std2");

model.sol("sol2").create("st1", "StudyStep"); // Create a Compile Equations node
solft = model.sol("sol2").feature("st1"); // Assign solver step to variable
solft.set("study", "std2");

model.sol("so0l2").create("v1", "Variables"); // Create a Dependent Variables node
solft = model.sol("sol2").feature("v1");

model.sol("sol2").attach("std2");

model.sol("sol2").create("al", "Assemble"); // Add an Assemble node

solft = model.sol("sol2").feature("al");

// Now define which system matrices should be output (Noneliminated Output)

// L=Load vector, K=Stiffness matrix, M=Constraint vector, N=Constraint Jacobian
// For more information see the Programming Reference Manual

solft.set("L", "on");

solft.set("K", "on");
solft.set("M", "on");
solft.set("N", "on");

// Create a Stationary Solver 2 node: Study 2 > Solver Configurations > Solution 2

model.sol("sol2").create("s2", "Stationary");
// Create an Input Matrix node under Stationary Solver 2
solft = model.sol("sol2").feature("s2").create("im1", "InputMatrix");

// Define which system matrices should be input

294 |

solft.set("L", "on");
solft.set("K", "on");
solft.set("M", "on");
solft.set("N", "on");

// Find the degree of freedom coordinate closest to the target coordinate
solft = model.sol("sol2").feature("v1");
XmeshInfo xmi = solft.xmeshInfo();
XmeshInfoDofs mydofs = xmi.dofs();
double[][] coords = mydofs.gCoords();
int[] coordsize = matrixSize(coords);
double new_dist = dist;
for (int k = 0; k < coordsize[1]; k++) {
new_dist = Math.sqrt((coords[0][k]-x_load)*(coords[0][k]-x_load)+
(coords[1][k]-y_load)*(coords[1][k]-y_load));
if (new_dist < dist) {
index = k;
dist = new_dist;
}
}

// Run the solver sequence up to and including the Assemble node
model.sol("sol2").runFromTo("st1", "al1");

// Extract system matrices and vectors
solft = model.sol("sol2").feature("al");

/1 K

int KM = solft.getM("K");

int KN = solft.getN("K");

int KNnz = solft.getNnz("K");

int[] Ki = solft.getSparseMatrixRow("K");

int[] Kj = solft.getSparseMatrixCol("K");

double[] Kv = solft.getSparseMatrixVal("K");

// For more information, see the Programming Reference Manual

/1L
double[] Lv = solft.getVector("L");

/l N

int NM = solft.getM("N");

int NN = solft.getN("N");

int NNnz = solft.getNnz("N");

int[] Ni = solft.getSparseMatrixRow("N");
int[] Nj = solft.getSparseMatrixCol("N");
double[] Nv = solft.getSparseMatrixVal("N");

/1M
double[] Mv = solft.getVector("M");

// Modify the load
Lv[index] = load;

// Put the system matrices and vectors back in again
solft = model.sol("sol2").feature("s2").feature("im1");

| 295

/1 K
solft.createSparseMatrix("K", KM, KN, KNnz, true);
solft.addSparseMatrixVal("K", Ki, Kj, Kv);

/1L
solft.createVector("L", Lv.length, true);
solft.setVector("L", Lv);

/1 N
solft.createSparseMatrix("N", NM, NN, NNnz, true);
solft.addSparseMatrixVal("N", Ni, Nj, Nv);

/1M
solft.createVector("M", Mv.length, true);
solft.setVector("M", Mv);

// Solve Stationary Solver 2 with the modified system
model.sol("sol2").runFromTo("s2", "s2");

// Plot the results
model.result().create("pg2", "PlotGroup2D");
model.result("pg2").set("data", "dset2");

model.result("pg2").create("surf1", "Surface");

// Plot electric potential and original mesh overlayed with no smoothing
model.result("pg2").feature("surf1").set("resolution", "norefine");
model.result("pg2").feature("surf1").set("smooth", "none");
model.result("pg2").create("surf2", "Surface");
model.result("pg2").feature("surf2").set("resolution", "norefine");
model.result("pg2").feature("surf2").set("coloring", "uniform");
model.result("pg2").feature("surf2").set("color", "gray");
model.result("pg2").feature("surf2"). set("wireframe", true);

model.result("pg2").run();
selectNode(model.result("pg2")); // Set focus on the plot node
Comments

In the previous example, “Accessing Higher-Order Finite Element Nodes” on
page 289, the XmeshInfoNodes methods are used to access finite element nodes
that have the same length as the number of finite element nodes. In this example,
the XmeshInfoDofs methods are used to access the degrees of freedom vector,
which has the same length as the load vector.

Note that only the load vector is modified. The other matrices and vectors are
merely extracted and then put back into the system again.

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

* accessing_system_matrices.mph

296 |

https://www.comsol.com/model/application-programming-guide-examples-140771

Data Validation

In the Settings window for input fields, the section for Data Validation has a
subsection Numerical validation with settings that allow you to validate user inputs
with respect to values. The figure below shows an example of settings for entering
a radius.

~ Data Validation

Unit dimension check: Nane -
MNumerical validation
Filter: Double -
Lower bound
Comparison type: Greater than or equal -

Value: 7.5

Upper bound

Comparison type: Less than or equal A

Value: 23

Error message:

The radius must be greater than or equal to eval(MINVALUE) and less
than or equal to eval(MAXVALUE).

The Filter options, the Lower bound and Upper bound scttings are only visible if the
selection in the Unit dimension check combo box is set to one of None, Append unit
to number, or Append unit from unit set.

The Value input fields for Lower bound and Upper bound allow you to use global
parameters or scalar declaration variables. Using scalar declaration variables in this
field supports the same type of data conversions as when using declaration names
as a method input argument in a command sequence. This means that scalar
Integer and Double declaration variable will always work and scalar String
declarations will work if they can be converted to a Double.

Using declaration variable names or global parameters in the Value input fields can
only be used when Unit dimension check is sct to Append unit to number or Append
unit from unit set. In that case, the bounds are checked based on the numerical
value entered by the user in the input field. In a Value input field, you cannot use
expressions in terms of declared variables but only a single declaration name. If a
parameter exists with the same name as a declaration variable, then the value of the
global parameter will be used.

| 297

The scope of declaration names used in a Value field is limited to the parent form
of the input field.

Note that the bounds are updated dynamically as the value of the parameters or
declaration variable is changed. This means that several input fields, not actively
changed by the user, can fail numerical validation at once caused by a change in
another input field, which causes the value of a parameter used in a validation
bound to change.

The Error message text field allows you to write a customized error message to be
shown when the input values are out of bounds. The error message text can
contain eval(variable), which is also allowed in the title for plot groups in the
Model Builder. In addition, the Tooltip of the input field allows use of
eval(variable). The variable can be the name of any global parameter or scalar
declaration. If a parameter and a declaration with the same name exists, then the
parameter is used. In addition to parameter and declaration names the special
strings MINVALUE and MAXVALUE can be passed to eval and will return the value
entered as lower bound or upper bound.

When using eval for a parameter, it will return the evaluated value of the
parameter using the same unit that is used to enter the bounds in the Value input
field. For a scalar declaration the string value of the declaration is returned which
will be true or false for a boolean declaration.

ACCESS TO OLD VALUE AND NEW VALUE IN EVENT METHODS

You can create a method for an On data change event directly from the Events
section of an input field, as shown in the figure below.

> Position and Size

> Appearance

~ Ewvents
On data change: Mone - T
On focus gained: ~ Mone Create Global Method

Create Form Method
Create Local Methed

Create Command Sequence

298 |

In such a case, the method will automatically get a scalar String input argument
with the name newvalue, as shown in the figure below.

Settings
Method

Mame: method1
Show in Madel Builder

~ Inputs and Output

Inputs
" MName Type Default Description Unit
newValue String =
l’
Output: Mone -

The variable newvalue will get the new value entered in the input field by the user
of the app.
In addition to the new value, you may need to access to the old value entered in
the input field, for example, to be able to restore it if your custom data validation
fails. For this purpose, you can use the event object and its associated methods
which are accessible from methods that are called from events. The event object
has the following methods:

event.getOldValue()

event.getNewValue()
which return the old and new value, respectively, of the source associated with the
form object. The methods return an object called value which is similar to the
DataSource object returned when you call:

app.declaration(<declarationName>)

A DataSource object has the methods getBoolean, getBooleanArray,
getBooleanMatrix, getDouble, and so on to allow accessing the value stored in the
DataSource object no matter what type it has. It also has the corresponding set
methods to allow setting a value. For more information, see “Data Source and
Declaration” on page 112.

The value object is a read-only version of the DataSource object with only the get
methods.

| 299

ACCESs TO FORMS AND FORM OBJECTS IN EVENT METHODS

For methods that are called from events, you can access the properties formTag and

formObjectTag for the form object that triggered the event. This way, you can

access the form object from the event method using the syntax:
app.form(<formTag>).formObject(<formObjectTag>)

To make it more convenient to access the user control that triggered the event
there is also a method

event.getUserControl()

that returns the form object, menu item, or ribbon item that triggered the event.
The event object is additionally available for methods called from command
sequences in, for example, menu items and ribbon items. The interface
IPropertyAccess which has methods for getting and setting values on all user
interface controls such as form objects, menu items and so on can then be returned
by the getUsercControl method.

DATA VALIDATION FROM DIALOGS

A form that is shown as a dialog can function in two different ways. The first way,
which is the default option, works on a copy of the data and stores changes when
the user clicks OK in the dialog. The second way is enabled by changing the Store
changes value of the form, used as a dialog, from On request to Immediately, as
shown in the figure below.

Settings
For

m

Mame: preferences =
Title: Preferences
lcon: Default = &

Show in Madel Builder
> Size

> Margins

~ Dialog Settings

Store changes: On request -
[] Resizable ~ On request
Vertically scr Immediately

> Grid Layout for Contained Form Objects

Changes performed in the dialog will then be stored to the associated source
variable or parameter immediately and it will work like a regular form in the main
application window.

300 |

To accomplish storing of the values when the dialog is set to work on a copy,
corresponding to the first option above, and store the values on request, the
Settings window for a button object has a checkbox Store changes in the section
Dialog Actions, as shown in the figure below. When this checkbox is selected, the
values in the dialog are stored from the copy used by the dialog to the actual values
after the command sequence specified for the button has been run. Part of this
command sequence can include a method that performs validation of the data that
the user has entered in the dialog. The figure below shows an example of this
scenario, with a method validation, for an OK button used in a dialog.

~ Choose Commands to Run B

~ [Forms
D form1

» @ GUI Commands
v % Form Methods
validate

[fifi Libraries
& Model (root)

oo

Edit Node Run Plot Set Value Show

Show as Dialog Import File Enable Disable

L
Command lcon | Arguments
validate @

E==3 I"E . v
~ Dialog Actions

Close dialog
Store changes

However, this validation approach will not work. This is due to the fact that when
the dialog is set to Store changes on request, the values have not yet been stored
when the validation method runs since dialog actions such as Store changes are
performed after the command sequence for the button has been run. This means
that the validation code cannot access the new values to perform a validation on
them.
To remedy this, there is an access method that can be used together with form
objects such that the value currently entered in them can be used for data
validation before they have been stored in their associated source. The syntax for
calling this access method is:
app.form(<formTag>).formObject(<formObjectTag>).getValue();

This call will return a Value object, the same type of object described earlier and
used for calls to event.get0ldvalue () and event.getNewvalue(). With this type

| 301

of access to the current value in the form object, a data validation can be
performed. The following form object types support the getvalue method.

 Input field

* Toggle Button

* Checkbox

» Combo box

« File import

e Array input

» Radio button

* Selection input

o Text

» List box

o Table

 Slider

* Knob

* Gauge

If the user has clicked OK in a dialog and the data validation fails, you typically want
to show an error dialog and then leave the dialog open to allow the user to correct
the input fields that failed validation. This not possible to achieve using a direct
approach since if the OK button is set to have Store changes as a Dialog Action the

storing of the data will always be performed after the command sequence, defined
in the Settings window of the OK button, has been run.

To remedy this, there is a method for programmatically store changes:
storeChanges(String name)

which will store the changes for a given form, used as a dialog.

Note that you can call:
closeDialog(<dialogTag>)

to close a specific dialog.

When using the technique described above, you can clear the Store changes and
Close dialog checkboxes, in the Dialog Actions section for the OK button and instead
call storechanges and closeDialog as part of the flow in the validation method if
the validation passes.

Having a way to programmatically store changes also helps with the case where
the dialog contains a button that also performs something when closing the
dialog, for example, a Compute button. A validation may then be followed by, for
example, a compute method. In order to get this compute method to work on the

302 |

new values entered in the dialog, storeChanges can be called after the data
validation has been performed but before the compute method is called.

EXAMPLE OF DATA VALIDATION IN FORMS AND DIALOGS

This example illustrates the use of data validation in a form and a dialog. This app
is very simple and does not fulfill any other function than to demonstrate
important aspects of data validation. The app consists of a form with one input
field that expects the user to type the string open dialog, as shown in the figure
below

o Untitled.mph ~ — O b

Command: Type open dialog

About

If the user types a different string, then an alert window with a message Unknown
command is shown:

o Untitled.mph

Command: dialog

Alert x About

= '0' Unknown command, —

and the string value for the Command is reset to the default Type open dialog.

| 303

If the correct string open dialog is entered, then a dialog opens, as shown in the
figures below.

Untitled.mph ~ — a X !
ntitled.mp a2 Untitled.mph
: dial i
Command: @pen dialog Command: open dialog
i
About 3 Form 2
Mumberx (1-10): 3
| Numbery (y=x): 3
oK

The dialog expects an integer between 1 and 10, in the first input field. In addition,
it expects the value in the second input field to be identical to the value in first
input field. If all these criteria is fulfilled, no error message is shown and the app
starts from the beginning showing the string Type open dialog in the main form.

If the user enters different values, as shown in the figure below:

o Untitled.mph

Command: open dialog

3 Form 2 *
MNumberx (1-10): 2
_| Numbery (y=x): 3

OK

304 |

then an error message is shown with the message The value of y must be
to x.

Untitled.mph

& Error e
The value of y must be equal to x.

>

T
| Numberx (1-10): 2

=x): 3
— MNumber y (y=x)

OK

When the user now closes the Error message dialog, the user gets a new
opportunity to enter matching values in the dialog.

equal

The data validation functionality in this demonstration app is implemented using
an On data change event for the Command input field in the main form form1, as

shown in the figure below.

Fform1 x | [@)] Preview method3 Settings
o String value = event.getNenValue().getString(); -
! String oldValue = event.getOldvalue().getString(); Input Field
» i A i open dialog
' if (value.tolowerCase().equals(“open dialog”)) { Neme: imputfield
' dialog("/form2");
' B} else { Editable
Command: «Type open dialog . aLert(“Unknown command.”); .
! command = oldvalue; st
””””””””””””””””” ! + ~ Source
4 = Declarations
b 123 Integer
4 sb: String

Use as Source

Selected source:

Data Validation

Appearance

~ Events

On data change:

= command

Edit Node

sbe String=command

Initial value: ~ From data source

Value: Type open dialog

Number Format

Position and Size

method3

| 305

@+ B

E

The code in method3 shows the user of event.getNewvalue and
event.getOldvalue, as shown below:

String value = event.getNewValue().getString();
String oldvValue = event.getOldValue().getString();
if (value.toLowerCase().equals("open dialog")) {
dialog("/form2");
} else {
alert("Unknown command.");
command = oldValue;

}

The dialog form2 has Store changes set to On request, as shown in the figure below.

Settings

[

MName: form2
Title: Form 2

lcon: Default - | |1

Show in Model Builder

v Size

Initial size: Automatic -
~ Margins

Horizontal: 20

Vertical: 20
~ Dialog Settings

Store changes: On request ot
["] Resizable
Vertically scrollable

In the dialog, the value of the variable x is validated in the On data Change event
of the input field with label Number x (1-10) and also when clicking the OK button.
The y value is only validated when clicking the OK button. The data validations are
implemented using the form object access method getvalue. The OK button

306 |

makes use of the storechanges method. The figure below shows the method run
for the On data change event for the input field with label Number x (1-10).

[Q] Preview [form1 [form2 x
v

The corresponding code in method2 is as follows:

int valueX

int valueX = app.form("#
B if (valueX ¢ 1 || value:

Editor Tools

Name: inputfield1
[Editable
Tooltip:

v source

~ = Declarations

Use as Source ¢ Edit Node
Selected source:

123 Integer=x
Initial value: From data source

Value:

Data Validation

Number Format

Pasition and Size

> Appearance

v Events

On data change: method2 -
On focus gained: | None -

app.form("form2").formObject("inputfield1").getValue().getInt();

if (valueX < 1

|| valueX > 10) {

error("The value of x must be greater than or equal to 1 and less than or

equal to 10.");

}

| 307

[

The OK button calls method1 for the On data Change event, as shown in the figures
below.

@Preview Dform2 x Dform‘l Settings
v
Button
> | |
.Numberx('l-‘lo]: 0 Mame: button1 =
Mumbery (y=x): 0 Text: oK
O.K H leon: MNone ~| |
Size: Small -
Style: Raised -
Tooltip:

Keyboard shortcut:
~ Choose Commands to Run

> [Forms

B GUI Commands
= Declarations
% Methods
rethod1
rnethod2
=y Edit Node Run Plot Set Value Show
Show as Dialog Import File Enable () Disable

»
»
w

L

Command lcon | Arguments
method1 B
t 1 SEbE- #

~ Dialog Actions

[] Close dialog
[] Store changes

@ Preview method1 X
1 int valueX = app.form("form2").formObject("in
2 int valueY = app.form("form2").formObject("
3 method2();
45 if (valueX != wvalueY) {
5 error("The value of y must be equal to x.");
6 } else {
storeChanges("/f
closeDialog("/
command = "Type open dialog";

1").getValue().getInt();
J.getValue().getInt();

The corresponding code in method1 is as follows:

int valueX =
app.form("form2").formObject("inputfield1").getValue().getInt();

308 |

int valueY =
app.form("form2").formObject("inputfield2").getValue().getInt();
method2() ;
if (valueX != valueY) {

error("The value of y must be equal to x.");
} else {

storeChanges("/form2");

closeDialog("/form2");

command = "Type open dialog";

Using Selections in Add-ins

In order to use selections in the Model Builder from an add-in, you leave the
source settings empty when using a selection input form object at the time the
add-in is created. Then you use a method to create an explicit selection in the
current model and link it to the selection input object of the add-in.

The figure below shows a simple add-in Boundary Selections used to demonstrate
this functionality. It contains a form with a selection input object and a button.
When the add-in is in focus, the user can click on one or more boundaries in the

| 309

graphics window to create the selection. Clicking the button triggers an Alert
with a dialog where the selected boundaries are listed.

Fle Home Defintions Geometry

Application Model | Companent pdd o
Gader | Mansger Te s Mathematis | Mesh

Workspace Mager Geometry watrls Fryss wesn sy Resuns wout
Model Builder Settings Graphics
A Soundary Selection Qa@- el Lrhirkk ¢y @S- 6. BY <230 @- @Fe- a@E -lo-a
Y ;

=3
e

nox N

Messages progress Log

The figure below shows the form of the add-in as it appears when in use in a
model:

Settings

Boundary Selection

Display Selection

Boundaries
4 & —
2 b
30

310 |

x

When the add-in Settings form is added to a model, an On load event is triggered
that runs a method createSelection. The Settings form is shown in the figure
below:

Settings

Form
Mame: form1 =
Title: Boundary Selection

lcon: Default ~| |4
Show in Madel Builder

v Size

Initial size: Automatic -
> Margins

> Dialog Settings

> Grid Layout for Contained Form Objects

> Appearance

v Events
On load: createSelection - Bt~
On close: Mone - P2

The code for the method createSelection is listed below:

// Create explicit selection in the model.
if (model.selection().index(selectionTag) < 0) {

SelectionFeature selection = model.selection().create(selectionTag,
"Explicit");

selection.geom(2);

selectioninputi.set("source", selection);
}
// Activate the selection whenever the settings form is selected
selectioninputi.set("active", true);

The variable selectionTag stores a unique identifier for the Model Builder Explicit
selection feature. This string needs to be different enough not to accidentally

1311

collide with the user’s selection features, used for other purposes, in the Model
Builder. The figure below shows the declaration of this String variable.

Settings v B8 B
String

Label: String 1

Mame: string1

List of Variables

L . -
MName Initial value Description

selectionTag selection_addin_prefix_sell | A unique tag for this add-in

In addition, a shortcut selectioninput1 is used for the selection input object, as
shown in the figure below.

Settings

Shortcuts

List of Shortcuts

L A
MName Target Description

selectioninput] form1/selectioninput] Shortcut to Selection input

312 |

The figure below shows the Settings window for the Selection Input form object
selectioninputi. Note the empty selection of the Source and Graphics to Use When
Active. These settings are set by the method createSelection.

form1 X Preview -
Dformt x [Settings
v -
Selection Input
>
Mame: selectioninput? =p
Display Selection
Boundaries ~ Source
=l
= .
il
!
Use as Source Clear Source Edit Node
Selected source:
(7) Mo source selected

~ Graphics to Use When Active

Use Graphics Edit Node
Selected graphics:

€ No source selected
» Position and Size

> Appearance

~ Events
On data change: MNone - + -
On activate: MNone - + ~

1313

The figure below shows the Settings window for the Button form object buttoni.

[fomt X [&] Preview Settings
v
Button
>
Mame: buttonl E
Display Selection
Boundaries Text: Display Selection Boundaries
=l lcon: None - |+
E — Size: Large -
= - _
E' e Style: Raised -
[
i Tooltip:

Keyboard shortcut:

~ Choose Commands to Run B

> [Forms

» [GUI Commands

» = Declarations

v % Methods
createSelection

displaySelection
» [Libraries

Edit Node Run [aE| Plot Set Value Show

Show as Dialog Import File Enable Disable

L
Command lcon | Arguments
displaySelection @

b BE -

When this button is clicked, a method displaySelection is run. The code for this
method is shown below.

SelectionFeature selection = model.selection(selectionTag);
alert("Selection boundaries are: "+concat(", ",
toString(selection.entities())));

For your own add-in, you can replace this code with any number of actions that
accepts an explicit selection as an input. For example, you can add the following
lines of code to the end of the method displaySelection in order to add a variable
a, local to this explicit selection, having the value 5.

model.component ("comp1"
model.component ("comp1"
model.component ("comp1"
model.component ("comp1"

variable().create("vartl");
variable("var1").selection().geom("geom1", 2);
variable("var1").set("a", "5");

).
).
).
).variable("vari").selection().named(selectionTag);

This example is part of a collection available for download:

www.comsol.com/model /application-programming-guide-examples-140771

314 |

The relevant files for this example are:
e selection_input_add_in_source.mph

* busbar_with_selection_add-in_demo.mph

For more information on creating and using add-ins, see the book Introduction
to the Application Builder.

Using Built-Iln Methods from an External Java Library

When developing an external Java® library to be used in the Application Builder,
it is possible to call the built-in methods from the external library. In order to do
so, the com.comsol.api JAR-file needs to be added to the project build path, and
the classes that call the methods need to extend the ApplicationLanguageBase
class. The following steps explain how to create a simple example JAR library when
using the Eclipse® integrated development environment:

I Start Eclipse®.

2 Create a new Java® project. Enter JavaLibDemo as the project name and click
Next.

3 Go to the Libraries tab and click Add External JARs. Add the JAR-file
com.comsol.api_1.0.0.jar from the plugins directory under the COMSOL
Multiphysics installation directory; for example
C:\Program Files\COMSOL\COMSOL64\Multiphysics\plugins

4 Click Finish.

5 Right-click the src folder in your Eclipse project and select New > Package. Enter
demo as the package name and click Finish.

6 Right-click the demo package in your Eclipse project and select New > Class. Enter
Hello as the class name.

7 Click on Superclass > Browse and select ApplicationLanguageBase. Click OK and
Finish.

8 In the editor window for the Hello class, add the following method and save the
file:

public static void hello() {
alert("Hello!");
}

9 Right-click the JavaLibDemo project and select Export > Java > JAR file. Select the
export destination JAR-file and click Finish.

10Start COMSOL Multiphysics and create a Blank Model.

1315

Il In the Application Builder, under the application tree, right-click Libraries and
select External Java Library. In the Settings window, click Browse and select the
JAR-file previously exported from Eclipse®.

121In the Application Builder, add a form, button, and method for the button.
13 In the Method Editor for the method, add the following code:
Hello.hello();

14 Click Test Application and click the button in the application to verify that the
alert method is invoked.

Measuring the Java Heap Space Memory

Software components that are based on Java®, such as certain parts of COMSOL
Multiphysics, are predefined to use only a limited amount of memory. This limit,
the Java® heap space, is specified during startup. Note that the Java® heap space
only affects certain parts of the software and not, for example, meshing or solvers.
By default, COMSOL Multiphysics allocates 2 GB of Java® heap space memory.
See the Reference Manual for information about increasing the available heap
space memory.

In a method, you can measure the amount of heap space memory currently in use.
For example, while debugging, you can add the following code:

Runtime runtime = java.lang.Runtime.getRuntime();
runtime.gc();
debuglLog("Used memory (MB): "+(runtime.totalMemory()-runtime.freeMemory())/
(1024*1024)) ;
The first line adds a request to run the Java® garbage collector.

In order to monitor the memory usage in an application, you can replace debugLog
with message.

Time-Limited and Hardware-Locked Applications

By writing a few lines of code you can make your application expire after a set date
and lock the application to specific hardware.

The example MPH file used in this section is available in the Application Gallery
at www.comsol.com/model /time-limited-and-hardware-locked-application-

70151.

316 |

https://www.comsol.com/model/time-limited-and-hardware-locked-application-70151
https://www.comsol.com/model/time-limited-and-hardware-locked-application-70151

PASSWORD PROTECTION

The settings of an application can in principle be read from the file system by a
user, including method code. By making your application password protected for
editing, the method code will no longer be readable. This setting is available from
the root node in either the model tree or the application tree, as shown in the
figure below.

Settings
tuning_for

v Protection

3 Protect Edit with Password *
Editing not protected Set Password
Running not protected ~ 5et Password No current password
Mew password:
v Used Products

Retype new password:
COMSOL Multiphysics Note: Lost passwords cannot be recovered.

X QK Cancel
~ Unit System

sl -

~ Presentation

Before implementing a time limit or hardware lock, as described below, make sure
your application is password protected. Password protection for running the
application is not required for this purpose.

TIME-LIMITED APPLICATION

To have an application expire after a specific date, create a method as follows:

java.text.SimpleDateFormat f = new java.text.SimpleDateFormat("yyyy-MM-dd");
//java.text.SimpleDateFormat f = new java.text.SimpleDateFormat("MM/dd/yyyy");

ok = false;
try {
java.util.Date d = f.parse(timeoutDate);
long currentTime = timeStamp();
long timeoutTime = d.getTime()+24*60*60*1000; // To allow running until the end

of the day
if (currentTime < timeoutTime) {
ok = true;

}

}

catch (java.text.ParseException e) {
debugLog("Failed to parse timeout date "+timeoutDate);
debuglLog(e.getMessage());

}

In this method, you need to decide on a date format. Two format examples are
shown and you can uncomment the line corresponding to the format you would
like to use. For more details on available formats, see the Java® documentation for

1317

SimpleDateFormat. This method has one string input argument, timoutDate, and
one Boolean output argument, ok, as shown below.

[Preview check_date X
1 // Here you need to decide what format the date should be entered on
// Some examples are given below. Uncomment the line you want to use or check
// the JavaDoc for SimpleDateFormat for more details regarding what formats are available.

Settings

Name: check_date
Show in Model Builder

java.text SinpleDateFormat £ = new java.text.SimpleateFormat(

//java.text.SinpleDateFormat £ = new java.text.SimpleDateFornat ("MM/dd
~ Inputs and Output
ok = false; ‘
nputs
2 try {
3 »
Java.util.Date d = £.parse(tineoutDate); | et - i
long currentTime = timeStamp();
long timeoutTime = d.getTime()+24°60*60+1000; // To allow running until the end of the day timeoutDate | String S

5 if (currentTime < timeoutTime) {
ok = true;

3

= catch (java.text.ParseException e) {
debuglog ("Failed to parse timeout date "+timeoutDate);
debuglog (e.getMessage());
¥

o
Output: Boolean -

Name: ok

The expiration date is defined as a string variable, trial_date, in Declarations >
String, as shown below.

Settings
String
Label: String

MName: stringl

List of Variables

L . = =

MName Initial value Description
solution_state nosolution Solution state
trial_date '2018-11-9 Trial expiration date

- - O

HARDWARE-LOCKED APPLICATION

To lock an application to the MAC address of a specific network card on a
computer, create a method as follows:

ok = false;
try {
java.util.List < java.net.NetworkInterface > nis =
java.util.Collections.list(java.net.NetworkInterface.getNetworkInterfaces());
for (java.net.NetworkInterface ni : nis) {
StringBuilder macString = new StringBuilder();
byte[] macBytes = ni.getHardwareAddress();
if (macBytes != null && macBytes.length > 0) {
for (byte b : macBytes) {

318 |

if (macString.length() > 0) {
macString.append(":");

}
macString.append(String.format("%02x", b));

}

if (contains(allowedAddresses, macString.toString())) {
ok = true;
break;
}
}
}
}

catch (java.net.SocketException e) {}
In order to check the MAC address when running an application, you need to
enable Allow access to network sockets under Security in Preferences. However, for
a compiled application, no security changes are needed.

This method has one array 1D string input argument, allowedAddresses, and one
Boolean output argument, ok, as shown below.

[Preview [5] check date
1y

x Settings

s et el e Method

Neme: check mac_address
Show in Model Builder
Jova.util.List < java.net.NetworkInterface > nis = java.util.Collections.list(java.net.NetworkInterface. getletuorkInterfaces());
For (java.net.NetworkInterface ni : nis) {

StringBuilder macstring = new StringBuilder();

~ Inputs and Output

byte[] macBytes = ni.getHarduareAddress(); e
:ff(maizy:esh‘: nul; i& r)ua;aytes length > @) { * Name Type Default | Description | Uni
or (byte b : macBytes:
o s allowedAddresses | Amay Dstring +
macstring. append(
3
macString.append(String. format("02x", b));
if (contains(allowedAddresses, macString. tostring())) {
ok = true
break;
b
b
3
5 catch (java.net.SocketException €) {}
Output: | Boolean =
Neme: ok

The MAC address is defined as a string array mac_addresses in Declarations > Array
ID String, as shown below.

Settings
Array 1D String

Label: Array 1D String
MName: string1D1

List of Variables

L
MName Initial values Mew element value Description
mac_addresses |{'34:1T:eb:d2:5e:14'} MAC address (needs to be lowercase)

1319

Note that you can provide a list of MAC addresses to allow use on a computer with
multiple network cards or multiple computers.

CHECKING FOR ALLOWED DATE AND HARDWARE

To check for both the MAC address and the date, create a method
check_allowed_to_run as follows:

if (!check_mac_address(mac_addresses)) {
alert("You are not allowed to run this application on this computer.",
"COMSOL") ;
exit();

}

if (!check_date(trial_date)) {
alert("The trial for this application has expired "+trial_date, "COMSOL");
exit();

}
The figure below shows this method in the Method Editor.

@ Preview check_date check_mac_address check_allowed_to_run X
1= Iif (!check_mac_address(mac_addresses)) {
aglert("You are not allowed to run this application on this computer.®™, "COMSOL");
exit();
H
= if (!check_date(trial_date)) {

glert("The trial for this application has expired "+trial_date, "COMSOL");
exit();

H

You can call this type of method at startup of the application, for example, as an

On load event for the main form of the application. In the Tuning Fork example

application, available in the Application Library of COMSOL Multiphysics, there

isamethod p_init_application thatis run asan On load event for the main form.

In this case, the method p_init_application can be edited as follows:
check_allowed to_run();

if (model.sol("soll1").isEmpty()) {

solution_state = "nosolution";
}
else {

solution_state = "solutionexists";
}

zoomExtents("graphicsi1");

320 |

Notice the call to the method check_allowed_to_run in the first line. The figure
below shows this method in the Method Editor.

@ Preview p_init_application X

1 kheck_allov:ed_to_run();

=] if (model.sol("soll").isEmpty()) {

solution_state = "nosolution™;
H
- else {
solution_state = "soluti
H
zoomExtents("graphics1");

The method p_init_application is then called as an On load event. This is
specified in the Settings window of the main form, as shown in the figure below.

Settings

Form
Mame: main ,@
Title: Main

lcon: Default & i
[] Show in Madel Builder

> Size

> Margins

> Dialog Settings

> Grid Layout for Contained Form Objects

> Appearance

v Events
On load: p_init_application B =+~
On close: Mone - S

Get and Set of 3D Camera Parameters

The following method code demonstrates how to programmatically retrieve and
log the complete set of camera settings for the View with tag view1 in the
Component with tag comp1. It captures parameters for: zoom angle, position,
target, up vector, rotation point, view offset, manual grid flag, and axis spacings.
This information can be used in order to at a later point restore the exact camera
state in your application.

/] Cache the camera feature

| 321

ViewFeature viewiCamera = model.component("comp1").view("view1").camera();

// Retrieve zoom angle
zoomAngle = viewlCamera.getDouble("zoomanglefull");

// Retrieve position vector
position = new double[3];
for (int 1 = 0; 1 < 3; i++) {
position[i] = viewlCamera.getDouble("position", i);

}

// Retrieve target vector
target = new double[3];
for (int 1 = 0; 1 < 3; i++) {
target[i] = viewliCamera.getDouble("target", 1i);

}

// Retrieve up vector
up = new double[3];
for (int 1 = 0; 1 < 3; i++) {
up[i] = viewlCamera.getDouble("up", 1i);

}

// Retrieve rotationPoint vector
rotationPoint = new double[3];
for (int 1 = 0; i < 3; i++) {
rotationPoint[i] = viewliCamera.getDouble("rotationpoint", 1i);

}

// Retrieve viewOffset
viewOffset = new double[2];
for (int 1 = 0; 1 < 2; i++) {
viewOffset[i] = viewiCamera.getDouble("viewoffset", i);

}

// Retrieve manualGrid flag
manualGrid = viewlCamera.getBoolean("manualgrid");

// Retrieve axis spacings

xSpacing = viewlCamera.getDouble("xspacing");
ySpacing = viewiCamera.getDouble("yspacing");
zSpacing = viewiCamera.getDouble("zspacing");

322 |

In this example, the variables are stored globally under the Declaration node,
shown in the figures below.

Settings Sl Settings
Double Array 1D Double
Label: Double Label: Array 1D Double
Name: doublel Name: double1D1
List of Variables List of Variables
» » : .
Name Initial value Description Name Initial values New element value | Description

zoomAngle 13.642012596130371 Zoom angle position {-0 1956795215601 0
xSpacing 00 X grid spacing target {0.05250000894371
ySpacing ¥ grid spacing up {0.19114145636558533,
Spacing 00 Z grid spacing rotationPoint {0.05249999836087:

viewOffset {-0.0413982309401

- ~ B
Settings
Boolean
Label: Boolean
Name: booleanl
List of Variables
»
Name Initial value Description
manualGrid false
- - O

The following method code shows how to restore the camera settings.

// Cache the camera feature
ViewFeature viewliCamera = model.component("comp1").view("view1").camera();

// Restore zoom angle
viewiCamera.set("zoomanglefull", Double.toString(zoomAngle));

// Restore position vector
for (int i = 0; i < position.length; i++) {
viewiCamera.setIndex("position", Double.toString(position[i]), 1i);

}

// Restore target vector
for (int i = 0; i < target.length; i++) {
viewliCamera.setIndex("target", Double.toString(target[i]), 1i);

}

// Restore up vector
for (int i = 0; i < up.length; i++) {
viewiCamera.setIndex("up", Double.toString(up[i]), 1);

}

// Restore rotation point vector
for (int i = 0; i < rotationPoint.length; i++) {
viewliCamera.setIndex("rotationpoint", Double.toString(rotationPoint[i]), 1i);

}

// Restore view offset
for (int i = 0; i < viewOffset.length; i++) {

| 323

viewliCamera.setIndex("viewoffset", Double.toString(viewOffset[i]), 1i);

}

// Restore manual grid flag
viewiCamera.set("manualgrid", manualGrid);

// Restore axis spacings

viewiCamera.set("xspacing", Double.toString(xSpacing));
viewliCamera.set("yspacing", Double.toString(ySpacing));
viewiCamera.set("zspacing", Double.toString(zSpacing));

selectNode (model.component("comp1").view("viewl1"));
In the last line of code, the call to selectNode ensures that the view is updated
automatically.
The figure below shows these two methods, named StoreCamera and
RestoreCamera respectively, as Method Call nodes in the Model Builder.

v () Global Definitions
Fi Parameters 1 {default}
4& Default Model Inputs {cminpt!
= Materials
StoreCarmera 1 {methodcalll}
RestoreCamera 1 {methodcall2}

These two methods can be added to any 3D model in order to store and restore
camera settings.

This example is part of a collection available for download:
www.comsol.com/model /application-programming-guide-examples-140771
The relevant file for this example is:

* saving_camera_settings.mph

324 |

https://www.comsol.com/model/application-programming-guide-examples-140771

ID array 14, 46, 173
2D array 14, 46, 173

accessing 293
add-in 27, 185, 309
selections 309
Add-in Libraries 27
alert 147, 154
anisotropic diffusion coefficient 49
Annotation Data plot type 198
AppEventHandlerList methods 125
Application Builder 78
Application Builder Reference Manual
161
application example
tubular reactor 145
application methods 26
application object 7, 39, 78, 126
app variable 80
classes 80
application tree 78
array 14
methods 173
array input object 90
Arrow Data plot type 196, 197
assignments 9
auto complete 2/
automatic solver sequence 64
auxiliary sweep 264
average
computing 267, 268
axisymmetric property 42
backslash 12
backspace /2

basic data type 43
big endian 223

binary file
processing 223
reading 221
writing 220
Blank Model 43
boolean
data type 8 43
Boolean variable 8
conversion |71
bound 297
boundary condition 57
built-in method library 126
button
object 90

C libraries

external 160
card stack object 91
carriage return /2
catch 20
C-code

linking 160
char

data type 8
character

data type 8
character stream 215
characters

special 214
Chatbot window 32
checkbox object 91
choice list 81, 120, 151

methods |19
classes

application object 80

code completion 2/

| 325

326 |

code generation 2/
collection methods 182
color 83
of user interface component 82
combo box object 91
Compact History 73
Compile Equations node 62
computation time 170
last 169
Compute 62
COMSOL Desktop 69
COMSOL Help Desk 75
COMSOL Multiphysics 7, 39
COMSOL Multiphysics Programming
Reference Manual 289
confirm [/, 148, 154
contour plot 65
contour plot data 217
control flow statements /8
conversion
between data types 9
methods /71
coordinate information 231, 232
Copy as Code to Clipboard 43
creating
feature node 54, 58
model object 4/, 69
CSV-file 199, 206
curve
interpolation 217
parameterization 224
cut point
dataset 49, 128

data display object 92
Data Source

class 81
data types

primitive 8

data validation 297

dialog 300, 303
new value 299
old value 299

Data Viewer window 29, 259, 263

dataset 66, 188
DataSource object 299

date and time methods /68

debug

methods 60
Debug Log window [60
declaration 297

type 76
Declaration methods 125
Declarations 14, 16, 79
deformation plot 49

degrees of freedom 289

Dependent Variables node 62

Derived Values 250
description 20
parameter 20, 50
variable 20
Developer tab 187
dialog 146, 147
data validation 300, 303
Dialog Actions 301
diffusion coefficient
anisotropic 49
dimension

spatial 42

disable form object 82, 87, 89, 151

Display Name

for choice list 151
double 9

data type 8, 43

variable conversion 71

double quotation mark /|
edge
parameterization 224

Editor Tools window 51/

eigenfrequency data 282
Electric Currents 68
element

order 289

size 48, 55
elementary math functions /7
email

class 142

methods /42

preferences |44
email attachment

export 42

report 42

table 142
embedded model 69
enable form object 80, 82, 87, 89, 151
endian 223
equation

object 93
error dialog 20
Error message 298
eval 298
Evaluation Group 250, 253, 268
events /22, 300
example code 126, 187
Excel® file 67, 136, 199, 204, 207
exception

handling 20
exit 158

application 159
expiration date for application 316
explicit selection 309
export

emalil attachment /42
external C libraries |60
external Java llibrary 315

face
parameterization 226

feature node

creating 54, 58
removing 55, 58
file
methods /31, 132
name /36
open 139
reading 199
writing to 199
File Declaration 202
file import 202
file import object 93
file open
system method 139
file scheme
syntax 132, 202
Filter 297
finite element
accessing 289
system matrix 292
vector 292
floating point number 8
forloop 19, 89, 125
form
class 81, 86
declarations 17
list methods 125
form collection 94
form feed 12
form method 27
form object 93
class 81, 88
list methods 125
types 89
FormList methods 125
FormObjectList methods 125
Fully Coupled node 64

general properties 82
generating code 2/

Geometry node 54

| 327

328 |

geometry object 54, 55
names 232

get 43, 44

global method 27

global parameter 50

global quantity
computing 269

graphics
object 95, 147
view /52, 155

grid dataset 187
GUI command
methods 158
GUI related methods 146

hardware lock 316
heap space 316
Heat Transfer in Solids 56, 68
higher-order element nodes 289
history
model 73
HTML
report /55
hyperlink object 97

if-else statement 18
image object 97
import

file 202
information card stack object 98
information node 170
inherit

color 83
input field 297
input field object 99
integer

data type 8 43

variable conversion 71
integral

computing 269

interpolation curve 217, 223, 224
interpolation function 223
Introduction to COMSOL Multiphysics
25,39
Introduction to the Application Builder
7,21,25,26,78, 120, 132, 170, 199,
207, 315
isosurface 188
item
class 81
list methods 125
menu /[
object | 11
toolbar /11
[temList methods 125
iterative solver 62

[terator class and method 58

jagged arrays 14
Java
character stream 2/5
classes for read/write 214
Documentation, model object class
structure 75
external library 315
heap space 316
math library 17
programming language 7, 8, 126
syntax 9
unary and binary operators 9

Java Shell window 28, 47, 51, 279

keyboard shortcut
Ctri+Space 21
knob object 106

legend 48, 50
length of parametric sweep 277
license

check out 160

method /28

lighting 194
Line Data plot type 19/
line object 101
list box object 101
literals 9
little endian 223
load vector 296
loading
model 69, 127
local method 27
locking application to hardware 3/6
log object 102
looplevel 67, 258, 279, 282, 283
Lower bound 297

MAC address 316
main application class 80, 84
main user interface component classes
8l
Main Window
class 81, 85
node 8/
material
link 49
tag 120
Materials node 59
math functions 7
maximum
computing 269
maximum value 66
measuring
geometric and mass properties 244
menu
item /11
mesh
information and statistics 288
mesh element size 48, 55
Mesh node 55, 127, 128
message log object 102, 150

message method /54

method 7, 126

form 27

get 44

global 27

local 27

name 27
Method class 124
Method Editor 126

using 7, 21
method name 28
Microsoft® Word® format 155
minimum

computing 269

model 69
loading 69, 127
saving 69, 127

Model Builder 39
model component 42
model data access 25
model history 73, 190
turning off 190
Model Java-file 73
model methods 26
Model M-file 73
model object 7, 39, 58,78, 126
class structure 75
tag 39
model tree 39
node 57, 58
model utility methods 70, 126
Model Wizard 43, 69
models, working with multiple 69
MPH file 69, 126, 159
multiphysics 68
Multiphysics node 68

multiple models 69

name
form 78, 80
form object 78, 80

| 329

330 |

in application object 80

method 27, 28

scoping 40

shortcut 16, 78

user interface component 78, 80
Name, of a feature 58
network card 316
new value

data validation 122, 299
newline [/, 12
node

finite element 289
nonlinear solver 64
normal

surface 194, 195
number of parameters 276
number of time steps 276
numerical

Derived Values 67
numerical data 249
numerical results 249

Numerical validation 297

old value
data validation 122, 299
On data change event /22, 298
operating system
methods /39
operators 52
Java 9
model object 52
OS commands 139

parameter 20, 49, 50, 67
method 19, 26
real and imaginary part 52
parameterization
edge 224
face 226

parametric solution 67

parametric sweep 227, 253, 255, 257
Parametric Sweep, nested feature
nodes 270, 273
parsing
text file 214
path, getting 205
physics interface 57, 61
play sound /40
plot
group 50, 154
mesh element nodes /28
point trajectories |28
surface 53, 65
table surface 67
useGraphics 147
Plot Group node 65
plot type
Annotation Data 198
Arrow Data 196, 197
Line Data 191
Point Data 189, 190, 292
Surface Data 192, 193, 194
Tube Data 196
Point Data plot type 189, 190, 292
point trajectories plot 28
precedence, of operators 9, 52
primitive data types 8
printing
graphics 158
programming examples 126, 187
Programming Reference Manual 39, 64,
126, 128, 235, 289
progress |62
dialog 163, 167
methods /62
progress bar object 102, 164, 166, 167
properties
general 82

property and property values 43

radio button object 103
ragged arrays 14, 47
ragged sweep 273
reading

binary file 221

CSV-file 200

Excel® file 204

file 199

matrix file 207

Microsoft Excel® Workbook file 204

spreadsheet 200

text file 214

text file to string 210
real and imaginary part

of parameter 52
Record Code 23, 63, 252
Record Method 252
recursion 284
recursive loop 284
removing

feature node 55, 58
report 145

email attachment /42

HTML 155

Microsoft® Word® format 155
request 149, 154
reset

model history 73
Results node 65
results table object 103, 151
RGB color 83

save application 159
save as /58 159
saving

model 69, 127
scene light 159
sectionwise

format 217, 219

sectionwise format 217

selection 238
explicit 235, 309
finalized geometry 241
geometry 235, 239
selection input
object 104, 309
selections 232
add-in 309
set 43
setindex 43
shortcuts 16, 78
Shortcuts node 16
single quotation mark /2
sleep 170
slider object 105
SMTP 144
solution
data 187
data structure 62
parameteric 67
Solution node 62
Solver Configurations node 6/
solver sequence 6|
spacer object 107
spatial dimension 42
special character |2
Java 69
special characters 214
sphere /88
spreadsheet 200
format /32, 207, 208, 216, 228
Stationary Solver node 62
Stationary study step 61
status bar 162
Store changes, in dialog 300
stream
character 2/5
String
data type 10, 43

| 331

332 |

methods /81
string variable 67

conversion |72

methods /81
strings

comparing | |

concatenating |/
Study node 60
subform object 93
subset of output times 279
surface

parameterization 226

Surface Data plot type 192, 193, 194

surface normal 194, 195

surface plot 53, 65

Sweep type 255, 257

system matrix
accessing 293

system methods 39
OS commands 139

system vector 293

tab /2
table 67
email attachment /42
object 108, 150
Table node 67
table surface plot 67
tag 80
model object 39
physics interface 57
Tag, of a feature 58
tag, unique 190
temporary folder
location 207
text file 199
reading 214
writing 214
text label object 109
text object 108

time 168
time-limited application 316
title 147
toggle button object 109
toolbar

item |11

object 110
Tooltip 298

transient (time-dependent) simulations

275

transparency 156, 159
transparent

color 83
try and catch 20
Tube Data plot type 196
type declaration 76
Type, of a feature 58

unique tag 190
unit 51

object 110

Unicode 248
Unit List 81
unit set

methods /19
unit sphere 188
Unit System 51
Upper bound 297

username 39

Value input field 297
Value object 299
variable 26

description 20

name completion 22
video object 10
view

graphics 152, 155

visualization 187

W web page object /]

while loop 19
with statement /9
writing
CSV-file 206
Excel file 207
matrix file 208
string to text file 213
text file 214
to binary file 220
to file 199, 207

Z zoom extents /54, 159

| 333

334 |

	Introduction
	Syntax Primer
	Data Types
	Primitive Data Types
	Assignments and Literals
	Unary and Binary Operators in Methods (Java Syntax)
	Type Conversions and Type Casting
	Strings and Java Objects
	Arrays

	Declarations
	Form Declarations

	Built-in Elementary Math Functions
	Control Flow Statements
	The IF-ELSE Statement
	The For Statement
	The While Statement
	The With Statement
	Exception Handling

	Important Programming Tools
	Ctrl+Space for Code Completion
	Recording Code
	Model Methods and Application Methods
	Global Methods, Form Methods, and Local Methods
	Method Names
	The Java Shell and Data Viewer Windows
	The Chatbot Window
	Attaching Model History, Model Tree Nodes, or Images

	Chatbot Functionality in the Method Editor

	Introduction to the Model Object
	Model Object Tags
	Creating a Model Object
	Creating Model Components and Model Object Nodes
	Get and Set Methods for Accessing Properties
	The get Methods
	The set Method
	The setIndex Method
	Methods Associated with Set and Get Methods
	Example Code

	Parameters and Variables
	Accessing a Global Parameter
	Variables

	Unary and Binary Operators in the Model Object
	Geometry
	Removing Model Tree Nodes

	Mesh
	Physics
	Creating and Removing Model Tree Nodes
	Retrieving the Type of a Physics Feature

	Material
	Study
	Quick Way of Using a Study
	Modifying Low-Level Solver Settings
	Checking if a Solution Exists

	Results
	Multiphysics
	Working with Model Objects
	A Complete Example in 1D
	A Complete Example in 3D
	Turning Off and Resetting The Model History
	Optimizing Physics Feature Creation Performance
	Limitations with Loading and Saving Models

	The Model Object Class Structure

	The Application Object
	Shortcuts
	Example Code

	Accessing the Application Object
	The Name of User Interface Components
	Important Classes
	The Main Application Class
	Declaration Classes
	Method Class
	Main User Interface Component Classes

	Get and Set Methods for the Color of a Form Object
	General Properties
	Example Code

	The Main Application Methods
	Example Code

	Main Window
	Example Code

	Form
	Example Code

	Form Object
	Example Code
	Array Input
	Button
	Card Stack
	Checkbox
	Combo Box
	Data Display
	Equation
	File Import
	Form
	Form Collection
	Graphics
	Hyperlink
	Image
	Information Card Stack
	Input Field
	Line
	List Box
	Log
	Message Log
	Progress Bar
	Radio Button
	Results Table
	Selection Input
	Slider
	Knob
	Spacer
	Table
	Text
	Text Label
	Toggle Button
	Toolbar
	Unit
	Video
	Web Page

	Item
	Example Code

	Data Source and Declaration
	Scalar, Array 1D, and Array 2D Methods
	Example Code
	Details of the Java Implementation of Declaration Classes
	Choice List and Unit Set Methods
	Unit Set Methods
	GraphicsData Methods

	AppEvent Class
	Value Class

	AppEventHandler Class
	Method Class
	Form, Form Object, and Item List Methods

	The Built-in Method Library for the Application Builder
	Model Utility Methods
	License Methods
	Example code
	License Feature Strings

	File Methods
	Example Code

	Operating System Methods
	Example Code

	Email Methods
	Email Class Methods
	Email Preferences
	Example Code

	GUI-Related Methods
	Alerts and Messages
	Example Code

	GUI Command Methods
	Example Code

	Debug Methods
	Example Code

	Methods for External C Libraries
	External Method
	Methods Returned by the External Method

	Progress Methods
	Example Code

	Date and Time Methods
	Example Code

	Conversion Methods
	Array Methods
	String Methods
	Collection Methods
	Model Builder Methods for Use in Add-ins

	Programming Examples
	Running the Examples
	Visualization Without Solution Data: Grid Datasets
	Plotting a Unit Sphere using a Grid Dataset

	Visualization of Points, Curves, and Surfaces
	Points in 2D
	Turning Off Model History
	Points in 3D
	Curve in 3D
	Triangulated Shape in 2D
	Function Surface in 3D
	Sphere in 3D
	Tube Plot in 3D, Logarithmic Spiral
	Arrows in 2D
	Arrows in 3D
	Annotations in 2D
	Annotations in 3D with LaTeX Syntax

	Reading and Writing Data to File
	Reading and Writing Text and Spreadsheet Files Overview
	Introduction to Reading Files with A CSV-File Example
	Reading Excel Files
	Writing CSV-Files
	Writing Files in General
	Writing Excel Files
	Reading Matrix Files
	Writing Matrix Files
	Reading a Text File to a String
	Writing a String to a Text File
	Processing Text Files using the CsReader and CsWriter Classes
	Reading Text Files using the CsReader Class
	Writing Text Files using the CsWriter Class
	Writing Binary Files
	Reading Binary Files
	Additional Comments on Reading and Writing Binary Formats

	Converting Interpolation Curve Data
	Plotting Points on a Parametric Surface
	Defining a Parametric Sweep
	Using Selections
	Using Selections for Editing Geometry Objects
	Selecting and Partitioning Edges for a Cylinder Object
	Selecting and Partitioning Edges for General Objects
	Using Selections to Measure Geometric Objects
	Using Selections on the Finalized Geometry

	Measuring Model Quantities
	Using Numerical Results in a Model or Application
	Getting Numerical Data
	Getting Values at a Point
	Computing the Average Along a Boundary in a Parametric Sweep
	Computing Global Quantities in a Parametric Sweep
	Nested Parametric Sweep Nodes
	Nested Parametric Sweep Nodes, Ragged Sweep
	Retrieving Data from a Transient Simulation
	Accessing The Length of a Parametric List
	Accessing a Subset of a List of Output Times
	Update a Choicelist Dynamically for Output Times
	Accessing Eigenfrequency Data

	Recursion and Recursively Defined Geometry Objects
	Sierpinski Carpet
	Menger Sponge

	Mesh Information and Statistics
	Accessing Higher-Order Finite Element Nodes
	Accessing System Matrices and Vectors
	Data Validation
	Access to Old Value and New Value in Event Methods
	Access to Forms and Form Objects in Event Methods
	Data Validation from Dialogs
	Example of Data Validation in Forms and Dialogs

	Using Selections in Add-ins
	Using Built-In Methods from an External Java Library
	Measuring the Java Heap Space Memory
	Time-Limited and Hardware-Locked Applications
	Password Protection
	Time-Limited Application
	Hardware-Locked Application
	Checking For Allowed Date and Hardware

	Get and Set of 3D Camera Parameters

	Index

