
COMSOL Multiphysics
Application Programming Guide

C o n t a c t I n f o r m a t i o n
Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries or

search for an address and phone number. You can also visit the Worldwide Sales Offices page at

www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located on the COMSOL Access page

at www.comsol.com/support/case. Useful links:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/product-update

• COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/forum

• Events: www.comsol.com/events

• COMSOL Video Gallery: www.comsol.com/videos

• Support Knowledge Base: www.comsol.com/support/knowledgebase

• Learning Center: www.comsol.com/support/learning-center

Part number: CM020012

A p p l i c a t i o n P r o g r a m m i n g G u i d e
© 1998–2025 COMSOL

Protected by patents listed on www.comsol.com/patents, or see Help > About COMSOL Multiphysics on the File
menu in the COMSOL Desktop for less detailed lists of U.S. Patents that may apply. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/sla) and may be used or copied only under the terms of the license agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server,
and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property
of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by,
sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/
trademarks.

Version: COMSOL 6.4

https://www.comsol.com/contact/
https://www.comsol.com/contact/offices/
https://www.comsol.com/support/case/
https://www.comsol.com/support/
https://www.comsol.com/product-download/
https://www.comsol.com/product-update
https://www.comsol.com/blogs/
https://www.comsol.com/forum/
https://www.comsol.com/events/
https://www.comsol.com/videos/
https://www.comsol.com/support/knowledgebase/
https://www.comsol.com/support/learning-center
www.comsol.com/patents/
https://www.comsol.com/sla/
https://www.comsol.com/trademarks/
https://www.comsol.com/trademarks/

Contents

Introduction . 7

Syntax Primer . 8

Data Types. 8

Declarations . 16

Built-in Elementary Math Functions. 17

Control Flow Statements . 18

Important Programming Tools . 21

Ctrl+Space for Code Completion . 21

Recording Code . 23

Model Methods and Application Methods 26

Global Methods, Form Methods, and Local Methods 27

Method Names . 27

The Java Shell and Data Viewer Windows 28

The Chatbot Window . 32

Chatbot Functionality in the Method Editor 37

Introduction to the Model Object . 39

Model Object Tags . 39

Creating a Model Object . 41

Creating Model Components and Model Object Nodes . . 42

Get and Set Methods for Accessing Properties 43

Parameters and Variables . 50

Unary and Binary Operators in the Model Object 52

Geometry. 54

Mesh . 55

Physics . 56
 | 3

Material . 59

Study. 60

Results . 65

Multiphysics . 68

Working with Model Objects . 69

The Model Object Class Structure. 75

The Application Object . 78

Shortcuts . 78

Accessing the Application Object. 80

The Name of User Interface Components 80

Important Classes . 80

Get and Set Methods for the Color of a Form Object 81

General Properties . 82

The Main Application Methods. 84

Main Window . 85

Form. 86

Form Object . 88

Item . 111

Data Source and Declaration . 112

AppEvent Class . 122

AppEventHandler Class . 123

Method Class . 124

Form, Form Object, and Item List Methods 125

The Built-in Method Library for the Application Builder. 126

Model Utility Methods . 126

License Methods . 128

File Methods . 131

Operating System Methods. 139
4 |

Email Methods. .142

Email Class Methods. 142

GUI-Related Methods .146

GUI Command Methods .158

Debug Methods .160

Methods for External C Libraries .160

Progress Methods .162

Date and Time Methods .168

Conversion Methods .171

Array Methods .173

String Methods .181

Collection Methods .182

Model Builder Methods for Use in Add-ins185

Programming Examples. .187

Running the Examples .187

Visualization Without Solution Data: Grid Datasets.187

Visualization of Points, Curves, and Surfaces189

Reading and Writing Data to File .199

Converting Interpolation Curve Data.223

Plotting Points on a Parametric Surface226

Defining a Parametric Sweep. .227

Using Selections .230

Measuring Model Quantities .244

Using Numerical Results in a Model or Application249

Getting Numerical Data .249

Recursion and Recursively Defined Geometry Objects . . .284

Mesh Information and Statistics. .288

Accessing Higher-Order Finite Element Nodes289
 | 5

Accessing System Matrices and Vectors 292

Data Validation . 297

Using Selections in Add-ins . 309

Using Built-In Methods from an External Java Library 315

Measuring the Java Heap Space Memory 316

Time-Limited and Hardware-Locked Applications 316

Get and Set of 3D Camera Parameters 321

Index 325
6 |

Introduction

This book is a guide to writing code for COMSOL® models and applications
using the Method Editor. The Method Editor is an important part of the
Application Builder and is available in the COMSOL Desktop® environment in
the Windows® version of COMSOL Multiphysics. For an introduction to using
the Application Builder and its Form Editor and Method Editor, see the book
Introduction to the Application Builder.
Writing a method is needed when an action is not already available in the standard
run commands associated with functionality in the model tree nodes of the Model
Builder. A method may, for example, contain loops, process inputs and outputs,
and send messages and alerts to the user of the application.
In the Model Builder, the model tree is a graphical representation of the data
structure that represents a model. This data structure is called the model object
and stores the state of the underlying COMSOL Multiphysics model that is
embedded in an application.
The contents of the application tree in the Application Builder is accessed through
the application object, which is an important part of the model object. You can
write code using the Method Editor to directly access and change the user
interface of a running application, for example, to update button text, icons,
colors, and fonts.
In the COMSOL Multiphysics environment, you use the Java® programming
language to write methods, which means that you can utilize the extensive
collection of Java® libraries. In addition to the Java® libraries, the Application
Builder includes a built-in library for building applications and modifying the
model object. A number of tools and resources are available to help you
automatically create code for methods. For more information on autogeneration
of code, see the book Introduction to the Application Builder.
This book assumes no prior knowledge of the Java® programming language.
However, some familiarity with a programming language is helpful.
 | 7

Syntax Primer

If you are not familiar with the Java® programming language, read this section to
quickly get up to speed with its syntax. When creating applications, it is useful to
know the basics of Java such as how to use the if, for, and while control
statements. The more advanced aspects of Java will not be covered in this book.
For more detail, see any dedicated book on Java programming or one of the many
online resources. You can also learn a lot by reviewing the methods in the example
applications available in the Application Libraries. Note that the Method Editor
supports Java 11 syntax.

Data Types

PRIMITIVE DATA TYPES

Java contains eight primitive data types, listed in the table below.

Other data types such as strings are classes, which are also referred to as composite
data types.
In methods, you can use any of the primitive or composite data types available in
Java and the Java libraries. Many of the Application Builder built-in methods make
use of primitive or composite data types. For example, the timeStamp() method
provides a long integer as its output.

DATA TYPE DESCRIPTION NUMBER OF BYTES EXAMPLE

byte Integer between -127 and 128 1 byte b=33;

char Unicode character; integer between
0 and 65535 (0 and 216-1)

2 char c=’a’;

char c=97;

short Integer between -32768 and 32767
(-215-1 and 215-1)

2 short s=-1025;

int Integer between -231 and 231-1 4 int i=15;

long Integer between -263 and 263-1 8 long l=15;

float 32-bit floating point number 4 float f =4.67f;

double 64-bit floating point number 8 double d=4.67;

boolean Boolean with values false or true N/A boolean b=true;
8 |

ASSIGNMENTS AND LITERALS

A few examples of using literals in assignments are:
int i=5; // initialize i and assign the value 5
double d=5.0; // initialize d and assign the value 5.0
boolean b=true; // initialize b and assign the value true

The constants 5, 5.0, and true are literals. Java distinguishes between the literals
5 and 5.0, where 5 is an integer and 5.0 is a double (or float).

UNARY AND BINARY OPERATORS IN METHODS (JAVA SYNTAX)
You can perform calculations and operations using primitive data types just like
with many other programming languages. The table below describes some of the
most common unary and binary operators used in Java code.

TYPE CONVERSIONS AND TYPE CASTING

When programming in Java, conversion between data types is automatic in many
cases. For example, the following lines convert from an integer to a double:

int i; // initialize i
double d; //initialize d
i=41;
d=i; // the integer i is assigned to the double d and d is 41.0

PRECEDENCE LEVEL SYMBOL DESCRIPTION

1 ++ -- unary: postfix addition and subtraction

2 ++ -- + - ! unary: addition, subtraction, positive sign,
negative sign, logical not

3 * / % binary: multiplication, division, modulus

4 + - binary: addition, subtraction

5 ! Logical NOT

6 < <= > >= comparisons: less than, less than or equal,
greater than, greater than or equal

7 == != comparisons: equal, not equal

8 && binary: logical AND

9 || binary: logical OR

10 ?: conditional ternary

11 = += -= *= /=
%= >>= <<= &=
^= |=

assignments

12 , element separator in lists
 | 9

However, the opposite will not work automatically (you will get a compilation
error). Instead you can use explicit type casting as follows:

int i; // initialize i
double d; //initialize d
d=41.0;
i=(int) d; // the double d is assigned to the integer i and i is 41

You can convert between integers and doubles within arithmetic statements in
various ways, however you will need to keep track of when the automatic type
conversions are made. For example:

int i; // initialize i
double d; //initialize d
i=41;
d=14/i; // d is 0

In the last line, 14 is seen as an integer literal and the automatic conversion to a
double is happening after the integer division 14/41, which results in 0.
Compare with:

int i; // initialize i
double d; //initialize d
i=41;
d=14.0/i; // d is 0.3414...

In the last line, 14.0 is seen as a double literal and the automatic conversion to a
double is happening before the division and is equivalent to 14.0/41.0.
You can take charge over the type conversions with explicit casting by using the
syntax (int) or (double):

int i; // initialize i
double d,e; //initialize d and e
i=41;
d=((int) 14.0)/i; // d is 0
e=14/((double) i); // e is 0.3414...

STRINGS AND JAVA OBJECTS

The String data type is a Java object. This is an example of how to declare a string
variable:

String a="string A";

When declaring a string variable, the first letter of the data type is capitalized. This
is a convention for composite data types (or object-oriented classes).
After you have declared a string variable, a number of methods are automatically
made available that can operate on the string in various ways. Two such methods
are concat and equals as described below, but there are many more methods
available in the String class. See the online Java documentation for more
information.
10 |

Concatenating Strings
To concatenate strings, you can use the method concat as follows:

String a = "string A";
String b = " and string B";
a.concat(b);

The resulting string a is "string A and string B". From an object-oriented
perspective, the variable a is an instance of an object of the class String. The
method concat is defined in the String class and available using the a.concat()
syntax.
Alternatively, you can use the + operator as follows:

a = a + b;

which is equivalent to:
a = "string A" + " and string B";

and equivalent to:
a = "string A" + " " + "and string B";

where the middle string is a string with a single whitespace character.

Comparing Strings
Comparing string values in Java is done with the equals method and not with the
== operator. This is due to the fact that the == operator compares whether the
strings are the same when viewed as class objects and does not consider their
values. The code below demonstrates string comparisons:

boolean streq = false;
String a = "string A";
String b = "string B";
streq = a.equals(b);
// In this case streq == false

streq = (a == b);
// In this case streq == false

b = "string A";
streq = a.equals(b);
// In this case streq == true

Special Characters
If you would like to store, for example, a double quotation mark or a new line
character in a string you need to use special character syntax preceded by a
 | 11

backslash (\). The table below summarizes some of the most important special
characters.

Note that in Windows the new line character is the composite \r\n whereas in
Linux and macOS \n is used.
The example below shows how to create a string in Windows that you later on
intend to write to file and that consists of several lines.

String contents = "# Created by me\r\n"
+"# Version 1.0 of this file format \r\n"
+"# Body follows\r\n"
+"0 1 \r\n"
+"2 3\r\n"
+"4 5\r\n";

The string is here broken up into several lines in the code for readability. However,
the above is equivalent to the following:

String contents = "# Created by me\r\n# Version 1.0 of this file format \r\n#
Body follows\r\n0 1 \r\n2 3\r\n4 5\r\n";

which is clearly less readable.

Some Useful String Methods
The following table contains some of the most commonly used built-in methods
for the String class:

SPECIAL CHARACTER DESCRIPTION

\' Single quotation mark

\" Double quotation mark

\\ Backslash

\t Tab

\b Backspace

\r Carriage return

\f Form feed

\n Newline

METHOD DESCRIPTION

int length() Returns the length of the string, for example:
int len=str.length();

boolean equals(Object obj) Compares two strings for equality, for
example:
boolean streq = a.equals(b)
12 |

In addition, the following string conversion methods are built-in to the COMSOL
API:

Note that in Java, you can convert a string to a double using the standard double
parseDouble(String s) method. However, the toDouble method provided by the
COMSOL API offers additional functionality. Specifically, it can handle
arithmetic expressions that evaluate to constants. These expressions can include:

boolean equalsIgnoreCase(String
anotherString)

Compares two strings, ignoring case
differences, for example:
boolean streq = a.equalsIgnoreCase(b)

boolean startsWith(String prefix) Checks if a string starts with a specified prefix,
for example:
boolean stw = a.startsWith(b)

boolean endsWith(String suffix) Checks if a string ends with a specified suffix

int indexOf(String str) Returns the index of the first occurrence of a
specified substring

int lastIndexOf(String str) Returns the index of the last occurrence of a
specified substring

String substring(int beginIndex) Returns a substring from the specified index
to the end

String substring(int beginIndex, int
endIndex)

Returns a substring within a specified range

String strip() Removes leading and trailing whitespace

String stripLeading() Removes leading whitespace

String stripTrailing() Removes trailing whitespace

String concat(String str) Concatenates a string

boolean isEmpty() Checks if the string is empty (length() == 0)

boolean isBlank() Checks if the string is empty or contains only
whitespace

METHOD DESCRIPTION

boolean toBoolean(String str) Converts a string to a boolean

int toInt(String str) Converts a string to an int

double toDouble(str) Converts a string to a double

String toString(boolean b) Converts a boolean to a string

String toString(int i) Converts an int to a string

String toString(double d) Converts a double to a string

METHOD DESCRIPTION
 | 13

• Built-in numerical constants: eps, i, j, inf, Inf, NaN, nan, pi.
• Elementary functions such as sin, exp, gamma, max, min.
• Certain operators that make sense in a constant-evaluation context, such as

error, if, isinf, isnan, nif, realdot.

ARRAYS

In the application tree, the Declarations node directly supports 1D and 2D arrays
of type string (String), integer (int), Boolean (boolean), or double (double). A
1D array may be referred to as a vector and a 2D array referred to as a matrix,
provided that the array is rectangular. A nonrectangular array is called jagged or
ragged. In methods, you can define higher-dimensional arrays as well as arrays of
data types other than string, integer, Boolean, or double.

1D Arrays
If you choose not to use the Declarations node to declare an array, then you can
use the following syntax in a method:

double dv[] = new double[12];

This declares a double array of length 12.
The previous line is equivalent to the following two lines:

double dv[];
dv = new double[12];

When a double vector has been declared in this way, the value of each element in
the array will be zero.
To access elements in an array you use the following syntax:

double e;
e = dv[3]; // e is 0.0

Arrays are indexed starting from 0. This means that dv[0] is the first element of
the array in the examples above, and dv[11] is the last element.
You can simultaneously declare and initialize the values of an array by using curly
braces:

double dv[] = {4.1, 3.2, 2.93, 1.3, 1.52};

In a similar way you can create an array of strings as follows:
String sv[] = {"Alice", "Bob", "Charles", "David", "Emma"};

2D Arrays
2D rectangular arrays can be declared as follows:

double dm[][] = new double[2][3];

This corresponds to a matrix of doubles with 2 rows and 3 columns. The row
index comes first.
14 |

You can simultaneously declare and initialize a 2D array as follows:
double dm[][] = {{1.32, 2.11, 3.43},{4.14, 5.16, 6.12}};

where the value of, for example, dm[1][0] is 4.14. This array is a matrix since it is
rectangular (it has same number of columns for each row). You can declare a
ragged array as follows:

double dm[][] = {{1.32, 2.11}, {4.14, 5.16, 6.12, 3.43}};

where the value of, for example, dm[1][3] is 3.43.

Copying Arrays
Note that when copying arrays, this code:

for (int i1 = 0; i1 <= 11; i1++) {
for (int i2 = 0; i2 <= 2; i2++) {
input_array[i1][i2] = init_input_array[i1][i2];

}
}

is not equivalent to:
input_array = init_input_array;

The latter only assigns the same reference, meaning both variables will point to the
exact same array in memory.
Instead, you can use the copy method:

input_table = copy(init_input_table);

This call creates a new array under the hood and then copies the values into it.
 | 15

Declarations

Variables defined in the Declarations node in the application tree are directly
available as global variables in a method and need no further declarations.

Variables declared in methods will have local scope unless you specify otherwise.
The Declarations node directly supports integers (int), doubles (double), and
Booleans (boolean). In addition, strings are supported (see “Strings and Java
Objects” on page 10). In the Declarations node, variables can be scalars, 1D arrays,
and 2D arrays.
To simplify referencing form objects as well as menu, ribbon, and toolbar items by
name, you can create shortcuts with a custom name. These names are available in
the Declarations node under Shortcuts. They are directly available in methods along
with the other global variables defined under Declarations. For more information
on shortcuts, see “Shortcuts” on page 78.
In addition, under the Declarations node, you can add declarations for: Choice List,
File, Unit Set, File Type, and Graphics Data. For more information on these types of
declarations, see also the Introduction to the Application Builder.
16 |

FORM DECLARATIONS

Variables can also be defined as Form Declarations under each respective form node
in the application tree.

Form declarations can be of the types Scalar, Array 1D, Array 2D, and Choice List.
Global declarations are exposed to all user-interface components of the application
whereas form declarations are only exposed to the form that they are defined in
and the form objects within that form. Form declarations are used to limit the
scope of variables and thereby logically separate the different parts of an
application.

Built- in Elementary Math Functions

Elementary math functions for use in methods are available in the Java math
library. Some examples:

double a = Math.PI; // the mathematical constant pi
double b = Math.sin(3*a); // trigonometric sine function
double c = Math.cos(4*a); // trigonometric cosine function
double d = Math.random(); // random number uniformly distributed in [0,1)
double e = Math.exp(2*a); // exponential function
double f = Math.log(1+e); // natural base e logarithm
double g = Math.pow(10,3); // power function
double h = Math.log10(2.5); // base 10 logarithm
double k = Math.sqrt(81.0); // square root

There are several more math functions available in the Java math library. For
additional information, see any Java book or online resource.
 | 17

Control Flow Statements

Java supports the usual control flow statements if-else, for, and while. You can
use the Language Elements tool to insert template code corresponding to a number
of control flow, of or block, statements.

The following examples illustrate some of the most common uses of control flow
statements.

THE IF-ELSE STATEMENT

This is an example of a general if-else statement:
if (a < b) {

alert("Value too small.");
} else {

alert("Value is just right.");
}

Between curly braces {} you can include multiple lines of code, each terminated
with a semicolon. If you only need one line of code, such as in the example above,
this shortened syntax is available:

if (a < b)
alert("Value too small.");

else
alert("Value is just right.");
18 |

THE FOR STATEMENT

Java supports several different types of for statements. This example uses the
perhaps most conventional syntax:

// Iterate i from 1 to N:
int N = 10;
for (int i = 1; i <= N; i++) {

// Do something
}

In an alternative syntax, shown in the example on page 89, the loop is over all form
objects in a list of form objects:

for (FormObject formObject : app.form("form1").formObject()) {
if ("Button".equals(formObject.getType())) {
formObject.set("enabled", false);

}
}

where the local iteration variable looped over is formObject of the type, or class,
FormObject. The collection of objects, in this case
app.form("form1").formObject(), can be an array or other types of lists of
objects. Using this syntax, the iteration variable loops over all entries in the
collection, from start to finish. Another example can be found on page 125.

THE WHILE STATEMENT

This example shows a while statement.
double t = 0, h = 0.1, tend = 10;
while(t < tend) {

// do something with t
t = t + h;

}

For a more advanced example of a while statement, see “Creating and Removing
Model Tree Nodes” on page 58.
Note that Java also supports do-while statements.

THE WITH STATEMENT

When writing methods in the Method Editor, in addition to the standard Java
control flow statement, there is also an optional with statement, specific to the
Method Editor, that can be used to make Application Builder code more compact
and easier to read (you enable this in File > Preferences). A simple example is shown
below:

// Set the global parameter L to a fixed value
with(model.param());

set("L", "10[cm]");
endwith();
 | 19

The code above is equivalent to:
model.param().set("L", "10[cm]");

In this case using the with statement has limited value since just one parameter is
assigned but for multiple assignments readability increases. See “Parameters and
Variables” on page 50 for an example with multiple assignments.
Note that the with statement is only available when writing code in the Method
Editor. It is not available when using the COMSOL API for use with Java®. You
can turn off the use of with statements in the section for Methods in Preferences.
The method descr returns the variable description for the last parameter or
variable in a with statement:

with(model.param());
set("L", "10[cm]");
String ds = descr("L");

endwith();

Assuming that the parameter description of the parameter L is Length. The string
ds will have the value Length.

EXCEPTION HANDLING

An exception is an error that occurs at runtime. The Java® programming language
has a sophisticated machinery for handling exceptions and each exception
generates an object of an exception class. The most common way to handle
exceptions is by using try and catch, as in the example below.

double d[][] = new double[2][15];
try {

d = readMatrixFromFile("common:///my_file.txt");
} catch (Exception e) {

error("Cannot find the file my_file.txt.");
}

where an error dialog is shown in case the file my_file.txt is not found in the
application file folder common.
To inform the user of the underlying cause you can use an additional input
argument to the error method, as shown in the example below.

double d[][] = new double[2][15];
try {

d = readMatrixFromFile("common:///my_file.txt");
} catch (Exception e) {

error("Cannot find the file my_file.txt.",e);
}

This can be used to “wrap” native COMSOL Multiphysics error messages with
custom error messages. See the Java® documentation for more information about
using try and catch.
20 |

Important Programming Tools

The Application Builder includes several tools for automatically generating code
as well as debugging. These tools include code completion, Record Method, Record
Code, Convert to New Method, Editor Tools, Language Elements, Copy as Code to
Clipboard, Call Stack, and Variables, and are described in the book Introduction to
the Application Builder. These utilities allow you to quickly get up and running
with programming tasks even if you are not familiar with the syntax.
The following sections describes two of the most important tools: code
completion using Ctrl+Space and Record Code. Using these tools will make you
more productive, for example, by allowing you to copy-paste or autogenerate
blocks of code.

Ctrl+Space for Code Completion

While typing code in the Method Editor, the Application Builder can provide
suggestions for code completions. The list of possible completions are shown in a
separate completion list that opens while typing. In some situations, detailed
information appears in a separate window when an entry is selected in the list.
Code completion can always be requested with the keyboard shortcut Ctrl+Space.
Alternatively Ctrl+/ can be used to request code completion, which is useful if
Ctrl+Space is in use by the Windows operating system such as for certain
languages. When accessing parts of the model object, you will get a list of possible
completions, as shown in the figure below:

Select a completion by using the arrow keys to choose an entry in the list and
double-click, or press the Tab or Enter key, to confirm the selection.
If the list is long, you can filter by typing the first few characters of the completion
you are looking for.
 | 21

For example, if you enter the first few characters of a variable or method name,
and press Ctrl+Space, the possible completions are shown:

In the example above, only variables that match the string iv are shown. This
example shows that variables local to the method also appear in the completion
suggestions.
You can also use Ctrl+Space to learn about the syntax for the built-in methods that
are not directly related to the model object. Type the name of the command and
use Ctrl+Space to open a window with information on the various calling
signatures available.

Additional information is also available in the form of tool tips that are displayed
when hovering over the different parts of the code.
The Method Editor also supports code completion for properties, including listing
the properties that are available for a given model object feature node, and
providing a list of allowed values that are available for a given property.
The figure below shows an example of code completion for the mesh element size
property, where a list of the allowed values for the predefined element sizes is
presented.

COMSOL Multiphysics and its add-on modules contain thousands of physics
features that you can learn about by using, for example, Record Code, Save as >
22 |

Model File for Java, and code completion. The figure below shows code completion
for a particular feature in the Electric Currents interface.

Recording Code

Click the Record Code button in the Code section of the Method Editor ribbon to
record a sequence of operations that you perform using the model tree, as shown
in the figure below.

Certain operations in the application tree can also be recorded, for example, code
that changes the color of a text label in a running application may be generated.
To record a new method, click the Record Method button in the Main section of
the Home tab.
 | 23

While recording code, the COMSOL Desktop windows are surrounded by a red
frame:
24 |

To stop recording code, click one of the Stop Recording buttons in the ribbon of
either the Model Builder or the Application Builder.

By using Data Access, you selectively access various settings in the Model Builder,
from the Application Builder. For example, you can set the values of the Heat
transfer coefficient and the External temperature properties of the busbar tutorial
model used in the documents Introduction to COMSOL Multiphysics and
Introduction to the Application Builder.

To generate similar code using Record Code (Data Access is not used when
recording code), follow these steps:
• Create a simple application based on the busbar model (MPH file).
 | 25

• In the Model Builder window, in the Developer tab, click Record Method, or
with the Method Editor open, click Record Code.

• Change the value of the Heat transfer coefficient to 5.
• Change the value of the External temperature to 300[K].
• Click Stop Recording.
• If it is not already open, open the method with the recorded code.

The resulting code is listed below:
model.component("comp1").physics("ht").feature("hf1").set("h", 5);
model.component("comp1").physics("ht").feature("hf1").set("Text",
"300[K]");

To generate code corresponding to changes to the application object, use Record
Code or Record Method, then go to the Form Editor, and, for example, change the
appearance of a form object. The following code corresponds to changing the
color of a text label from the default Inherit to Blue:

app.form("form1").formObject("textlabel1").set("foreground", "blue");

Built-in methods that changes the application object are only available when
running applications and not when running methods from the Model Builder.
Use the tools for recording code to quickly learn how to interact with the model
object or the application object. The autogenerated code shows you the names of
properties, parameters, and variables. Use strings and string-number conversions
to assign new parameter values in model properties. By using Data Access while
recording, you can, for example, extract a parameter value using get, process its
value in a method, and save it back into the model object using set. For more
information on Data Access, see the Introduction to the Application Builder.

Model Methods and Application Methods

Methods called from the Model Builder are referred to as model methods, while
those called from an application are referred to as application methods. When the
context is clear, this distinction is often omitted, and they are simply called
methods. Model methods directly modify the model object represented in the
Model Builder during the current session and are typically used to automate
modeling tasks that would otherwise involve several manual steps. Application
methods, on the other hand, modify the embedded model within the application.
When you click Test Application, the methods executed by the application do not
modify the model currently seen in the Model Builder, but instead operate on a
copy of the model—the embedded model of the application.
26 |

For example, a typical use of a model method is to solve multiple studies in
sequence. In a model with several studies, you can record code that first computes
Study 1, then Study 2, which may depend on the results of Study 1, and so on.
This recorded method can then be called to automate the entire process.
To organize a customized workflow in the Model Builder you can create an add-
in based on methods by using a Method Call, Settings Form, or a ribbon tab. For an
introductory example of using methods from the Model Builder and for
information on how to create add-ins, see Introduction to the Application
Builder.
You can learn how to write methods to manipulate the model object by reading
the method code in the add-ins that are available in the Add-in Libraries. To load
an MPH file from these libraries, browse to the addins folder in the installation
folder. This is typically located at:

C:\Program Files\COMSOL\COMSOL64\COMSOL_Multiphysics\addins

In these examples you can learn how to identify a model component, how to check
the spatial dimension of a model component, how to work with selections, and
more.

Global Methods, Form Methods, and Local Methods

There are global methods, form methods, and local methods. Global methods are
displayed in the application tree and are accessible from all methods and form
objects. Form methods are displayed in the application tree as child nodes to the
form it belongs to. A local method is associated with a form object or event and
can be opened from the corresponding Settings window.
Global methods are exposed to all components of the application whereas form
methods are only exposed to the form that they are defined in and the form objects
within that form. You can use form methods to provide a logical separation of the
different parts of an application.

Method Names

A method name has to be a text string without spaces. The string can contain
letters, numbers, and underscores. Java® programming language keywords
cannot be used. The name must not begin by a number (this is also true for the
name of a form object, variable, and method).
 | 27

A global method cannot have the same name as a form method and vice versa. In
addition, the following names are reserved since they are used as names of local
methods:
• onActivate

• onClick

• onClose

• onDataChange

• onEvent

• onFocusGained

• onFocusLost

• onLoad

• onPickingChanged

• onStartup

• onShutdown

The Java Shell and Data Viewer Windows

The Java Shell window is an interactive environment that provides a command
prompt for running Java code, supporting all the features of the Method Editor
such as code completion, syntax highlighting, and more. This functionality can be
used to quickly modify a model through the COMSOL API for Java, without
needing to create a method first. It can be used to, for example, prototype code
for methods, bulk create features, inspect properties, or change declaration
variables. It is also useful for debugging methods, allowing you to perform code
evaluations while stopped at a breakpoint.
The Java Shell window can be accessed from the Model Builder, Application
Builder, and Model Manager, by selecting it from the Windows menu in the Home
28 |

tab. The figure below shows the Java Shell window used to debug the
buildGeometry method in the Transmission Line Calculator tutorial app.

The Data Viewer window is used to display and edit parameters, declarations, and
Java variables when stopped at a breakpoint. The Data Viewer window is always
accessible, including in the Model Builder workspace, allowing for quick viewing
and updating of parameters and declarations no matter where you are in the user
interface. The window also shows Java variables from the Java Shell window. The
Java Shell window can also be used to define temporary Java variables, as
illustrated in the figure below where the temporary integer variables a and b are
initialized and used.
 | 29

This functionality can be helpful when debugging code. Note that all Application
Builder variables as well as temporary Java Shell window variables are displayed in
the Data Viewer window, as shown in the figure below.

At the top and bottom of the Java Shell window are two toolbars used to access
different features.

These toolbars contain the following buttons:
• Go to Node: Jumps to the corresponding node in the model tree.
• Show in Data Viewer: Opens the Data Viewer window.
• Collapse All: Collapses all content.
• Expand All: Expands all content.
• Only List Input: Displays only the input commands in the output area.
• Display Session Content: Displays the entire session content in the output area.
• Clear Output Area: Clears all content from the output area; however, no shell

variables are removed.
30 |

• Reset Session: Clears all content from the output area and removes shell
variables.

• Stop: Stops code execution.
• Run: Runs code entered at the command prompt. Alternatively, you can

press Enter.
• Multiline Input: Makes it possible to add and then run multiple lines of

commands. To run the code you can click the Run button or press Ctrl+
Enter.

• Previous in History: Moves up in the command history.
• Next in History: Moves down in the command history.
• Record Code: Records code to the Java Shell window

Note that you get additional options by right-clicking the output area.
The Java Shell session is reset when you open or start a new model and no content
is saved between sessions. To make persistent changes, you need to change the
model object and then save the model or use declarations in the Application
Builder.
To interact with the model tree, commands should begin with model. and
continue with the appropriate methods. Code completion is available as a tooltip,
suggesting possible completions. For example, if you type model.bas, the tooltip
displays model.baseSystem() and model.baseSystem(String name) as options.
You can also activate code completion using Ctrl+Space.
For instance, if you enter

model.baseSystem("mpa");

and run the command, the Unit System in the root node updates from SI to MPa.
The Java Shell automatically generates local shell variables for output associated
with the model object. By default, these variables have the same names as the tags
of the model object. For example, if you type:

model.geom().create("geom1",3)

you will see the following output:
geom1 ==> Geometry 1

A local variable named geom1 is created in the shell, allowing you to use:
geom1.angularUnit("deg")

instead of:
model.geom("geom1").angularUnit("deg")

from that point forward. To remove a shell variable from the current Java Shell
session, it can be deleted by right-clicking it in the Data Viewer window and
selecting Delete From Session.
 | 31

You can select text in a message, then right-click and choose Copy (or press Ctrl+
C) to copy the text. To copy the content of any output from that input, select Copy
Children. You can also right-click to delete it from the output area by choosing
Delete (or press Delete).
To re-run code, right-click and select Run. Additionally, you can send the message
content to the input area or the Chatbot window by choosing Send to Input or Send
to Chatbot, respectively. For a detailed view, right-click and select Details to open
the message in a separate window that can be resized. The Details window supports
both inputs and outputs. Input code is displayed with syntax highlighting and
search functionality is provided in a panel that you open by pressing Ctrl+F.
If you encounter errors, sending them to the Chatbot window can help you get
improved code suggestions. Note that when writing to standard output or
standard error in the Java Shell window, the output appears in the same window.
For example:

System.out.println("Foo");

However, this behavior differs when running a method created in the Method
Editor. In this case, standard output and standard error are directed to the Debug
Log window.

The Chatbot Window

From the Windows menu on the Home toolbar, select Chatbot to open a window
for communicating with an OpenAI, Azure OpenAI , or OpenAI API-compatible
model. This feature assists with generating and correcting COMSOL API for
Java® code directly within COMSOL Multiphysics, as well as answering modeling
questions related to the software. Using the Chatbot window can help with both
programming tasks using the COMSOL API for Java and general modeling tasks
within the COMSOL Desktop. The Chatbot window is available in both the
Model Builder and Application Builder workspaces.
The Chatbot window is only available with the Windows version of the COMSOL
Desktop. The COMSOL software must also be installed with the CHATBOT
feature included in the installation and enabled using the Enable Chatbot checkbox
on the Chatbot page in the Preferences window.
The Chatbot window requires authentication details for your selected provider, for
example, an API key or connection settings for OpenAI, Azure OpenAI, or
another OpenAI API–compatible service.
The first time that you use the Chatbot window you need to configure a chatbot
provider. In the Chatbot window, click Configure Chatbot Provider, which opens the
Preferences window. Choose a Provider and Model and enter your key in the API
32 |

key field and click OK. If you are using Azure OpenAI, also enter an endpoint URL
in the Endpoint field and a model deployment name in the Deployment name field.
For the OpenAI API-compatible option, instead enter a Base URL and Model id.
If enabled, the Tool calling option allows the Chatbot to browse the COMSOL
documentation for information.
Once configured, you can start a chatbot conversation. Note that obtaining an
API key typically requires signing up for an API key payment plan. For more
information, see the Reference Manual.

The Chatbot window functionality connects to an external AI system. A
subscription agreement with the AI system host is needed to obtain an API
key. COMSOL is not a party in this agreement, and use of the external AI
system may be subject to additional fees.
It is your responsibility to ensure that your use of the AI system is in
accordance with laws and policies that may apply. It is also your
responsibility to review the suitability of any suggestions made by the AI
system.
The following Chatbot window examples use various models from
OpenAI. The output may vary depending on the selected provider and
model, and due to the nature of large language models (LLMs), some
random variation between responses is expected.

The Chatbot window includes a set of toolbar buttons and menus, as shown in the
figure below. In addition, information on the number of tokens used is displayed
in the Chatbot window’s top-right corner, next to Tokens used:
 | 33

From the list in the top-left corner of the Chatbot window, you can select a subject:
General, Programming, and Modeling, as shown in the figure below.

The selected subject influences how the chatbot interprets your prompts. The
chatbot understands Java syntax but not all aspects of the COMSOL API.
However, you can guide the chatbot to help you write code by using the Record
Code functionality of the Method Editor.
For example, let us use the Chatbot window to add annotations to the Pacemaker
Electrode tutorial model which is available in the Application Libraries under
COMSOL Multiphysics>Electromagnetics with the filename
pacemaker_electrode.mph.
If we open this model and record the creation of one annotation feature for the
Electric Potential plot, then the following code is produced:

model.result("pg1").create("ann1", "Annotation");
model.result("pg1").feature("ann1").set("posxexpr", 0.001);
model.result("pg1").feature("ann1").set("posyexpr", 0.002);
model.result("pg1").feature("ann1").set("poszexpr", 0.003);
model.result("pg1").feature("ann1").set("text", "eval(V)");

Say that you would like to create 10 such annotations along a line. While having
the Programming subject selected, the following prompt will then guide the
chatbot to write functional code:

This is how you create an annotation in COMSOL Multiphysics:

model.result("pg1").create("ann1", "Annotation");
model.result("pg1").feature("ann1").set("posxexpr", 0.001);
model.result("pg1").feature("ann1").set("posyexpr", 0.002);
model.result("pg1").feature("ann1").set("poszexpr", 0.003);
model.result("pg1").feature("ann1").set("text", "eval(V)");

Can you create a for loop that places these annotations at 10 locations along
a line from (x,y,z)=(0,0,-0.02) to (x,y,z)=(0,0,0).
34 |

The figure below shows the resulting output from the Chatbot window, which can
be used to automate this task by entering the code in a method or in the Java Shell
window.

To run the code in the Java Shell window, right-click in the output area and select
Send to Java Shell. Alternatively, you can click the Send to Java Shell button in the
toolbar.
 | 35

Then, in the Java Shell window, click Run. The result is shown in the figure below.

For more details about the Chatbot window, see the Reference Manual.

ATTACHING MODEL HISTORY, MODEL TREE NODES, OR IMAGES

You can attach the entire model history, represented as a Model File for Java, to a
Chatbot prompt:
• Right-click the root node in the model tree.
• Select Send to Chatbot > Model History.
• In the Chatbot window, enter a prompt, for example:

Can you find any issues with this model setup
36 |

This is shown in the figure below.

When prompted to compact the model history, choose Yes to remove redundant
steps, unless you specifically want to include them.

You can also attach a specific model tree node:
• Right-click any part of the model tree.
• Select Send to Chatbot > Node or Send to Chatbot > Node and Children to submit

only that portion of the setup.

To attach images or screenshots:
• Paste an image directly into the Chatbot window.
• Enter your prompt along with the image attachment.

Chatbot Functionality in the Method Editor

The Method Editor includes certain chatbot functionality that can be useful for
programming or debugging purposes. You can right-click in a method window
 | 37

and, from the Send to Chatbot submenu, choose one of the following options
(assuming we are working with a method named method1):
• Code: Attach the method to a prompt in the Chatbot window and then ask

about some aspect of the method.
• Find Bugs in method1: Attach the method to a prompt in the Chatbot window

with a suitable text for getting help with debugging.
• Suggest Improvements to method1: Attach the method to a prompt with a

suitable text for getting suggestions for improvements.

The figure below shows these menu options for a method named compute.
38 |

Introduction to the Model Object

The model object is the data structure that stores the state of the COMSOL
Multiphysics model. The model object contents are reflected in the COMSOL
Desktop user interface by the structure of the Model Builder and its model tree.
The model object is associated with a large number of methods for setting up and
running sequences of operations such as geometry sequences, mesh sequences,
and study steps. As an alternative to using the Model Builder, you can write
programs in the Method Editor that directly access and change the contents of the
model object.
The model object methods are structured in a tree-like way, similar to the nodes
in the model tree. The top-level methods just return references that support
further methods. At a certain level the methods perform actions, such as adding
data to the model object, performing computations, or returning data.
For a complete list of methods used to edit the model object, see the
Programming Reference Manual. For an introduction to using the Model
Builder, see the book Introduction to COMSOL Multiphysics.
The contents of the application tree in the Application Builder are accessed
through the application object, which is an important part of the model object.
You can write code using the Method Editor to alter, for example, button text,
icons, colors, and fonts in the user interface of a running application.
This section gives an overview of the model object. The section “The Application
Object” on page 78 gives an overview of the application object.

Model Object Tags

In the model tree and when working with the model object from methods, tags
are used as handles to different parts of the model object. These tags can also be
made visible in the Model Builder by first clicking the Model Builder toolbar
menu Model Tree Node Text and then choosing Tag, as shown in the figure below.
 | 39

The figures below show an example of a model tree without tags shown in the left
figure and with tags shown in the right figure.

In code, the tags are referenced using double quotes. For example, in the
following line

model.geom("geom1").create("r1", "Rectangle");

geom1 is a tag for a geometry object and r1 is a tag for a rectangle object. The
following sections contain multiple examples of using tags to create and edit parts
of a model object.
The option Name, available in the Model Tree Node Text menu in the Model Builder
toolbar, represents the name used for scoping. The scope names are used to access
the different parts of the model object. This is important, for example, when
working with global variables for defining the constraints and objective functions
40 |

for an optimization study. In the figure below, the variables mass and maxStress
are referenced by scope names: comp1.mass and comp1.maxStress, respectively.

Using scope names avoids name collisions in cases where there are multiple model
components or multiple physics interfaces with identical variable names.

Creating a Model Object

If you create an application using the Model Builder and the Application Builder,
then a model object model is automatically created the first time you enter the
 | 41

Model Builder. This is then available as a reserved variable name. When using the
Model Wizard, the creation of the model tag is automatically handled.
You can create additional model objects with calls to the createModel method.
Such additional model objects will not be visible in the Model Builder (only model
is).
For more information on working with several model objects, see the section
“Working with Model Objects” on page 69.

Creating Model Components and Model Object Nodes

A model contains one or more model components. You can create a model
component using the following command:

model.modelNode().create("comp1", true);

The second argument is a boolean that determines whether separate geometry,
mesh, material, and spatial frames should be created. If unsure whether these
frames will be needed, it is recommended to set this value to true to ensure they
are included.
The component is given a definite spatial dimension when you create a geometry
node:

model.geom().create("geom1", 2);

where the second argument can be 0, 1, 2, or 3, depending on the spatial
dimension. In the example above, the spatial dimension is 2.
In addition to creating model components and geometry nodes, there are create
methods for many of the nodes in the model tree.
Whether the geometry should be interpreted as being axisymmetric or not is
determined by a Boolean property that you can assign as follows:

boolean makeaxi = true;
model.geom("geom1").axisymmetric(makeaxi);

The axisymmetric property is only applicable to models of spatial dimension 1 or
2.
42 |

Using the Model Wizard, if you first create a Blank Model and then add a
component using the Model Builder, you will be prompted to choose the
space dimension of the component. This operation will, in addition to
creating a component, also create a Geometry and Mesh node. For example,
creating a 2D component corresponds to the following lines of code:
model.component().create("comp1", true);
model.component("comp1").geom().create("geom1", 2);
model.component("comp1").mesh().create("mesh1");

Get and Set Methods for Accessing Properties

The get and set methods are used to access and assign, respectively, property
values in the different parts of the model object. To assign individual elements of
a vector or matrix, the setIndex method is used. The property values can be of the
basic data types: String, int, double, and boolean, as well as vectors or matrices
of these types (1D or 2D arrays).
The get, set, and create methods (described in the previous section) are also
accessible from the model tree by right-clicking and selecting Copy as Code to
Clipboard.

There are two options for copying set methods:
• Set All Modified Settings — copy only properties with nondefault values
• Set All Displayed Settings — copy all available properties
 | 43

THE GET METHODS

The family of get methods is used to retrieve the values of properties. For example,
the getDouble method can be used to retrieve the value of the predefined element
size property hauto for a mesh and store it in a variable hv:

double hv = model.mesh("mesh1").feature("size").getDouble("hauto");

See the section “Example Code” on page 48 for more information on the property
hauto.
The syntax for the family of get methods for the basic data types is summarized in
the following table:

All arrays are returned as copies of the data; writing to a retrieved array does not
change the data in the model object. To change the contents of an array in the
model object, use one of the methods set or setIndex.
Automatic type conversion is attempted from the property type to the requested
return type.

THE SET METHOD

The syntax for assignment using the set method is exemplified by this line of code,
which sets the title of a plot group pg1:

model.result("pg1").set("title", "Temperature T in Kelvin");

TYPE SYNTAX

String getString(String name)

String array getStringArray(String name)

String matrix getStringMatrix(String name)

Integer getInt(String name)

Integer array getIntArray(String name)

Integer matrix getIntMatrix(String name)

Double getDouble(String name)

Double array getDoubleArray(String name)

Double matrix getDoubleMatrix(String name)

Boolean getBoolean(String name)

Boolean array getBooleanArray(String name)

Boolean matrix getBooleanMatrix(String name)
44 |

The first argument is a string with the name of the property, in the above example
"title". The second argument is the value and can be a basic type as indicated by
the table below.

Using the set method for an object returns the object itself. This allows you to
append multiple calls to set as follows:

model.result("pg1").set("edgecolor", "black").set("edges", "on");

The previous line of code assigns values to both the edgecolor and edges
properties of the plot group pg1 and is equivalent to the two lines:

model.result("pg1").set("edgecolor", "black");
model.result("pg1").set("edges", "on");

In this case, the set method returns a plot group object.
Yet another equivalent way is illustrated by the following example, which stores a
reference to the plot group object in pg1, an instance of the ResultFeature class.
To automatically determine and insert the correct type, you can click on a line of
code such as:

model.result("pg1").set("edgecolor", "black").set("edges", "on");

and then press Ctrl+1. This will automatically refactor the code to:
ResultFeature pg1 = model.result("pg1");
pg1.set("edgecolor", "black").set("edges", "on");

This approach may improve readability and avoids repeated lookups of "pg1" in
the model.

TYPE SYNTAX

String set(String name,String val1)

String array set(String name,new String[]{"val1","val2"})

String matrix set(String name,new String[][]{{"1","2"},{"3","4"}})

Integer set(String name,17)

Integer array set(String name,new int[]{1,2})

Integer matrix set(String name,new int[][]{{1,2},{3,4}})

Double set(String name,1.3)

Double array set(String name,new double[]{1.3,2.3})

Double matrix set(String name,new double[][]{{1.3,2.3},{3.3,4.3}})

Boolean set(String name,true)

Boolean array set(String name,new boolean[]{true,false})

Boolean matrix set(String name,new boolean[][]{{true, false},{false, false}})
 | 45

The same technique of chaining multiple calls to the set method also applies to
other parts of the model object. For example, to set multiple properties for a circle
in a single statement, you can write:

model.geom("geom1").create("c1","Circle").set("pos", new
double[]{0,1}).set("r", 5);

Alternatively, you can store the circle in a PropFeature object:
PropFeature circ1 = model.geom("geom1").create("c1", "Circle").set("pos",
new double[]{0,1}).set("r", 5);

To make a model parametric using a parameter defined under Global Definitions,
use the following string-array syntax:

model.geom("geom1").create("c1","Circle").set("pos", new
String[]{"0","b"}).set("r", 5);

Here, b is a global parameter. This is the recommended syntax if you intend to
perform a parametric sweep using a study.
Note that this syntax differ from the double-array syntax:

model.geom("geom1").create("c1","Circle").set("pos", new
double[]{0,c}).set("r", 5);

In this case, c is interpreted as a Java variable. The expression double[]{0, c} is
evaluated numerically (for example, to {0, 1.3} if c is 1.3), which means the
reference to c is lost and cannot be used for the built-in parametric sweep.
However, if you are making the model parametric purely through Java code rather
than using the built-in parametric sweep functionality, then this syntax works as
intended.
Automatic type conversion is attempted from the input value type to the property
type. For example, consider a model parameter a that is just a decimal number
with no unit. Its value can be set with the statement:

model.param().set("a", "7.54");

where the value "7.54" is a string. In this case, the following syntax is also valid:
model.param().set("a",7.54);

THE SETINDEX METHOD

The setIndex method is used to assign a value to a 1D or 2D array element at a
position given by one or two indices (starting from index 0).
The following line illustrates using setIndex with one index:

model.physics("c").feature("cfeq1").setIndex("f", "2.5", 0);

The following line illustrates using setIndex with two indices:
model.physics("c").feature("cfeq1").setIndex("c", "-0.1", 0, 1);
46 |

For the setIndex method in general, use one of these alternatives to set the value
of a single element:

setIndex(String name,String value,int index);
setIndex(String name,String value,int index1,int index2);

The name argument is a string with the name of the property. The value argument
is a string representation of the value. The indices start at 0, for example:

setIndex(name,value,2);

sets the third element of the property name to value.
The setIndex method returns an object of the same type, which means that
setIndex methods can be appended just like the set method.
If the index points beyond the current size of the array, then the array is extended
as needed before the element at index is set. The values of any newly created
intermediate elements are undefined.
The method setIndex and set can both be used to assign values in ragged arrays.
For example, consider a ragged array with 2 rows. The code statements:

setIndex(name,new String[]{"1","2","3"},0);
setIndex(name,new String[]{"4","5"},1);

sets the first and second row of the array and are equivalent to the single statement:
set("name",new String[][]{{"1","2","3"},{"4","5"}});

See the section “Example Code” below for examples of using setIndex.

METHODS ASSOCIATED WITH SET AND GET METHODS

For object types for which the set, setIndex, and get methods can be used, the
following additional methods are available, exemplified by the case of a Heat
Transfer in Solids physics interface:

// String[] properties();
String[] props =
model.component("comp1").physics("ht").feature("solid1").properties();

returns the names of all available properties,
// boolean hasProperty(String name);
boolean b =
model.component("comp1").physics("ht").feature("solid1").hasProperty("k_mat");

returns true if the feature has the named property,
// String[] getAllowedPropertyValues(String name);
String[] vals =
model.component("comp1").physics("ht").feature("solid1").getAllowedPropertyValu
es("k_mat");

returns the allowed values for named properties, if it is a finite set. The figure
below illustrates how to use the Java Shell window to retrieve these properties and
 | 47

values. This example assumes that a heat transfer model is open in the user
interface.

EXAMPLE CODE

The following code can be used to warn an application’s user of excessive
simulation times based on the element size:

if (model.mesh("mesh1").feature("size").getDouble("hauto") <= 3) {
exp_time = "Solution times may be more than 10 minutes for finer element
sizes.";

}

In the above example, getDouble is used to retrieve the value of the property
hauto, which corresponds to the Element Size parameter Predefined in the Settings
window of the Size node under the Mesh node. This setting is available when the
Sequence type is set to User-controlled mesh, in the Settings window of the Mesh
node.
The following code retrieves an array of strings corresponding to the legends of a
1D point graph.

String[] legends =
model.results("pg3").feature("ptgr1").getStringArray("legends");
48 |

The figure below shows an example of a vector of legends in the Settings window
of the corresponding Point Graph.

The following code sets the Dataset dset1 for the Plot Group pg1:
model.result("pg1").set("data", "dset1");

The following code set the anisotropic diffusion coefficient for a Poisson’s
equation problem on a block geometry.

model.geom("geom1").create("blk1", "Block");
with(model.geom("geom1").feature("blk1"));
 set("size", new String[]{"10", "1", "1"});
endwith();
model.geom("geom1").run();
with(model.physics("c").feature("cfeq1"));
 setIndex("c", "-0.1", 0, 1);
 setIndex("c", "-0.2", 0, 6);
 setIndex("f", "2.5", 0);
endwith();

The 3-by-3 diffusion coefficient matrix indices follow column-first ordering.
The following code sets the global parameter L to a fixed value.

model.param().set("L", "10[cm]");

The following code sets the material link index to the string variable alloy,
defined under the Declarations node.

model.material("matlnk1").set("link", alloy);

The following code sets the coordinates of a cut point dataset cpt1 to the values
of the 1D array samplecoords[].

with(model.result().dataset("cpt1"));
 set("pointx", samplecoords[0]);
 set("pointy", samplecoords[1]);
 set("pointz", samplecoords[2]);
endwith();

The following code sets the components of a deformation plot, applied to a
volume plot, to the contents of the strings uStr, vStr, and wStr.
 | 49

model.result("pg1").feature("vol1").feature("def").setIndex("expr", uStr,
0).setIndex("expr", vStr, 1).setIndex("expr", wStr, 2);

The code below sets the title and color legend of a plot group pg2 and then
regenerates the plot.

with(model.result("pg2"));
set("titletype", "auto");

endwith();
with(model.result("pg2").feature("surf1"));

set("colorlegend", "on");
endwith();
model.result("pg2").run();

Parameters and Variables

This code defines a global parameter L with Expression 0.5[m] and Description
Length:

model.param().set("L", "0.5[m]");
model.param().descr("L", "Length");

There is an alternative syntax using three input arguments:
model.param().set("L", "0.5[m]", "Length");

You can also use the with syntax to set the Expression and Description for several
parameters, for example:

with(model.param());
 set("L", "0.5[m]");
 descr("L", "Length");
 set("wd", "10[cm]");
 descr("wd", "Width");
 set("T0", "500[K]");
 descr("T0", "Temperature");
endwith();
50 |

which corresponds to the following Settings window for Global Definitions >
Parameters:

Note the with syntax is not supported in the Java Shell window.

ACCESSING A GLOBAL PARAMETER

You would typically use the Editor Tools window for generating code for setting
the value of a global parameter. While in the Method Editor, right-click the
parameter and select Set.
To set the value of the global parameter L to 10 cm:

model.param().set("L", "10[cm]");

To get the global parameter L and store it in a double variable Length:
double Length = model.param().evaluate("L");

Note that if you have multiple parameter nodes, the syntax for evaluation is still
the same. For example, this code sets the parameter L2 in a Parameters 2 node,
with tag par2:

model.param("par2").set("L2", "5[cm]");

To get the parameter L2 and store it in a double variable Length2:
double Length2 = model.param().evaluate("L2");

without any reference to the tag par2.
The evaluation is in these cases with respect to the base Unit System defined in the
model tree root node.
To return the unit of the parameter L, if any, use:

String Lunit=model.param().evaluateUnit("L");

To write the value of a model expression to a global parameter, you typically need
to convert it to a string. The reason is that model expressions may contain units.
Multiply the value of the variable Length with 2 and write the result to the
parameter L including the unit of cm.
 | 51

Length = 2*Length;
model.param().set("L", toString(Length) + "[cm]");

To return the value of a parameter in a different unit than the base Unit System,
use:

double Length_real = model.param().evaluate("L","cm");

For the case where the parameter is complex valued, the real and imaginary parts
can be returned as a double vector of length 2:

double[] realImag = model.param().evaluateComplex("Ex", "V/m");

For parameters that are numbers without units, you can use a version of the set
method that accepts a double instead of a string. For example, the lines

double a_double = 7.65;
model.param().set("a_param", a_double);

assigns the value 7.65 to the parameter a_param.

VARIABLES

The syntax for accessing and assigning variables is similar to that of parameters.
For example, the code:

with(model.variable("var1"));
set("F", "150[N]");
descr("F", "Force");

endwith();

assigns the Expression 150[N] to the variable with Name F.
The following code assigns a model expression to the variable f:

with(model.variable("var1"));
set("f", "(1 - alpha)^2/(alpha^3 + epsilon) + 1");

endwith();

and the following code stores the model expression for the same variable in a string
fs.

String fs = model.variable("var1").get("f");

Unary and Binary Operators in the Model Object

The table below describes the unary and binary operators that can be used when
accessing a model object, such as the model expressions used when defining
52 |

parameters, variables, material properties, and boundary conditions, as well as in
expressions used in results for postprocessing and visualization.

The following example code creates a variable to indicate whether the effective von
Mises stress exceeds 200 MPa by using the inequality solid.mises>200[MPa]:

model.variable().create("var1");
model.variable("var1").model("comp1");
model.variable("var1").set("hi_stress", "solid.mises>200[MPa]");

The following code demonstrates using this variable in a surface plot:
model.result().create("pg3", "PlotGroup3D");
model.result("pg3").create("surf1", "Surface");
with(model.result("pg3").feature("surf1"));
 set("expr", "hi_stress");
endwith();
model.result("pg3").run();

The same plot can be created by directly using the inequality expression in the
surface plot expression as follows:

with(model.result("pg3").feature("surf1"));
 set("expr", "solid.mises > 200[MPa]");
endwith();
model.result("pg3").run();

PRECEDENCE LEVEL SYMBOL DESCRIPTION

1 () {} . grouping, lists, scope

2 ^ power

3 ! - + unary: logical not, minus, plus

4 [] unit

5 * / binary: multiplication, division

6 + - binary: addition, subtraction

7 < <= > >= comparisons: less-than, less-than or equal,
greater-than, greater-than or equal

8 == != comparisons: equal, not equal

9 && logical and

10 || logical or

11 , element separator in lists
 | 53

Geometry

Once the Geometry node is created (see “Creating Model Components and Model
Object Nodes” on page 42) you can add geometric features to the node. For
example, add a square using default position (0, 0) and default size 1:

model.geom("geom1").create("sq1", "Square");

The first input argument "sq1" to the create method is a tag, a handle, to the
square. The second argument "Square" is the type of geometry object.
Add another square with a different position and size:

model.geom("geom1").create("sq2", "Square");
with(model.geom("geom1").feature("sq2"));

set("pos", new String[]{"0.5", "0.5"});
set("size", "0.9");

endwith();

The with statement in the above example is used to make the code more compact
and, without using with, the code statements above are equivalent to:

model.geom("geom1").feature("sq2").set("pos", new String[]{"0.5", "0.5"});
model.geom("geom1").feature("sq2").set("size", "0.9");

Take the set difference between the first and second square:
model.geom("geom1").create("dif1", "Difference");
with(model.geom("geom1").feature("dif1").selection("input"));

set(new String[]{"sq1"});
endwith();
with(model.geom("geom1").feature("dif1").selection("input2"));

set(new String[]{"sq2"});
endwith();

To build the entire geometry, you call the method run for the Geometry node:
model.geom("geom1").run();

The above example corresponds to the following Geometry node settings:

In this way, you have access to the functionality that is available in the geometry
node of the model tree. Use Record Code or any of the other tools for automatic
generation of code to learn more about the syntax and methods for other
geometry operations.
54 |

REMOVING MODEL TREE NODES

You can remove geometry objects using the remove method:
model.geom("geom1").feature().remove("sq2");

Remove a series of geometry objects (circles) with tags c1, c2, ..., c10:
for (int n = 1; n <= 10; n = n+1) {

model.geom("geom1").feature().remove("c"+n);
}

The syntax "c"+n automatically converts the integer n to a string before
concatenating it to the string "c".
To remove all geometry objects:

for (String tag : model.geom("geom1").feature().tags()) {
model.geom("geom1").feature().remove(tag);

}

However, the same can be achieved with the shorter:
model.geom("geom1").feature().clear();

In a similar way, you can remove other model tree nodes.

Mesh

The following line adds a Mesh node, with tag mesh1, linked to the geometry with
tag geom1:

model.mesh().create("mesh1", "geom1");

You can control the mesh element size either by a preconfigured set of sizes or by
giving low-level input arguments to the meshing algorithm.
The following line:

model.mesh("mesh1").autoMeshSize(6);

corresponds to a mesh with Element size set to Coarse. The argument to the
method autoMeshSize ranges from 1-9, where 1 is Extremely fine and 9 is Extremely
coarse.
To generate the mesh, you call the run method for the Mesh node:

model.mesh("mesh1").run();

Use Record Code to generate code for other mesh operations.
The code below shows an example where the global mesh parameters have been
changed.

model.mesh("mesh1").automatic(false); // Turn off Physics-controlled mesh
with(model.mesh("mesh1").feature("size"));

set("custom", "on"); // Use custom element size
 | 55

set("hmax", "0.09"); // Maximum element size
set("hmin", "3.0E-3"); // Minimum element size
set("hgrad", "1.2"); // Maximum element growth rate
set("hcurve", "0.35"); // Curvature factor
set("hnarrow", "1.5"); // Resolution of narrow regions

endwith();
model.mesh("mesh1").run();

The above example corresponds to the following Mesh node settings:

Note that you can also set local element size properties for individual points,
edges, faces, and domains. Use Record Code or any of the other tools for automatic
generation of code to learn more about the syntax and methods for other mesh
operations.

Physics

Consider analyzing stationary heat transfer in the solid rectangular geometry
shown earlier. To create a physics interface, for Heat Transfer in Solids, use:

model.physics().create("ht", "HeatTransfer", "geom1");
56 |

The first input argument to the create method is a physics interface tag that is
used as a handle to this physics interface. The second input argument is the type
of physics interface. The third input argument is the tag of the geometry to which
the physics interface is assigned.
To set a fixed temperature boundary condition on a boundary, you first create a
TemperatureBoundary feature using the following syntax:

model.physics("ht").create("temp1", "TemperatureBoundary", 1);

The first input argument to create is a feature tag that is used as a handle to this
boundary condition. The second input argument is the type of boundary
condition. The third input argument is the spatial dimension for the geometric
entity that this boundary condition should be assigned to. Building on the
previous example of creating a 2D rectangle, the input argument being 1 means
that the dimension of this boundary is 1 (that is, an edge boundary in 2D).
The next step is to define which selection of boundaries this boundary condition
should be assigned to. To assign it to boundary 1 use:

model.physics("ht").feature("temp1").selection().set(new int[]{1});

To assign it to multiple boundaries, for example 1 and 3, use:
model.physics("ht").feature("temp1").selection().set(new int[]{1, 3});

To set the temperature on the boundary to a fixed value of 400 K, use:
model.physics("ht").feature("temp1").set("T0", "400[K]");

The following lines of code show how to define a second boundary condition for
a spatially varying temperature, varying linearly with the coordinate y:

model.physics("ht").create("temp2", "TemperatureBoundary", 1);
model.physics("ht").feature("temp2").selection().set(new int[]{4});
model.physics("ht").feature("temp2").set("T0", "(300 + 10[1/m]*y)[K]");

The resulting model tree structure is shown in the figure below.

Use Record Code or any of the other tools for automatic generation of code to learn
more about the syntax and methods for other physics interface features and other
physics interfaces.
 | 57

CREATING AND REMOVING MODEL TREE NODES

Below is a larger block of code that removes, creates, and accesses physics interface
feature nodes. It uses the Iterator class and methods available in the java.util
package. For more information, see the Java® documentation.

String[] flowrate = column1;
String[] Mw = column2;
java.util.Iterator<PhysicsFeature> iterator =

model.physics("pfl").feature().iterator();
while (iterator.hasNext()) {

if (iterator.next().getType().equals("Inlet"))
iterator.remove();

}
if (flowrate != null) {

for (int i = 0; i < flowrate.length; i++) {
if (flowrate[i].length() > 0) {

if (Mw[i].length() > 0) {
int d = 1 + i;
model.physics("pfl").create("inl" + d, "Inlet");
model.physics("pfl").feature("inl" + d).setIndex("spec", "3", 0);
model.physics("pfl").feature("inl" + d).set("qsccm0", flowrate[i]);
model.physics("pfl").feature("inl" + d).set("Mn", Mw[i]);
model.physics("pfl").feature("inl" + d).selection().set(new int[]{d});

}
}

}
}

The need to remove and create model tree nodes is fundamental when writing
methods because the state of the model object is changing each time a model tree
node is run. In the method above, the number of physics feature nodes are
dynamically changing depending on user inputs. Each time the simulation is run,
old nodes are removed first and then new nodes are added.

RETRIEVING THE TYPE OF A PHYSICS FEATURE

The Model Builder always shows the label for the model tree nodes. To get more
information about each node, in the Model Builder toolbar click Model Tree Node
Text. Then select any combination of options from the list: Name, Tag, and Type.
• Name: The descriptive, human-readable label shown in the user interface to

help you identify and distinguish it.
• Tag: The unique internal identifier (an alphanumeric string) used in method

code and model files to reference that feature programmatically.
• Type: The class of a feature, which determines its available settings, behavior,

and applicable operations.
Since the Name can be changed by the user, and thereby vary from model to model
even if the physics is identical, it is not very useful when programming using the
API. Instead, the Tag is most frequently used, as in many of the previous examples.
58 |

However, sometimes the Type is also useful. It gives a human-readable description
of a feature that cannot be changed by the user. For example, in the case of a
Temperature boundary condition for a Heat Transfer in Solids interface, a call to

model.component("comp1").physics("ht").feature("hs1").getType();

will return the string HeatSource, regardless of which Name is displayed in the
Model Builder.

Material

A material, represented in the Model Builder by a Materials node, is a collection of
property groups, where each property group defines a set of material properties,
material functions, and model inputs that can be used to define, for example, a
temperature-dependent material property. A property group usually defines
properties used by a particular material model to compute a fundamental quantity.
To create a Materials node:

model.material().create("mat1", "Common", "comp1");

You can give the material a name, for example, Aluminum, as follows:
model.material("mat1").label("Aluminum");

The following lines of code shows how to create a basic material property group
for heat transfer:

with(model.material("mat1").propertyGroup("def"));
set("thermalconductivity", new String[]{"238[W/(m*K)]"});
set("density", new String[]{"2700[kg/m^3]"});
set("heatcapacity", new String[]{"900[J/(kg*K)]"});

endwith();

The built-in property groups have a read-only tag. In the above example, the tag
def represents the property group Basic in the model tree.
 | 59

The resulting model tree and Material node settings are shown in the figure below.

Note that some physics interfaces do not require a material to be defined. Instead,
the corresponding properties can be accessed directly in the physics interface. This
is also the case if the physics model settings are changed from From material to User
defined. For example, for the Heat Transfer in Solids interface, this setting can be
found in the Settings window of the subnode Solid, in the sections Heat Conduction,
Solid and Thermodynamics, Solid, as shown in the figure below.

Use Record Code or any of the other tools for automatic generation of code to learn
more about the syntax and methods for materials.

Study

The Study node in the model tree contains one or more study steps, instructions
that are used to set up solvers and solve for the dependent variables. The settings
60 |

for the Study and the Solver Configurations nodes can be quite complicated.
Consider the simplest case for which you just need to create a study, add a study
step, and run it.
Building on the example from the previous sections regarding stationary heat
transfer, add a Stationary study step.

model.study().create("std1"); // Study with tag std1
model.study("std1").create("stat", "Stationary");
model.study("std1").run();

The call to the method run automatically generates a solver sequence in a data
structure model.sol and then runs the corresponding solver. The settings for the
solver are automatically configured by the combination of physics interfaces you
have chosen. You can manually change these settings, as shown later in this
section. The data structure model.sol roughly corresponds to the contents of the
Solver Configurations node under the Study node in the model tree.
All low-level solver settings are available in model.sol. The structure model.study
is used as a high-level instruction indicating which settings should be created in
model.sol when a new solver sequence is created.
For backward compatibility, the low-level settings in model.sol can be
automatically generated when using Record Code. This behavior is controlled by
the Store complete solver history checkbox, available in the Settings window of the
each Study node.

The example below shows a slightly more detailed approach to programming a
study setup, based on the stationary heat transfer example shown earlier. These
instructions more closely reflect the autogenerated output produced when Record
Code is enabled and Store complete solver history is selected.
First, create instances of the Study node (with tag std1) and a Stationary study step
subnode:

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
 | 61

The actual settings that determine how the study is run are contained in a
sequence of operations in the Solution data structure, with tag sol1, which is linked
to the study:

model.sol().create("sol1");
model.sol("sol1").study("std1");

The following code defines the sequence of operations contained in sol1.
First, create a Compile Equations node under the Solution node to determine which
study and study step will be used:

model.sol("sol1").create("st1", "StudyStep");
model.sol("sol1").feature("st1").set("study", "std1");
model.sol("sol1").feature("st1").set("studystep", "stat");

Next, create a Dependent Variables node, which controls the scaling and initial
values of the dependent variables and determines how to handle variables that are
not solved for:

model.sol("sol1").create("v1", "Variables");

Now create a Stationary Solver node. The Stationary Solver contains the
instructions that are used to solve the system of equations and compute the values
of the dependent variables.

model.sol("sol1").create("s1", "Stationary");

Add subnodes to the Stationary Solver node to choose specific solver types. In this
example, use an Iterative solver:

model.sol("sol1").feature("s1").create("i1", "Iterative");

Add a Multigrid preconditioner subnode:
model.sol("sol1").feature("s1").feature("i1").create("mg1", "Multigrid");

You can have multiple Solution data structures in a study node (such as sol1, sol2,
and so on) defining different sequences of operations. The process of notifying the
study of which one to use is done by “attaching” the Solution data structure sol1
with study std1:

model.sol("sol1").attach("std1");

The attachment step determines which Solution data structure sequence of
operations should be run when selecting Compute in the COMSOL Desktop user
interface.
Finally, run the study, which is equivalent to running the Solution data structure
sol1:

model.sol("sol1").runAll();

The resulting Study node structure is shown in the figure below. Note that there
are several additional nodes added automatically. These are default nodes and you
62 |

can edit each of these nodes by explicit method calls. You can edit any of the nodes
while using Record Code to see the corresponding methods and syntax used.

QUICK WAY OF USING A STUDY

An alternative for quickly using a study in method code is to use:
model.study(studyTag).createAutoSequences("all");

where studyTag equals "std1", or similar, depending on the model’s
configuration.
This will generate the solver sequence automatically.
To run the study, you can use:

model.study(studyTag).run();

For example, in a model with a study that has the study tag std1, the
corresponding code would be:

model.study("std1").createAutoSequences("all");
 | 63

model.study("std1").run();

In a typical case, when Record Code or Record Method is enabled and Store complete
solver history is disabled, the recorded code will appear as follows:

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/ht", true);
model.study("std1").createAutoSequences("all");
model.sol("sol1").runAll();

The line calling setSolveFor is used to specify whether a particular physics
interface should be included in the computation. In this example, setSolveFor("/
physics/ht", true) ensures that the Heat Transfer interface is enabled in the
study.

MODIFYING LOW-LEVEL SOLVER SETTINGS

To illustrate how some of the low-level solver settings can be modified, consider
a case where the settings for the Fully Coupled node are modified. This subnode
controls the type of nonlinear solver used.
The first line below may not be needed depending on whether the Fully Coupled
subnode has already been generated or not (it could have been automatically
generated by code similar to what was shown above).

model.sol("sol1").feature("s1").create("fc1", "FullyCoupled");
SolverFeature fc1 = model.sol("sol1").feature("s1").feature("fc1");
fc1.set("dtech", "auto"); // Nonlinear method (Newton solver)
fc1.set("initstep", "0.01"); // Initial damping factor
fc1.set("minstep", "1.0E-6"); // Minimum damping factor
fc1.set("rstep", "10"); // Restriction for step-sized update
fc1.set("useminsteprecovery", "auto"); // Use recovery damping factor
fc1.set("minsteprecovery", "0.75"); // Recovery damping factor
fc1.set("ntermauto", "tol"); // Termination technique
fc1.set("maxiter", "50"); // Maximum number of iterations
fc1.set("ntolfact", "1"); // Tolerance factor
fc1.set("termonres", "auto"); // Termination criterion
fc1.set("reserrfact", "1000"); // Residual factor

For more information on the meaning of these and other low-level solver settings,
see the Solver section of the Programming Reference Manual.
Changing the low-level solver settings requires that model.sol has first been
created. It is always created the first time you compute a study, however, you can
trigger the automatic generation of model.sol as follows:

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").showAutoSequences("sol");

where the call to showAutoSequences corresponds to the option Show Default
Solver, which is available when right-clicking the Study node in the model tree.
64 |

This can be used if you do not want to take manual control over the settings in
model.sol (the solver sequence) and are prepared to rely on the physics interfaces
to generate the solver settings. If your application makes use of the automatically
generated solver settings, then updates and improvements to the solvers in future
versions are automatically included. Alternatively, the automatically generated
model.sol can be useful as a starting point for your own edits to the low-level
solver settings.

CHECKING IF A SOLUTION EXISTS

When creating an application it is often useful to keep track of whether a solution
exists or not. The method model.sol("sol1").isEmpty() returns a boolean and is
true if the solution structure sol1 is empty. Consider an application where the
solution state is stored in a string solutionState. The following code sets the state
depending on the output from the isEmpty method:

if (model.sol("sol1").isEmpty()) {
solutionState = "noSolution";

}
else {

solutionState = "solutionExists";
}

Alternatively, solutionState can be initialized to noSolution and the following
code is used to indicate a state change corresponding to the input values having
changed:

if (solutionState.equals("solutionExists")) {
solutionState = "inputChanged";

}

Almost all of the example applications in the Application Libraries use this
technique.

Results

The Results node contains nodes for Datasets, Derived Values, Tables, Plot Groups,
Export, and Reports. As soon as a solution is obtained, a set of Plot Group nodes
are automatically created. In the example of Heat Transfer in Solids, when setting
up such an analysis in the Model Builder, two Plot Group nodes are added
automatically. The first one is a Surface plot of the Temperature and the second one
is a Contour plot showing the isothermal contours. Below you will see how to set
up the corresponding plots manually.
First create a 2D plot group with tag pg1:

model.result().create("pg1", "PlotGroup2D");
 | 65

Change the Label of the Plot Group:
model.result("pg1").label("Temperature (ht)");

Use the dataset dset1 for the Plot Group:
model.result("pg1").set("data", "dset1");

Create a Surface plot for pg1 with settings for the color table used, the intra-
element interpolation scheme, and the dataset referring to the parent of the Surface
plot node, which is the pg1 node:

ResultFeature rf = model.result().create("pg1", "PlotGroup2D");
rf.create("surf1", "Surface");
rf.label("Surface");
ResultFeature surf1 = model.result("pg1").feature("surf1");
surf1.set("colortable", "ThermalLight");
surf1.set("smooth", "internal");
surf1.set("data", "parent");

If you want to define a variable such as rf and surf1, you don’t need to know its
type in advance. Simply write the code you want to assign to a variable, for
example:

model.result().create("pg1", "PlotGroup2D");

Then press Ctrl+1, which will replace the line with something like:
ResultFeature var1 = model.result().create("pg1", "PlotGroup2D");

You can then rename the autogenerated var1 to, for example, rf.
Now create a second 2D plot group with contours for the isotherms:

model.result().create("pg2", "PlotGroup2D");
model.result("pg2").label("Isothermal Contours (ht)");
ResultFeature pg2 = model.result("pg2");
pg2.set("data", "dset1");
pg2.feature().create("con1", "Contour");
pg2.feature("con1").label("Contour");
ResultFeature con1 = pg2.feature("con1");
con1.set("colortable", "ThermalLight");
con1.set("smooth", "internal");
con1.set("data", "parent");

Finally, generate the plot for the Plot Group pg1:
model.result("pg1").run();

or, alternatively, using the variable defined earlier:
rf.run();

To find the maximum temperature, add a Surface Maximum subnode to the Derived
Values node as follows:
First create the Surface Maximum node with tag max1:

model.result().numerical().create("max1", "MaxSurface");
66 |

Note that in this context the method corresponding to the Derived Values node is
called numerical.
Next, specify the selection. In this case there is only one domain 1:

model.result().numerical("max1").selection().set(new int[]{1});

Create a Table node to hold the numerical result and write the output from max1
to the Table:

model.result().table().create("tbl1", "Table");
model.result().table("tbl1").comments("Surface Maximum 1 {max1} (T)");
model.result().numerical("max1").set("table", "tbl1");
model.result().numerical("max1").setResult();

Use Record Code or any of the other tools for automatic generation of code to learn
more about the syntax and methods for Results.

Using Parameterized Solutions in Results
The code below changes the visualization of a plot group pg1 by setting the
property looplevel, which controls the solution parameter, to the string variable
svar.

model.result("pg1").set("looplevel", new String[]{svar});
model.result("pg1").run();

The property looplevel has a central role in accessing parameterized solutions. Its
argument is a 1D string array with one index per “loop level” in a study. The
different loop levels correspond to the different nested parameters in a parametric
sweep with multiple parameters. Again, use Record Code or Record Method for a
parametric model to learn more about this syntax.

Loading Data to Tables
By using the loadFile method you can import data into a table and then display
it using a results table form object or a table surface plot. The example below
demonstrates loading data from an Excel file into a table and visualizing the
contents using a table surface plot. The file in this example is assumed to be
imported, in an application, using a file import form object with a file declaration
file1 as the File Destination.

model.result().table("tbl1").loadFile("upload:///file1", "", cells);
/*

The string variable cells contains the spreadsheet selection to be
imported, for example A1:J7.

The following code creates a plot group pg1 with a table surface plot.
This code is not needed if the embedded model already contains a table
and a table surface plot.

*/

model.result().create("pg1", 2);
model.result("pg1").create("tbls1", "TableSurface");
 | 67

model.result("pg1").feature("tbls1").set("table", "tbl1");
model.result("pg1").feature("tbls1").set("dataformat", "cells");
model.result("pg1").feature("tbls1").create("hght1", "TableHeight");
model.result("pg1").feature("tbls1").feature("hght1").set("view",
"view1");

ViewFeature cam = model.view("view1").camera();
cam.set("viewscaletype", "manual");
cam.set("xscale", "1");
cam.set("yscale", "1");
cam.set("zscale", "1");

// The following line is needed to update the plot
model.result("pg1").run();

Similar to before, you can use Ctrl+1 to automatically generate the variable cam of
the type ViewFeature.

Multiphysics

Some of the physics interfaces define a multiphysics analysis by themselves without
being coupled to any other interface. This is the case when the physics interface is
used for a coupling that is so strong that it does not easily lend itself to be
separated into several physics interfaces. In other cases, a set of single physics
interfaces, typically two, can be combined by the use of the Multiphysics node. For
example, a Joule Heating analysis is defined as the combination of an Electric
Currents interface and a Heat Transfer in Solids interface with an additional
Electromagnetic Heat Source node under the Multiphysics node. The following lines
of code illustrate the corresponding method calls, in a 2D case.

model.physics().create("ec", "ConductiveMedia", "geom1");
model.physics().create("ht", "HeatTransfer", "geom1");
model.multiphysics().create("emh1", "ElectromagneticHeatSource",
"geom1", 2);
model.multiphysics("emh1").selection().all();
model.multiphysics("emh1").set("EMHeat_physics", "ec");
model.multiphysics("emh1").set("Heat_physics", "ht");

For a 3D case, change "geom1",2) to "geom1",3).
When using the Model Builder to set up a Joule Heating analysis, nodes in addition
to those shown above will be created corresponding to Joule heating in thin shells,
should they exist in the model, and temperature couplings if there are multiple
field variables for electric potential and temperature.
68 |

Working with Model Objects

When using the Model Builder in the COMSOL Desktop interface, an embedded
model with variable name model is automatically created. The embedded model
has a special status. For example, the automatic code generation tools only
consider the embedded model. In addition, when you save to or load from an
MPH file, only the embedded model is saved or loaded. General tools include the
Save Application As command in the Application Builder and File > Save As, from
the File menu of the COMSOL Desktop environment.
However, in an application you are allowed to create and edit multiple models.
Saving and loading such models is done by using the built-in methods saveModel
and loadModel. An MPH file can only contain a single embedded model object.
If you need to create model objects, in addition to the embedded model, use the
built-in method createModel.
To create a new model you use:

Model extmodel = createModel();

A unique model tag is created automatically and assigned to the model. If you
want to explicitly control the model tag, use a syntax like:

Model extmodel = createModel("My_model_1");

where My_model_1 is a unique tag. It is recommended that you do not use the
names Model1, Model2, Model3, and so on, since these names are used by the
mechanism that automatically generates model tags for the embedded model
when loading and saving MPH files.
The following example retrieves the model tag of the embedded model:

String my_modeltag = model.tag();

however, you rarely need to use the model tag of the embedded model object.
Instead of creating and building up the contents of a model from scratch, you can
load an existing model and edit it.
For example in the Windows operating system, load a model my_model.mph from
the folder C:\COMSOL_Work, by using the built-in method loadModel:

Model extmodel = loadModel("C:\\COMSOL_Work\\my_model.mph");

A unique model tag is created automatically and is assigned to the model upon
load. Note the double-backslash syntax in the filename. Backslash (\) is a special
character in Java and the double backslash is needed in this case.
To make your application portable, you can use the file scheme syntax available in
the Application Builder. Assuming you stored the MPH file in the common folder,
the call to loadModel should be:

Model extmodel = loadModel("My_Model_1", "common:///my_model.mph");
 | 69

In this example, the tag My_Model_1 is important because it is used to reference the
model from other methods. Once loaded, the model object extmodel exists in the
workspace of the current COMSOL Multiphysics or COMSOL Server session.
Note that an MPH file can only contain a single embedded model object, so there
is no ambiguity about which model is being referenced when loading an MPH file.
Assume that you, in one method, have loaded the model extmodel with the tag
My_Model_1, such as in the example above. The model variable extmodel is not
available in other methods. In order to retrieve the model from another method
use:

Model mymodel = getModel("MyModel_1");

The contents of mymodel and extmodel are the same, but these variables exist in the
variable space of two different methods.
The tag My_Model_1 uniquely identified and retrieved the model object from the
current COMSOL Multiphysics or COMSOL Server session.
To reset your model before running a model method, call the built-in clearModel
method. For example:

clearModel(model);

Placing this at the top of your model method automatically clears the Model
Builder tree contents on each run.
For a list of model utility methods, see “Model Utility Methods” on page 126.

A COMPLETE EXAMPLE IN 1D
The following code listing uses all the elements of the previous sections—
including material definitions, geometry setup, physics configuration, and
boundary conditions— and demonstrates how to set up and run a 1D stationary
heat transfer simulation in a 10 cm long steel rod, focusing on its lengthwise
thermal behavior. In this model, the left side of the rod is cooled while a random
heat source is applied throughout the rod.
To use this code:
1 Start from the Model Wizard and select a Blank Model.
2 Copy and paste the code into a method, in the Application Builder, or the Java

Shell window.
3 Choose the corresponding Run option to start the simulation.

// Set up and run a 1D stationary heat transfer simulation
clearModel(model);

model.component().create("comp1", true);

model.component("comp1").geom().create("geom1", 1);
model.component("comp1").mesh().create("mesh1");
70 |

model.component("comp1").geom("geom1").create("i1", "Interval");
model.component("comp1").geom("geom1").feature("i1").setIndex("coord", 0.1, 1);
model.component("comp1").geom("geom1").run();

model.component("comp1").physics().create("ht", "HeatTransfer", "geom1");

model.component("comp1").material().create("mat1", "Common");
model.component("comp1").material("mat1").label("Steel AISI 4340");
model.component("comp1").material("mat1").propertyGroup("def").set("density",
"7850[kg/m^3]");
model.component("comp1").material("mat1").propertyGroup("def").set("heatcapacit
y", "475[J/(kg*K)]");
model.component("comp1").material("mat1").propertyGroup("def")
 .set("thermalconductivity", new String[]{"44.5[W/(m*K)]", "0", "0", "0",
"44.5[W/(m*K)]", "0", "0", "0", "44.5[W/(m*K)]"});

model.func().create("rn1", "Random");
model.func("rn1").set("type", "uniform");
model.func("rn1").set("mean", 0.5);

model.component("comp1").physics("ht").create("temp1", "TemperatureBoundary",
0);
model.component("comp1").physics("ht").feature("temp1").selection().set(1);
model.component("comp1").physics("ht").create("hs1", "HeatSource", 1);
model.component("comp1").physics("ht").feature("hs1").selection().set(1);
model.component("comp1").physics("ht").feature("hs1").set("Q0", "1e6*(1+
rn1(x))");

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/ht", true);
model.study("std1").createAutoSequences("all");
model.sol("sol1").runAll();

model.result().create("pg1", "PlotGroup1D");
model.result("pg1").label("Temperature (ht)");
model.result("pg1").feature().create("lngr1", "LineGraph");
model.result("pg1").feature("lngr1").set("xdata", "expr");
model.result("pg1").feature("lngr1").set("xdataexpr", "x");
model.result("pg1").feature("lngr1").set("data", "parent");
model.result("pg1").feature("lngr1").selection().geom("geom1", 1);
model.result("pg1").feature("lngr1").selection().set(1);
model.result("pg1").run();

model.result("pg1").run();

A COMPLETE EXAMPLE IN 3D
The following code listing is similar to the 1D case, but simulates heat transfer in
a 3D cylinder. This example demonstrates how to set up and run a stationary 3D
heat transfer simulation in a 10 cm long cylindrical steel rod with a radius of 0.5
cm. One end of the rod is cooled, while a random heat source is applied
throughout its volume.

// Set up and run a 3D stationary heat transfer simulation
 | 71

clearModel(model);

model.component().create("comp1", true);

model.component("comp1").geom().create("geom1", 3);
model.component("comp1").geom("geom1").geomRep("comsol");
model.component("comp1").mesh().create("mesh1");

model.component("comp1").geom("geom1").create("cyl1", "Cylinder");
model.component("comp1").geom("geom1").feature("cyl1").set("h", 0.1);
model.component("comp1").geom("geom1").feature("cyl1").set("r", 0.005);
model.component("comp1").geom("geom1").run();

model.component("comp1").physics().create("ht", "HeatTransfer", "geom1");

model.component("comp1").material().create("mat1", "Common");
model.component("comp1").material("mat1").label("Steel AISI 4340");
model.component("comp1").material("mat1").propertyGroup("def").set("density",
"7850[kg/m^3]");
model.component("comp1").material("mat1").propertyGroup("def").set("heatcapacit
y", "475[J/(kg*K)]");
model.component("comp1").material("mat1").propertyGroup("def")
 .set("thermalconductivity", new String[]{"44.5[W/(m*K)]", "0", "0", "0",
"44.5[W/(m*K)]", "0", "0", "0", "44.5[W/(m*K)]"});

model.func().create("rn1", "Random");
model.func("rn1").set("type", "uniform");
model.func("rn1").set("nargs", 3);
model.func("rn1").set("mean", 0.5);

model.component("comp1").physics("ht").create("temp1", "TemperatureBoundary",
2);
model.component("comp1").physics("ht").feature("temp1").selection().set(3);
model.component("comp1").physics("ht").create("hs1", "HeatSource", 3);
model.component("comp1").physics("ht").feature("hs1").selection().set(1);
model.component("comp1").physics("ht").feature("hs1").set("Q0", "1e6*(1+
rn1(x,y,z))");

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/ht", true);
model.study("std1").createAutoSequences("all");
model.sol("sol1").runAll();

model.result().create("pg1", "PlotGroup3D");
model.result("pg1").label("Temperature (ht)");
model.result("pg1").feature().create("vol1", "Volume");
model.result("pg1").feature("vol1").set("colortable", "HeatCameraLight");
model.result("pg1").run();

model.result("pg1").run();

Note: When using the Record Code or Record Method options, additional code may
be generated automatically. In the examples above, any unnecessary or extraneous
code has been removed for clarity.
72 |

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_transfer_in_cylindrical_rod.mph

TURNING OFF AND RESETTING THE MODEL HISTORY

When running model method code to automate modeling tasks, the stored model
history can grow excessively large. The model history is used, for example, when
saving to a Model M-file or Model Java-file. Depending on the repetitive nature
of your code, you may want to temporarily disable history logging to keep the
model history manageable. This can be done as shown below:

model.hist().disable();
// some code
model.hist().enable();

To reset the model history to an almost minimal sequence of commands that
reproduces the current state of the model object, you can use:

model.resetHist();

In the File menu, this action is referred to as Compact History.
Note that model history logging is only used for model methods and is
automatically turned off when running an application. Also, when history logging
is disabled, certain features are not available, such as saving to a Model M-file or
Java-file and using the Copy to Clipboard functionality.

OPTIMIZING PHYSICS FEATURE CREATION PERFORMANCE

Repeated create operations for features in the Model Builder can become slow
when you add many of them. Different feature types vary in complexity—for
example, the TemperatureBoundary boundary condition is relatively simple, while,
for example, a Thermal Contact boundary condition performs more advanced
operations. Although certain optimizations are possible, identifying and resolving
bottlenecks can be time-consuming.
A common technique to speed up these processes is to temporarily disable
updates, as shown below:

try {
// Turn off updates
model.disableUpdates(true);

// Perform the required operations here,
// typically involving repeated manipulations of physics features

} finally {
// Important: re-enable updates before leaving the method
 | 73

https://www.comsol.com/model/application-programming-guide-examples-140771

// The try–finally block ensures this is done even if errors occur
model.disableUpdates(false);

}
// Note: Some operations cannot be performed while updates are disabled.

By using this approach, certain methods can show significant reduction in
processing time.
Disabling model updates can lead to unexpected side effects. For example,
parameters in a physics feature, such as model inputs ending in _src, may remain
invalid until the model is updated. Attempting to set any of these parameters while
updates are disabled can produce errors. In addition, generated variables may be
unavailable to the unit evaluator, and the equation view may show incomplete
data. As soon as updates are re-enabled, the program performs a full variable
refresh and returns the model to a fully functional state.
The following example uses this technique to test the speed when adding a large
number of model parameters. Change the value of the disableFlag variable to
toggle between the disabled and enabled states.

// Enable or disable updates
boolean disableFlag = true;

// Number of parameter updates to perform
int maxIterations = 2000;

// Clear model
clearTheModel(); // This may take several seconds and is not part of the time
measured

// Record start time
long startTime = timeStamp();
debugLog("Start of test.");
debugLog("Disable is: "+disableFlag);

// Disable model updates (returns previous state) to speed up the loop
boolean updatesWereEnabled = model.disableUpdates(disableFlag);

try {
 // Bulk-set parameters Val1, Val2, …
 for (int i = 1; i <= maxIterations; i++) {
 model.param("default").set("Val"+i, i);
 }
} finally {
 // Always restore the original update state, even if an error occurs
 model.disableUpdates(updatesWereEnabled);
}

// Compute and log elapsed time in h:mm:ss format
long endTime = timeStamp();
debugLog("End of test.");
debugLog("Data reading time: "+formattedTime(endTime-startTime, "h:min:s"));

This example is part of a collection available for download:
74 |

www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• disable_updates.mph

LIMITATIONS WITH LOADING AND SAVING MODELS

If you use the loadModel method to load another model into your application,
then the usual functionality for displaying the geometry, mesh, and results, for the
loaded model, is not directly available in the application since that functionality is
reserved for the embedded model. However, you can use the API to call
geometry, mesh, study, and results functionality and extract numerical results
from the loaded model. For example, you can change the value of parameters or
variables of the loaded model, run a study, and extract numerical results.
However, in an application, you can display plots generated from models other
than the embedded model by writing specific method code. First, you will need to
use the loadModel method to load the desired model. Following this, the
useGraphics method can be used to display a particular plot group from the
loaded model. Here is a simplified example to illustrate this process:

Model m = loadModel(...);
useGraphics(m.result("pg1"), "/form1/graphics1");

In this example, loadModel is used to load a model, and useGraphics is used to
display a plot group "pg1" from the loaded model in the graphics component

"/form1/graphics1"

Note that useGraphics exclusively supports the display of plot groups. This
method cannot be used for displaying other graphical elements like geometry or
mesh. Note, however, that functionality for plotting the CAD model as well as the
mesh is possible also from plot groups. For example, by plotting a constant
expression or a fixed color for a surface or volume plot. Or, by using a dedicated
mesh plot.
The toolbar accompanying these plots is limited compared to the one available for
plots from the embedded model. This limitation exists as certain actions associated
with the full toolbar are not supported in this scenario.
Note that the loadModel and saveModel methods are not supported in standalone
applications that have been compiled with COMSOL Compiler.

The Model Object Class Structure

For a full description of the class structure and method signatures, see the HTML
document Java Documentation available in the COMSOL Documentation. You
 | 75

https://www.comsol.com/model/application-programming-guide-examples-140771

find the Java documentation under COMSOL API for use with Java® at the bottom
of the Documentation window.
The figure below shows the document as displayed in the COMSOL
documentation viewer.

If you encounter a class that you are unfamiliar with you will get help by a tooltip
as in the figure below for the output of the getView method.

By using the keyboard shortcut Ctrl+1 the correct type declaration is assigned to
the variable as shown in the figure below.
76 |

This way you can avoid having to consult the Java Documentation.
 | 77

The Application Object

The application object is a part of the model object and is the data structure that
allows access to the user interface features of an application from within a method.
The state of the application object is reflected in the COMSOL Desktop user
interface by the contents of the Application Builder and its application tree.
You can write code using the Method Editor to directly access and change the
features presented in a running application, including button text, icons, colors,
and fonts.
The application object gives you access to a subset of the features and settings
available in the Application Builder. You can use the application object methods
for runtime modifications to the user interface, but not for building a complete
user interface. For building the user interface of an application, you need to use
the Form Editor as described in the book Introduction to the Application
Builder.
This section gives an overview of the application object.

Shortcuts

Form objects and other user interface components are referenced in methods by
using a certain syntax. For example, using the default naming scheme form3/
button5 refers to a button with name button5 in form3 and form2/graphics3 refers
to a graphics object with name graphics3 in form2. You can also change the
default names of forms and form objects. For example, if form1 is your main form
then you can change its name to main.
To simplify referencing form objects as well as menu, ribbon, and toolbar items by
name, you can create shortcuts with a custom name. In the Settings window of an
object or item, click the button to the right of the Name field and type the name
of your choice.
78 |

To create or edit a shortcut, you can also use the keyboard shortcut Ctrl+K.
All shortcuts that you create are made available in a Shortcuts node under
Declarations in the application tree.

In the Settings window for Shortcuts shown below, a number of shortcuts were
created for a various form objects.

The shortcuts can be referenced in other form objects or in code in the Method
Editor. The example below shows a shortcut tempVis used as an input argument
to a temperature plot.
 | 79

Shortcuts are automatically updated when objects are renamed, moved, copied,
and duplicated. They are available in application methods as read-only Java®
variables, similar to string, integer, double, and Boolean declarations.
Using shortcuts is recommended because it avoids the need to update methods
when the structure of the application user interface changes.
Shortcuts can also be created for most objects in the model builder tree.

EXAMPLE CODE

If the application contains a button named button1 in a form named form1, and
the button has a shortcut named b1, the following two ways to change the button
text to red are equivalent:

b1.set("foreground", "red");

app.form("form1").formObject("button1").set("foreground", "red");

Accessing the Application Object

In the Method Editor you can directly access the application object part of the
model object by using the app variable. This variable is a shorthand for
model.app().

The Name of User Interface Components

Access the various parts of the application object by using the name of a form
object, form, item, and so on. A name in the application object has the same
function as the tag in the model object omitting the model.app part.
For example, in the line of code

app.form("form1").formObject("button1").set("enabled", false);

the string form1 is the name of a form and button1 is the name of a button.

Important Classes

THE MAIN APPLICATION CLASS

When working with an application object, the main application class is AppModel,
which is the type of model.app().
80 |

DECLARATION CLASSES

In addition to the basic data types and shortcut declarations, the Declaration node
may include Choice List and Unit List declarations. The corresponding classes are
ChoiceList and UnitSet. The parent class to ChoiceList and UnitSet is called
DataSource. In addition, Scalar, Array 1D, and Array 2D data types are handled
by the DataSource class. For more information, see “Data Source and
Declaration” on page 112.

METHOD CLASS

The Method class is used to represent methods. For more information, see
“Method Class” on page 124.

MAIN USER INTERFACE COMPONENT CLASSES

In an application object, the main user interface components correspond to the
following classes:
• MainWindow

- The class representing the Main Window node in the application tree.
• Form

- The class representing a form.
• FormObject

- The class representing a form object.
• Item

- The class representing, for example, a menu, toolbar, or ribbon item.
• AppEvent

- The class used for application user-interface events.

Each class has a set of associated methods that are used to edit the corresponding
user interface component at runtime. These are described in the following
sections.
In addition to the main user interface component classes, there are also list
versions of the Form, FormObject, and Item classes. These are: FormList,
FormObjectList, and ItemList.

Get and Set Methods for the Color of a Form Object

The get and set methods described in the section “Get and Set Methods for
Accessing Properties” on page 43 are applicable to the model object as well as the
 | 81

model.app part of the model object. In addition, the following methods are
available for changing the color of a form object:

Not all methods are applicable to all properties. Use Ctrl+Space to use code
completion to find out what methods are applicable for a certain object, and what
property names and property values are applicable for a certain method.

General Properties

The following table lists properties that are available for several different user
interface components, including form objects. In the table below, a user interface
component is referred to as an object.

NAME SYNTAX DESCRIPTION

getColor int[] getColor(String prop) Get the value of a color
property as an array of red,
green, and blue values.

setColor setColor(String prop, int r, int g, int b) Set a color property using
red, green, and blue values.

PROPERTY VALUE DEFAULT DESCRIPTION

background String default The background color for the
corresponding user interface element.

enabled true | false true If the value is true, the corresponding
object is enabled in the user interface,
which means that the user can
interact with the object.

font String default The font family name. The special
value default means that the font to
use is determined by the parent
object, which is the corresponding
setting in the Settings window of the
Forms node.

fontbold true | false false If true the font uses boldface style.

fontitalic true | false false If true the font uses italic style.

fontunderline true | false false If true the font uses underline style.
82 |

A foreground or background color property is represented by a string value. The
available colors are: black, blue, cyan, gray, green, magenta, red, white, and
yellow, or a custom color may also be defined. The special value default means
that the color is taken from the parent object. Depending on the parent type, this
could mean that default is Inherit or Transparent, referring to the corresponding
setting in the Settings window in the Form Editor. An arbitrary RGB color can be
represented by a string of the form rgb(red,green,blue) where red, green, and
blue are integers between 0 and 255. Color properties can also be manipulated
using the getColor and setColor methods to directly access the red, green, and
blue color components. If a color property has the value default, it does not have
red, green, and blue values. In this case, the getColor method returns the array
[0,0,0].

EXAMPLE CODE

The following example reads the current background color for a form, makes the
color darker, and applies the modified color to the same form.

int[] rgb = app.form("form1").getColor("background");
for (int i = 0; i < 3; i++)

rgb[i] /= 2;
app.form("form1").setColor("background", rgb[0], rgb[1], rgb[2]);

The following line of code sets the background color to black:
app.form("form1").set("background", "black");

The following line of code sets the background color to default which in the case
of the background color property corresponds to the Form Editor setting
Transparent.

app.form("form1").set("background", "default");

The following line of code sets the background color to the RGB values 125, 45,
and 43.

app.form("form1").set("background", "rgb(125,45,43)");

fontsize String -1 The font size in points. The special
value -1 represents the default size,
which means that the size is taken
from the parent object (the Forms
node) or from the system default size
if no parent object defines the size.

foreground String default The foreground color for the
corresponding user interface element.

visible true | false true If the value is true, the corresponding
object is visible in the user interface.

PROPERTY VALUE DEFAULT DESCRIPTION
 | 83

1D,

me.

ith

re

e
The Main Application Methods

The following table lists the most important methods for the main application
class AppModel:

You can view additional methods by using Ctrl+Space for code completion.
The AppModel class has the following properties:

EXAMPLE CODE

app.set("asktosave", true);

The following code appends a text string to the application window title.
String oldTitle = app.mainWindow().getString("title");
app.mainWindow().set("title", oldTitle + " modified");

The following examples show how to query the list of declarations in an
application.

NAME SYNTAX DESCRIPTION

declaration Declaration declaration() Returns the list of declarations.

declaration DataSource
declaration(String name)

Returns the declaration object (Scalar, Array
Array 2D, ChoiceList, or UnitSet) with the
specified name.

group DeclarationGroupList group() Returns the list of declaration groups.

group DeclarationGroup
group(String name)

Returns the declaration group with a given na

event AppEventHandlerList event() Returns the list of event handlers.

event AppEventHandler event(String
name)

Returns the event handler with the specified
name.

form FormList form() Returns the list of forms.

form Form form(String name) Returns the form with the specified name.

hasProperty boolean hasProperty(String
name)

Returns true if there is a modifiable property w
the specified name.

mainWindow MainWindow mainWindow() Returns the MainWindow object.

PROPERTY VALUE DEFAULT DESCRIPTION

asktosave true | false false If true, ask user if changes should be saved befo
the application is closed.

startmode edit | run edit Determines whether the application is opened
for editing or running when you double-click th
MPH file, including Windows desktop icons.
84 |

h

.

.

// Get the declaration list
Declaration list = app.declaration();

// Get the names of all DataSource objects in the list.
String[] names = list.names();

// Get the number of DataSource objects in the list.
int size = list.size();

// Get the DataSource with the name "svar".
DataSource src = list.get("svar");

// Get the index within the list of the DataSource with the name "svar".
int index = list.index("svar");

// Get the DataSource at a certain index within the list.
DataSource src = list.get(index);
// Get the DataSource objects defined in a given form.
Declaration formDeclarations = app.form("form1").declaration();

// Iterate over DataSource objects within the list.
for(DataSource dt : list) {
 // Get the type of the DataSource.
 String type = dt.getType();
}

Main Window

The MainWindow class has the following methods:

NAME SYNTAX DESCRIPTION

fileMenu ItemList fileMenu() Returns the list of items in the file menu.

fileMenu Item fileMenu(String
name)

Returns the file menu item with the specified
name.

hasProperty boolean
hasProperty(String name)

Returns true if there is a modifiable property wit
the specified name.

menuBar ItemList menuBar() Returns the list of items in the menu bar.

menuBar Item menuBar(String
name)

Returns the menu bar item with the specified
name.

ribbon ItemList ribbon() Returns the list of items in the ribbon.

ribbon Item ribbon(String name) Returns the ribbon item with the specified name

toolBar ItemList toolBar() Returns the list of items in the toolbar.

toolBar Item toolBar(String
name)

Returns the toolbar item with the specified name
 | 85

The menuBar and toolBar items are visible in the application user interface if the
menu type is set to Menu bar in the Settings window of the Main Window. The
ribbon and fileMenu items are visible in the user interface if the menu type is set
to Ribbon. It is possible to access and modify items that are not visible based on
the menu type setting, but doing so will not have any visible effect in the user
interface.
The MainWindow class has the following properties:

EXAMPLE CODE

// Do not show the filename in the application user interface window bar.
app.mainWindow().set("showfilename", false);
// Set dark application theme.
app.mainWindow().set("theme", "$dark");
// Set light image export theme.
app.mainWindow().set("imagetheme", "$light");

Form

The Form class has the following methods:

PROPERTY VALUE DEFAULT DESCRIPTION

imagetheme $default |
$light | $dark

$default Set the color theme for image
export.

showfilename true | false true If true the filename is included in the
window title bar title.

title String My application The text to display in the window
title bar.

theme $default |
$light | $dark

$default Set the color theme for the
application user interface.

NAME SYNTAX DESCRIPTION

declaration DataSource declaration(String name) Returns a form declaration
object (Scalar, Array 1D,
Array 2D, or ChoiceList) with
the specified name.

formObject FormObjectList formObject() Returns the list of form
objects.

formObject FormObject formObject(String name) Returns the form object with
the specified name.
86 |

The Form class has the following properties:

EXAMPLE CODE

app.form("form1").set("icon", "compute.png");
app.form("form1").formObject("button1").set("enabled", false);
DataSource ds = app.form("form1").declaration("var");

For examples of how to use the declaration method, see “The Main Application
Methods” on page 84.

getName String getName() Returns the name of this
form.

getParentForm Form getParentForm() Returns the parent form that
contains this form. Useful for
local cards in a card stack.

hasProperty boolean hasProperty(String name) Returns true if there is a
modifiable property with the
specified name.

method MethodList method() Returns the list of methods.

method Method method(String name) Gets a method with the
specified name.

PROPERTY VALUE DEFAULT DESCRIPTION

icon String "" The name of the background image.
Valid values are images defined in the
Images > Libraries node in the
Application Builder.

iconhalign left | center |
right | fill |
repeat

center Horizontal alignment for the
background image.

iconvalign top | center |
bottom | fill |
repeat

center Vertical alignment for the background
image.

title String Form N The form title for an integer N.

NAME SYNTAX DESCRIPTION
 | 87

Form Object

The FormObject class has the following methods:

Most form objects have one or more of the properties listed in “General
Properties” on page 82. A form object has a certain property if the corresponding
setting is available in the Form Editor. Additional properties are supported for
several types of form objects. The general properties that are supported and any
additional properties for form objects are listed in the following sections.

NAME SYNTAX DESCRIPTION

declaration DataSource
declaration(String
name)

Returns a form declaration object (Scalar, Array
1D, Array 2D, or ChoiceList) with the specified
name.

expanded void expanded(String
form, boolean
expanded)

Sets the expanded state of the form when using
the sections type.

form FormList form() For a CardStack form object, returns the list of
local cards.

form Form form(String name) For a CardStack form object, returns the local card
with the specified name.

getName String getName() Returns the name of this form object.

getParentForm Form getParentForm() Returns the parent form that contains this form
object.

getType String getType() Returns the form object type name, as defined in
the following sections.

getValue Value getValue() Returns the current value of a FormObject when
applicable. The method is supported by the
following types of FormObjects: input field, toggle
button, checkbox, combo box, file import, array
input, radio button, selection input, text, list box,
table, slider, knob.

hasProperty boolean
hasProperty(String
name)

Returns true if there is a modifiable property with
the specified name.

item ItemList item() For a Toolbar, Graphics, or Table form object,
returns the list of user-defined buttons.

item Item item(String name) For a Toolbar, Graphics, or Table form object,
return the user-defined button with the specified
name.

visible void visible(String
form, boolean visible)

Sets the visible state of the form.
88 |

EXAMPLE CODE

The following code loops over all buttons and disables them:
for (FormObject formObject : app.form("form1").formObject()) {

if ("Button".equals(formObject.getType())) {
formObject.set("enabled", false);

}
}

The getType method retrieves the type of form object. In the above example the
type of form object is Button and the statement
"Button".equals(formObject.getType()) represents a string comparison
between the output of the getType method and the string "Button".
For an example of using getValue, see “Data Validation” on page 297.
The following table lists all form object types that can be returned by getType:

FORM OBJECT TYPE

ArrayInput Hyperlink SelectionInput

Button Image Slider

CardStack InformationCardStack Spacer

CheckBox InputField Table

ComboBox Knob Text

DataDisplay Line TextLabel

Equation ListBox ToggleButton

FileImport Log Toolbar

Form MessageLog Unit

FormCollection ProgressBar Video

Gauge RadioButton WebPage

Graphics ResultsTable
 | 89

ARRAY INPUT

Example Code
app.form("form1").formObject("arrayinput1").set("enabled", false);

BUTTON

In the Form Editor, if a button has its Size setting set to Large, it always displays
its text property. If the button is Small, it either displays the icon or the text
according to the following rule: if the icon property is empty, the text is displayed,
if the icon property is not empty, the icon is displayed.

Example Code
app.form("form1").formObject("button1").set("enabled", false);

Property Value Default Description

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

icon String "" The button icon. Valid values are
images defined in the Images >
Libraries node in the Application
Builder.

text String Generated
automatically

The button text. The text must not be
an empty string.

tooltip String "" The button tooltip text.
90 |

CARD STACK

Example Code
app.form("form1").formObject("cardstack1").set("visible", false);

To access objects in a local card, either use shortcuts or use the form method:
app.form("form1").formObject("cardstack1").form("card1")

.formObject("button1").set("enabled", false);

CHECKBOX

Example Code
app.form("form1").formObject("checkbox1").set("tooltip", "tooltip text");

COMBO BOX

Example Code
app.form("form1").formObject("combobox1").set("foreground", "blue");

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
visible

See “General Properties” on
page 82.

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
fontunderline
foreground
visible

See “General Properties” on
page 82.

text String Generated
automatically

The checkbox label text.

tooltip String "" The checkbox tooltip text.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on
page 82.
 | 91

DATA DISPLAY

Example Code
app.form("form1").formObject("datadisplay1")

.setColor("background", 192, 192, 192);

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on
page 82.

exponent superscript | E superscript When set to superscript,
exponents are displayed using
superscript font. When set to E,
exponents are displayed using
the character E followed by the
exponent value.

notation auto | scientific
| decimal

auto When the value is scientific,
numbers are always displayed
using scientific notation. When
the value is decimal, numbers
are never displayed using
scientific notation. When the
value is auto, the notation
depends on the size of the
number.

precision Integer 4 The number of significant digits
that are displayed.

showunit true | false true Controls if the unit is displayed
in addition to numerical values.

tooltip String "" The tooltip text.
92 |

EQUATION

Example Code
app.form("form1").formObject("equation1").set("visible", false);

FILE IMPORT

Example Code
app.form("form1").formObject("fileimport1")

.set("filetypes", new String[]{"ALL2DCAD"});

FORM

A form used as a subform does not have any modifiable properties.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
fontsize
foreground
visible

See “General Properties” on
page 82.

equation String The string in LaTeX syntax
defining the equation.

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

buttontext String Browse... Text to display on the button that opens
the file browser.

dialogtitle String File import Text to display as dialog title for the file
browser dialog. Also displayed as a tooltip
for the FileBrowser form object.

filetypes String[] {"ALLFILES"} Defines the list of file types that can be
selected in the file browser.
 | 93

FORM COLLECTION

To modify the active pane, change the corresponding declaration variable.

Example Code
This line of code changes the font:

app.form("form1").formObject("collection1").set("font", "Arial");

The expanded state of sections in form collections can be controlled by:
app.form("form1").formObject("formcollection1").expanded("form2", false);

The expanded method is only supported by form collections which use sections.
The first argument is the tag of the form which is represented by the section. The
second argument determines if the sections should be expanded or collapsed.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

formvisible boolean[] Array with each
entry having the
value true

Defines the visible state of forms in a
form collection.

sectionexpanded boolean[] Array with each
entry having the
value true

Defines the expanded state of forms in
a form collection when using the
sections type.
94 |

s

.

t

a

a

r

GRAPHICS

Example Code
This line of code displays plot group 5 (pg5) in the graphics object graphics1 in
the form with the name Temperature:

app.form("Temperature").formObject("graphics1")
.set("source", model.result("pg5"));

The following line of code using useGraphics is equivalent to the above example:
useGraphics(model.result("pg5"), "Temperature/graphics1");

Either method changes the source of the graphics form object and then plots the
contents.
To clear the contents of a graphics object, use:

PROPERTY VALUE DEFAULT DESCRIPTION

datapick true | false false If true, data picking is enabled in the
graphics form object.

datapicktarget ProbeFeature |
GraphicsData

Defines where the picked data is
stored. Valid values are probe feature
and GraphicsData declarations.

enabled
visible

See “General Properties” on page 82

source ModelEntity Defines the type of model entity (Plo
Group, Geometry, Mesh, Explicit
Selection or Player Animation) used
to plot in the graphics form object.

background2d String | RGB (0–
255)

Defines the background color of the
2D graphics object. Can be set with
color name (for example, blue,
black) or RGB values.

topBackground String | RGB (0–
255)

Defines the top background color of
the graphics object. Can be set with
color name or RGB values.

bottomBackground String | RGB (0–
255)

Defines the bottom background colo
of the graphics object. Can be set
with a color name or RGB values.

icon String (image
name) | ""

logo_graphics.
png

Defines the icon shown for the
graphics form object. Valid values are
images from the Libraries>Images
node in the application tree, or an
empty string for no icon.
 | 95

app.form("Temperature").formObject("graphics1")
.set("source", (ModelEntity) null);

or equivalently
useGraphics(null, "Temperature/graphics1");

The code below displays the mesh in the model tree node mesh1 in the graphics
object graphics1 contained in the card of a card stack:

app.form("mesh").formObject("cardstack1").form("card1")
.formObject("graphics1").set("source", model.mesh("mesh1"));

The code below enables data picking for a graphics object and sets the data picking
target to a domain point probe:

app.form("form1").formObject("graphics1").set("datapick", true);
app.form("form1").formObject("graphics1").set("datapicktarget",

model.component("comp1").probe("pdom1"));

If a shortcut graphics1 has been created for the graphics object and a shortcut
pdom1 has been created for the probe object, the above can be shortened to:

graphics1.set("datapick", true);
graphics1.set("datapicktarget", pdom1);

It is possible to change the color, top color, bottom color, and icon of a Graphics
form object while the app is running. The syntax for changing these properties is
the same as for other color and icon options.
The color properties are named background2d, topBackground, and
bottomBackground. Each property can be set either by using a color name string
(for example, blue, black) or by specifying RGB values in the range 0-255.
The icon property is named icon. Valid values are images defined in the Libraries
> Images node in the application tree, or an empty string ("") to indicate no icon.
The default icon is logo_graphics.png. The code below illustrates this:

app.form("form1").formObject("graphics1").set("background2d", "blue");
app.form("form1").formObject("graphics1").set("topBackground", "black");
app.form("form1").formObject("graphics1").set("bottomBackground", "red");

app.form("form1").formObject("graphics1").setColor("background2d", 230,
236, 232);

app.form("form1").formObject("graphics1").set("icon", "compute_32.png");
96 |

HYPERLINK

Example Code
with (app.form("form1").formObject("hyperlink1"));

set("text", "COMSOL");
set("url", "www.comsol.com");

endwith();

IMAGE

Example Code
app.form("form1").formObject("image1").set("icon", "compute.png");

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
visible

See “General Properties” on page 82.

text String Generated
automatically

The text to display on the HyperLink
form object.

url String "" The URL to open when the HyperLink
is activated.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
visible

See “General Properties” on page 82.

icon String cube_large.png Defines the icon name to display in the
Image form object. Valid values are
images defined in the Images > Libraries
node in the Application Builder.
 | 97

INFORMATION CARD STACK

Example Code
app.form("form1").formObject("infocard1").set("fontunderline", true);

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
fontunderline
visible

See “General Properties” on page
82.
98 |

INPUT FIELD

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on
page 82.

editable true | false true If true then the text in the input
field can be edited by the user.

exponent superscript | E superscript When set to superscript,
exponents are displayed using
superscript font. When set to E,
exponents are displayed using
the character E followed by the
exponent value.

inputformatting on | off off If the value is on, then numerical
values in the input field are
formatted according to the
exponent, notation, and
precision properties. When the
user is editing the text in the
input field, the formatting is
temporarily disabled so that the
original text can be edited.

maxdouble double 1000 The maximum allowed double
value. This property is only
accessible when the Filter setting
is set to Double and the
corresponding checkbox is
enabled in the Data Validation
section.

mindouble double 0 The minimum allowed double
value. This property is only
accessible when the Filter setting
is set to Double and the
corresponding checkbox is
enabled in the Data Validation
section.
 | 99

Example Code
app.form("form1").formObject("inputfield1").set("precision", 6);

maxinteger Integer 1000 The maximum allowed integer
value. This property is only
accessible when the Filter setting
is set to Integer and the
corresponding checkbox is
enabled in the Data Validation
section.

mininteger Integer 0 The minimum allowed integer
value. This property is only
accessible when the Filter setting
is set to Integer and the
corresponding checkbox is
enabled in the Data Validation
section.

notation auto | scientific
| decimal

auto When the value is scientific,
numbers are always displayed
using scientific notation. When
the value is decimal, numbers
are never displayed using
scientific notation. When the
value is auto, the notation
depends on the size of the
number.

precision Integer 4 The number of significant digits
displayed.

tooltip String "" The tooltip displayed when the
mouse pointer is located over
the input field.

PROPERTY VALUE DEFAULT DESCRIPTION
100 |

LINE

Example Code
app.form("form1").formObject("line1").set("text", "divider text");
app.form("form1").formObject("line1").set("thickness", 10);
app.form("form1").formObject("line1").set("linecolor", blue);

LIST BOX

Example Code
app.form("form1").formObject("listbox1").set("foreground", "red");

To change the list box contents, modify the corresponding choice list:
app.declaration("choicelist1").appendListRow("new value", "new name");

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

text String "" Text to display on the line. The text is only
displayed for horizontal lines that have Include
divider text enabled in the Line object Settings
window.

thickness Integer 1 The line thickness.

linecolor String default The line color.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.
 | 101

LOG

Example Code
app.form("form1").formObject("log1").set("fontsize", "20");

MESSAGE LOG

Example Code
app.form("form1").formObject("messages1").set("background", "gray");

PROGRESS BAR

To create and update progress information see “Progress Methods” on page 162.

Example Code
app.form("form1").formObject("progressbar1").set("visible", false);

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
visible

See “General Properties” on page 82.
102 |

RADIO BUTTON

To change the display name for a radio button, modify the value in the
corresponding choice list.
For a choice list that is used by a radio button, it is not possible to change the value
of any row, or to add or remove rows. Only the display name can be changed.

Example Code
app.form("form1").formObject("radiobutton1").set("fontitalic", true);
app.declaration("choicelist1").setDisplayName("new name", 0);

RESULTS TABLE

To change the contents of the results table use the method useResultsTable or
evaluateToResultsTable. See also “GUI-Related Methods” on page 146.

Example Code
app.form("form1").formObject("resultstable1").set("visible", true);
app.form("form1").formObject("resultstable1").set("source",

model.result().table("tbl2"));
useResultsTable(model.result().table("tbl2"), "/form1/resultstable1");

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
fontunderline
foreground
visible

See “General Properties” on page 82.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

source TableFeature Set the contents of the results table.
 | 103

SELECTION INPUT

Example Code
app.form("form1").formObject("selectioninput1").set("graphics",

"graphics1");

Alternatively, if there are shortcuts sel1 and g1 to the selectioninput1 and
graphics1 form objects:

sel1.set("graphics", g1);

To change the model selection, assuming sel1 is a shortcut to the selection input
form object:

sel1.set("source", model.selection("sel2"));

PROPERTY VALUE DEFAULT DESCRIPTION

active true | false false The active property controls
whether the Selection Input is active.
Changing the property value selects
or deselects the Activate Selection
button in the Selection Input.

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

graphics FormObject Defines the graphics form object to
use when the selection form object is
active.

source SelectionFeature Defines the model selection the
selection form object is connected to.
104 |

SLIDER

The min value is allowed to be larger than the max value, in which case the slider
behaves as if the values were swapped. The smallest value always corresponds to
the left side of the slider.

Example Code
app.form("form1").formObject("slider1").set("min", 1);
app.form("form1").formObject("slider1").set("max", 12);
app.form("form1").formObject("slider1").set("steps", 11);

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
visible

See “General Properties” on page 82.

max Double 1 The largest possible slider value.

min Double 0 The smallest possible slider value.

steps Integer 5 The number of steps between the min and
max values. The number of tick marks is one
more than the number of steps.

tooltip String "" The tooltip text.
 | 105

KNOB

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page
82.

exponent superscript | E superscript When set to superscript,
exponents are displayed using
superscript font. When set to E,
exponents are displayed using the
character E followed by the exponent
value.

knobmaincolor String default The main background color.

knobradius Integer When knobradiusmanual has the
value on, this is the value of the knob.
The tick marks appear outside this
radius.

knobradiusmanual on | off off When the value is off the radius is
calculated automatically. When the
value is on, the radius is given by the
knobradius property.

knobsecondarycolor String default The secondary background color.

labelformatting true | false false When true this setting enables
custom label formatting.

max Double 1 The largest possible knob value.

min Double 0 The smallest possible knob value.

mouse distance |
vertical |
circular

distance The kind of mouse movement to
change the knob value. When set to
distance, the distance the mouse is
moved, either horizontally or
vertically, controls the value. When
set to vertical, only the vertical
distance the mouse is moved controls
the value. When set to circular, the
value is changed using a circular
motion.

needlecolor String default The color of the knob’s needle.
106 |

Example Code
app.form("form1").formObject("knob1").set("min", 1);
app.form("form1").formObject("knob1").set("max", 12);
app.form("form1").formObject("knob1").set("steps", 11);

SPACER

A spacer object does not have any modifiable properties.

notation auto |
scientific |
decimal

auto When the value is scientific,
numbers are always displayed using
scientific notation. When the value is
decimal, numbers are never
displayed using scientific notation.
When the value is auto, the notation
depends on the size of the number.

precision Integer 4 The number of significant digits that
are displayed.

scale none | marks |
markslabels |
marksalllabels

marks To control whether the scale should
have tick marks or labels. When set
to none, the knob has no tick marks
or labels. When set to marks, the
knob has tick marks but no labels.
When set to markslabels, the knob
has tick marks and labels for the
minimum and maximum values.
When set to marksalllabels, the
knob has ticks marks and all major
ticks has a label.

steps Integer 5 The number of steps between the
min and max values. The number of
tick marks is one more than the
number of steps.

tooltip String "" The tooltip text.

PROPERTY VALUE DEFAULT DESCRIPTION
 | 107

TABLE

To change the contents of the table, change the declaration variables or model
entities the table is displaying.

Example Code
app.form("form1").formObject("table1").set("enabled", false);

TEXT

Example Code
app.form("form1").formObject("text1").set("textalign", "center");

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

headers String[] Generated
automatically

Column headers.

showheaders boolean Generated
automatically

Show column headers.

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

editable on | off off If the value is on, the text can be
edited by the user of the application. If
the value is off, the text can only be
changed programmatically.

textalign left | center |
right

left Defines how the text is aligned within
the text area.

wrap on | off on If the value is on, word wrapping is
used to break lines that are too long
to fit within the text area. If the value
is off, long lines may not be
completely visible.
108 |

TEXT LABEL

Example Code
app.form("form1").formObject("textlabel1").set("text", "custom text");

TOGGLE BUTTON

A button with size large always displays the text, a button with size small displays
either the icon or the text. If the icon property is empty, the text is displayed. If
the icon property is not empty, the icon is displayed.

Example Code
app.form("form1").formObject("togglebutton1").set("icon",

"about_information.png");

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
fontunderline
foreground
visible

See “General Properties” on
page 82.

text String Generated
automatically

The text to display in the
label when the label is not in
multiline mode.

textmulti String Generated
automatically

The text to display in the
label when the label is in
multiline mode.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

icon String "" The button icon. Valid values are images
defined in the Images > Libraries node
in the Application Builder.

text String Generated
automatically

The button text. The text must not be
an empty string.

tooltip String "" The button tooltip text.
 | 109

TOOLBAR

Example Code
app.form("form1").formObject("toolbar1").set("background", "gray");

UNIT

Example Code
app.form("form1").formObject("unit1").set("visible", false);

VIDEO

Example Code
app.form("form1").formObject("video1").set("visible", false);

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 82.

PROPERTY VALUE DEFAULT DESCRIPTION

visible See “General
Properties” on page 82.
110 |

WEB PAGE

Example Code
app.form("form1").formObject("webpage1").set("type", "report");
app.form("form1").formObject("webpage1").set("report", "rpt1");
model.result().report("rpt1");
model.result().report("rpt1").run();

Item

Item objects represent items, toggle items, user defined buttons in Toolbar,
Graphics, and Table form objects, and submenus in the menu bar, toolbar, ribbon,
and file menus. The following methods are available:

PROPERTY VALUE DEFAULT DESCRIPTION

file String The file to display. File scheme
syntax is supported.

html String <html></html> The HTML code to display.

report ReportFeature
or String

The report feature to display.

type page | url |
type | report

page Determines which property is
used to specify the browser
display contents.

url String www.comsol.com The URL to display.

visible See “General Properties” on
page 82.

NAME SYNTAX DESCRIPTION

getParentItem Item getParentItem() Returns the parent item, or null for a top-
level item.

hasProperty boolean
hasProperty(String
name)

Returns true if there is a modifiable property
with the specified name.

item ItemList item() Returns the list of subitems.

item Item item(String name) Returns the subitem with the specified name.
 | 111

The Item class contains the following properties:

In order for an item to be enabled, the enabled property needs to have the value
on for the item itself as well as for all of its parents. In other words, disabling an
item also disables all of its subitems.
Item objects also include separators. However, separators do not have any
accessible properties.
Item objects for user-defined buttons do not have the title and tooltip
properties. For Table form objects, predefined items such as “move up” and
“move down” do not have any modifiable properties.

EXAMPLE CODE

app.mainWindow().menuBar("menu1").set("title", "new title");
app.mainWindow().menuBar("menu1").item("toggle_item1").set("text",

"test");

Data Source and Declaration

In the Java API, DataSource is the common interface for values defined under
Declarations. The following DataSource interfaces are available:
• Primitive: covers the declaration types Scalar, Array 1D, and Array 2D with

base types String, Boolean, Integer, and Double.
• ChoiceList: a set of selectable options.
• UnitSet: a set of physical units.
• GraphicsData: graphical output data.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled on | off on If the value is on, the item can be activated
by the user. If the value is off, the item
cannot be activated.

icon String Generated
automatically

The icon name. Valid values are images
defined in the Images > Libraries node in
the Application Builder.

text String Generated
automatically

The text for a menu or ribbon item.

title String Generated
automatically

The title text for a menu or submenu.

tooltip String "" The tooltip text.

visible on | off on Controls whether the item is visible or not.
112 |

red in

e

lue

d in

e

 the

red in

ored

 in

tored
SCALAR, ARRAY 1D, AND ARRAY 2D METHODS

The methods in the following table apply to Scalar, Array 1D, and Array 2D
declarations of types String, Boolean, Integer, and Double.
At runtime, these nodes are returned as DataSource objects that also implement
Primitive. Use the typed getters and setters to read and write native Java values
(for example, int[] or double[][]). Always select the accessor (get and set) that
matches the declaration’s type.

DataSource Methods

NAME SYNTAX DESCRIPTION

getBoolean boolean getBoolean() Gets the Boolean value sto
the data source.

getBooleanArray boolean[] getBooleanArray() Gets the Boolean array valu
stored in the data source.

getBooleanMatrix boolean[][] getBooleanMatrix() Gets the Boolean matrix va
stored in the data source.

getDouble double getDouble() Gets the double value store
the data source.

getDoubleArray double[] getDoubleArray() Gets the double array value
stored in the data source.

getDoubleMatrix double[][] getDoubleMatrix() Gets the double matrix valu
stored in the data source.

getInt int getInt() Gets the int value stored in
data source.

getIntArray int[] getIntArray() Gets the int array value sto
the data source.

getIntMatrix int[][] getIntMatrix() Gets the int matrix value st
in the data source.

getString String getString() Gets the String value stored
the data source.

getStringArray String[] getStringArray() Gets the String array value s
in the data source.
 | 113

ata
EXAMPLE CODE

// Get a scalar double declaration
DataSource ds = app.declaration("var");
// The 'var' declaration is a scalar double so we use the getDouble method
// to read its value.
double cur = ds.getDouble();
// Modifying the local field 'cur' does not affect the value stored in the
// data source ds
cur = cur + 1;
// Set the value of the data source
ds.set(cur);

// Retrieve a DeclarationGroup object containing entries of the
// "string1" String declarations node
DeclarationGroup group = app.declaration().group("string1");

// Retrieve a DeclarationGroup object containing entries of the
// "string1" String declarations node under the given form
group = app.form("form1").declaration().group("string1");

// Get the value of the "svar" declaration among the entries
String value = group.get("svar").getString();

// Get the names of all individual declaration variables
String[] names = app.declaration().names();

// Get the names of all global primitive declaration nodes
String[] names = app.declaration().group().names();

// Get the names of the local primitive declaration nodes of a given form
String[] names = app.form("form1").declaration().group().names();

DETAILS OF THE JAVA IMPLEMENTATION OF DECLARATION CLASSES

This section covers more advanced use of Java programming with declarations in
the API.

getStringMatrix String[][] getStringMatrix() Gets the String matrix value
stored in the data source.

set set(boolean value)
set(boolean[] value)
set(boolean[][] value)
set(double value)
set(double[] value)
set(double[][] value)
set(int value)
set(int[] value)
set(int[][] value)
set(String value)
set(String[] value)
set(String[][] value)

Set the value stored in the d
source. Available methods
depend on the type of the
underlying declaration.

NAME SYNTAX DESCRIPTION
114 |

The Declaration class provides access to all user-defined declarations in an
application. In addition to retrieving individual declarations (such as scalars or
arrays), the class contains methods for retrieving DeclarationGroup objects.
A DeclarationGroup corresponds one-to-one to a typed node under Declarations
in the UI, for example, the node Array 1D Integer 1. The group contains the
individual declaration entries (variables) of that primitive kind. Each entry is
exposed as a Primitive (DataSource) and can be read/written with the type-
specific get and set methods.
Do not confuse a DeclarationGroup with Group nodes under Declarations, which
are only used to organize declarations.
The Declaration class also provides a method for retrieving a
DeclarationGroupList object. A DeclarationGroupList contains all
DeclarationGroup objects under a given Declarations node. It implements the
IEntityList<DeclarationGroup> interface, which defines methods for retrieving
and iterating over the contained groups.
The figures below shows an example of two DeclarationGroup objects double1
and double2 and how to access their variables.
 | 115

The second figure additionally shows how to retrieve the names of all
DeclarationGroup names, using the DeclarationGroupList method names()

A DeclarationGroup implements the generic interface IEntityList<Primitive>.
This means it behaves like a typed list, with methods to:
• Retrieve a specific entry by name or index: get(String name), get(int index)
• Return the full list of entry names: names()
• Query the size of the group: size()
• Find the index of an entry by name: index(String name)

In addition, the DeclarationGroup class itself defines the method getType(),
which returns the data type of the group.
Since it implements a list interface, you can use a standard Java enhanced for-loop
to iterate over its entries:

// Iterate over the entries of the "integer1" Integer declarations node.
int i = 0;
for (Primitive entry: app.declaration().group("integer1")) {
 entry.set(i++);
}

Here, each Primitive represents a single entry of the group, such as one integer
element inside the array declaration named "integer1".
The Primitive interface encapsulates an individual declaration entry. It is derived
from the more general DataSource interface, which is the base abstraction for all
data objects in the API. Through Primitive, you can update the value of an entry
using one of the overloaded, type-specific set(...) methods, for example,
116 |

set(int value), set(double[][] value), or set(String[] value). Depending on
the declaration type, you can also retrieve values in a type-safe way.
This design allows you to work with declarations in a way that is both object-
oriented (via classes and interfaces) and natural for Java developers (using familiar
list and iteration patterns).
The following tables list the most important methods for handling declarations.
 | 117

D,
cified

he

roup

nt

).
");
Declaration and DataSource Methods

DeclarationGroupList Methods

NAME SYNTAX DESCRIPTION

declaration Declaration declaration() Returns the list of declarations.

declaration DataSource
declaration(String name)

Returns the declaration object (Scalar, Array 1
Array 2D, ChoiceList, or UnitSet) with the spe
name.

group DeclarationGroupList group() Returns the list of all declaration groups under t
Declarations node. Example:
DeclarationGroupList groups =

app.declaration().group();

group DeclarationGroup
group(String name)

Returns the declaration group with the specified
name. Example: DeclarationGroup ints =
app.declaration().group("integer1");

NAME SYNTAX DESCRIPTION

get DeclarationGroup get(String
name)

Gets a group by name. Example: DeclarationG
g = groups.get("integer1");

get DeclarationGroup get(int
index)

Gets a group by index (0-based). Example:
DeclarationGroup g = groups.get(0);

names String[] names() Returns the names of all groups. Example: for
(String n : groups.names()) { … }

size int size() Returns how many groups there are. Example: i
count = groups.size();

index int index(String name) Returns the position of a group (• 1 if not found
Example: int idx = groups.index("integer1
118 |

)

)

"
a

given
e

given
e end
DeclarationGroup Methods

CHOICE LIST AND UNIT SET METHODS

The methods described in the following table are applicable for both ChoiceList
and UnitSet objects. These methods are used to manipulate choice lists and unit
sets during runtime.

NAME SYNTAX DESCRIPTION

names String[] names() Returns all entry names. For example, print all entry
names in the "integer1" group:
for (String n :
app.declaration().group("integer1").names()
{

debugLog(n);
}

size int size() Returns the number of entries. For example, get the
number of entries in the "integer1" group:
int n =
app.declaration().group("integer1").size();

index int index(String name) Returns the index of an entry (•1 if not found). For
example, find the index of the "svar" declaration:
int idx = app.declaration().group("string1"
.index("svar");

getType String getType() Returns the group’s data type (for example, "String
or "Array1DString"). For example, inspect the dat
type of the "integer1" group:
String t = app.declaration()
.group("integer1").getType();

get Primitive get(int index)

Primitive get(String
name)

Gets an entry by index or by name.

Example (by index):
Primitive p =
app.declaration().group("integer1").get(0);

Example (by name):
String value =
app.declaration().group("string1")
.get("svar").getString();

NAME SYNTAX DESCRIPTION

addListRow addListRow(String value, String
displayName, int row)

Inserts a new row with the
value and display name at th
specified row (0-based).

appendListRow appendListRow(String value, String
displayName)

Inserts a new row with the
value and display name at th
of the list.
 | 119

ven

r the

r the

y.

 an

ased)

ame
 If the
f the

play
ts of

row
l to
ow is

e
ow is
st, a

 value.
Example Code
The code below adds the string Aluminum 3004 to a choice list. Note that the
choice list index starts at 0, whereas the material tags start at 1 (mat1, mat2, mat3,
and mat4).

ChoiceList choiceList = getChoiceList("choicelist1");
choiceList.setListRow("mat4", "Aluminum 3004", 3);

For more information on using choice lists for changing materials, see the book
Introduction to the Application Builder.

getValue String getValue(int row) Returns the value for the gi
row (0-based).

getDisplayName String getDisplayName(int row) Returns the display name fo
given row (0-based).

getDisplayName String getDisplayName(String value) Returns the display name fo
row with the given value.

getValues String[] getValues() Returns all values as an arra

getDisplayNames String[] getDisplayNames() Returns all display names as
array.

removeListRow removeListRow(int row) Removes the given row (0-b
from the list.

setListRow setListRow(String value, String
displayName, int row)

Sets the value and display n
for the given row (0-based).
row is equal to the length o
list, a new row is added.

setList setList(String[] values, String[]
displayNames)

Sets all of the values and dis
names, replacing the conten
the choice list or unit set.

setValue setValue(String value, int row) Sets the value for the given
(0-based). If the row is equa
the length of the list, a new r
added with the value and an
empty display name.

setDisplayName setDisplayName(String displayName, int
row)

Sets the display name for th
given row (0-based). If the r
equal to the length of the li
new row is added with the
display name and an empty

NAME SYNTAX DESCRIPTION
120 |

UNIT SET METHODS

When the object is a UnitSet the following additional methods are also available:

GRAPHICSDATA METHODS

When the object is a GraphicsData the following methods are available:

The GraphicsData class has the following properties:

NAME SYNTAX DESCRIPTION

getString String getString() Returns the currently selected value for the unit
set.

getString String
getString(String
unitList)

Returns the selected unit for the given unit list.

set set(String value) Switch unit for the unit set.

NAME SYNTAX DESCRIPTION

getString String getString(String name) Returns the value of the specified
property as a string.

getDouble double getDouble(String name) Returns the value of the specified
property as a double value.

getDoubleArray double[] getDoubleArray(String
name)

Returns the value of the specified
property as a double array value.

set set(String name, String value)
set(String name, double value)
set(String name, double[] value)

Sets a new value for the property
with the specified name.

PROPERTY VALUE DEFAULT DESCRIPTION

coord double[] 0, 0, 0 Point location of picked data. Array of
1, 2, 3, or 6 elements, corresponding
to 1D, 2D, 3D, or Smith plot,
respectively.

depth double 0 Point along a line when data picking in
a domain. Valid values are between 0
and 1, inclusive.

edim domain |
boundary

domain Geometric entity level.

eval double 0 Evaluated value of picked data.
 | 121

Example Code
The following code enables data picking for the graphics1 object, connects it to
the graphicsdata1 object and sets some properties on the graphicsdata1 object:

app.form("form1").formObject("graphics1").set("datapick", true);
app.form("form1").formObject("graphics1").set("datapicktarget",

app.declaration("graphicsdata1"));
app.declaration("graphicsdata1").set("edim", "boundary");
app.declaration("graphicsdata1").set("method", "pointdir");

AppEvent Class

The AppEvent class contains information regarding an application user-interface
events. The event field, accessible in application methods, is initialized with an
instance of this class when a FormObject event is being triggered. The
getUserControl method retrieves the FormObject where the event originated.

VALUE CLASS

The methods getNewValue and getOldValue returns an object of type Value which
has methods according to the table below. The Value class represents a value

method pointnormal |
pointdir |
twopoints |
none

pointnormal Method of selecting a point in a 3D
geometry.

twopoint first | second first Point being picked in the twopoints
line entry method.

NAME SYNTAX DESCRIPTION

getNewValue Value getNewValue() New value corresponding to a form object having
an On data change event type.

getOldValue Value getOldValue() Old value corresponding to a form object having
an On data change event type.

getUserControl IPropertyAccess
getUserControl()

To make it convenient to access a user control that
triggered an event the method
event.getUserControl returns the form or form
object that triggered the event. The return type of
the methods is IPropertyAccess and the object
can be cast to an instance of the FormObject or
Form class depending on what type of event is
triggered.

PROPERTY VALUE DEFAULT DESCRIPTION
122 |

which can be retrieved in different formats depending on the form object. For
example, an event triggered from an input field is a scalar variable (boolean, int,
double, or String). This means that only a subset of the methods in the table
below is valid for a particular form object event.

Example Code
The following code exemplifies how to use the event field, for the class AppEvent,
and the methods getNewValue and getOldValue:

String value = event.getNewValue().getString();
String oldValue = event.getOldValue().getString();

For an example of using the event field and its associated methods, see “Data
Validation” on page 297.

AppEventHandler Class

This class represents the Event and Timer nodes found under Events in the
Application Builder. An AppEventHandler object can be either an Event or a Timer.

NAME SYNTAX DESCRIPTION

getBoolean boolean getBoolean() Gets the Boolean value.

getBooleanArray boolean[]
getBooleanArray()

Gets the Boolean array value.

getBooleanMatrix boolean[][]
getBooleanMatrix()

Gets the Boolean matrix value.

getDouble double getDouble() Gets the double value.

getDoubleArray double[]
getDoubleArray()

Gets the double array value.

getDoubleMatrix double[][]
getDoubleMatrix()

Gets the double matrix value.

getInt int getInt() Gets the int value.

getIntArray int[] getIntArray() Gets the int array value.

getIntMatrix int[][]
getIntMatrix()

Gets the int matrix value.

getString String getString() Gets the string value.

getStringArray String[]
getStringArray()

Gets the string array value.

getStringMatrix String[][]
getStringMatrix

Gets the string matrix value.
 | 123

The following methods are available for an AppEventHandler object:

An AppEventHandler object has the following properties:

Example code
The following code sets the interval of a Timer to 1 hour:

app.event("timer1").set("delay","1[h]");

Method Class

The Method class is used to represent a method. The following method is available
for a Method object:

The following code exemplifies using a Method object:
// Get a Method object representing a Form Method.
Method m = app.form("form1").method("method1");
// The method takes a String parameter and returns a double.
double res = (Double) m.run("input");

NAME SYNTAX DESCRIPTION

getName String getName() Returns the name of this event handler.

getType String getType() Returns the event handler type name: Event or
Timer.

PROPERTY VALUE DEFAULT DESCRIPTION

delay double 1 The interval of a Timer in seconds.

enabled See “General Properties” on page 82.

NAME SYNTAX DESCRIPTION

run Object run(Object... input) Run the method with the specified
input parameters.
124 |

Form, Form Object, and Item List Methods

The AppEventHandlerList, Declaration, FormList, FormObjectList, and
ItemList classes have the following methods:

Additionally the FormList class has the following methods:

It is also possible to use a list in an enhanced for loop to operate on all objects in
the list.
In the following example, the background color is set to red in all forms, by
looping over all forms:

for (Form f : app.form()) { // app.form() is of type FormList
f.set("background", "red");

}

NAME SYNTAX PURPOSE

get Form get(int index)
FormObject get(int
index)
Item get(int index)
DataSource get(int
index)
AppEventHandler get(int
index)

Returns the object at a certain index.

get Form get(String name)
FormObject get(String
name)
Item get(String name)
DataSource get(String
name)
AppEventHandler
get(String name)

Returns the object with a given name.

index int index(String name) Returns the 0-based position of the object with a
given name in the list.

names String[] names() Returns an array of names for all objects in the
list.

size int size() Returns the number of objects in the list.

NAME SYNTAX PURPOSE

hasProperty boolean
hasProperty(String name)

Returns true if there is a modifiable property with
the specified name.
 | 125

e
ation

 the
bnail,

the

ied
tem

he
The Built-in Method Library for the Application Builder

This section lists built-in methods available in the Method Editor in addition to
the methods that operate on the model and application objects. For more
information on the model object and its methods, refer to earlier sections of this
book and the Programming Reference Manual. For more information on the
application object, see “The Application Object” on page 78. Some of the listings
have associated example code but for more extensive programming examples, see
“Programming Examples” on page 187.
The syntax rules are those of the Java® programming language. Note that each line
of code needs to end with a semicolon (;), but the semicolon is omitted in the
listings below.

Model Uti l ity Methods

The following table summarizes the model utility methods for querying, creating,
loading, and saving model objects. The model object is stored on the MPH file
format. These methods should not be confused with utility classes, defined in the
application tree under libraries.

NAME SYNTAX DESCRIPTION

clearModel clearModel(Model model)
clearModel(String tag)

Remove everything from th
model except for the applic
part and the things you can
change on the root node in
Model Builder, such as thum
comment, and author.

createModel Model createModel(String tag) Creates a new model with
given tag.

createModel Model createModel() Create a new model with a
unique tag.

getModel Model getModel(String tag) Returns the model with a
specified tag.

loadModel Model loadModel(String location) Loads a model with a specif
tag from a file on the file sys
or in a database.

loadModel Model loadModel(String tag, String
location)

Loads a model from a file. T
model is given a unique tag.
126 |

d
om a

d
el is

very

very
he
.

ags
ing

e

e
ity

not in

e
For the built-in application methods loadModel(<location>) and
loadModel(<tag>,<location>) the <location> argument scan either be the
path to an MPH file found on the file system or a model location URI referencing
a model version in a Model Manager database.
The model utility methods provide convenient shortcuts to commonly used
methods in the ModelUtil class. In addition to these shortcuts, the ModelUtil class
offers functionality for managing client–server operations. This includes methods
for connecting to or disconnecting from a COMSOL Multiphysics server or
COMSOL Server. For a complete list of available methods, refer to the
Programming Reference Manual.

Example Code
The code below loads a model using loadModel, presented in the table above. It
extracts the x-, y-, and z-coordinates of all Mesh nodes and stores them in a 2D

loadProtectedModel Model loadProtectedModel(String tag,
String filename, String password)

Loads a password protecte
model with a specified tag fr
file.

loadProtectedModel Model loadProtectedModel(String
filename, String password)

Loads a password protecte
model from a file. The mod
given a unique tag.

loadRecoveryModel Model loadRecoveryModel(String tag,
String foldername)

Loads a model from a reco
directory/folder structure.

loadRecoveryModel Model loadRecoveryModel(String
foldername)

Loads a model from a reco
directory/folder structure. T
model is given a unique tag

modelTags String[] modelTags() Returns an array of model t
for all loaded models, includ
the embedded model.

removeModel removeModel(String tag)
removeModel(Model model)

Removes a model. The
embedded model cannot b
removed.

saveModel saveModel(Model model, String
filename)

Saves a model to a file. The
filename can be a file schem
path or (if allowed by secur
settings) a server file path.

uniqueModeltag String uniqueModeltag(String prefix) Returns a model tag that is
use.

getComsolVersion getComsolVersion() Returns the current softwar
version as a string.

NAME SYNTAX DESCRIPTION
 | 127

, no

d to
all
cked
 out.

d to
all
cked
 out.

ense
ion.
double array coords[3][N], where N is the number of Mesh nodes. The individual
x-,y-, and z- coordinates are available as the length-N 1D arrays coords[0],
coords[1], coords[2], respectively. (The node locations can be plotted by using
the Cut Point 3D dataset in combination with a 3D Point Trajectories plot.)

Model extmodel = loadModel("C:\\Paul\\pacemaker_electrode.mph");
SolverFeature step = extmodel.sol("sol1").feature("v1");
XmeshInfo xmi = step.xmeshInfo();
XmeshInfoNodes nodes = xmi.nodes();
double[][] coords = nodes.coords();

For more information on methods operating on the model object, see the
Programming Reference Manual.
Note that to make the code above platform independent for use in an application
you can instead use the common application file folder:

Model extmodel = loadModel("common:///pacemaker_electrode.mph");

License Methods

The license methods read the license number and check out or test the licenses of
the current session or for an MPH file. This functionality can be used, for example,
to limit the use of an application to one or a few license numbers or to dynamically
adapt functionality of an application depending on which product licenses are
available.

NAME SYNTAX DESCRIPTION

checkoutLicense boolean checkoutLicense(String...
product)

Checks out licenses for all
specified products. If not all
licenses can be checked out
licenses are checked out.

checkoutLicenseFor
File

boolean checkoutLicenseForFile(String
file)

Checks out licenses require
use a given MPH file. If not
required licenses can be che
out, no licenses are checked

checkoutLicenseFor
FileOnServer

boolean
hasLicenseForFileOnServer(String
file);

Checks out licenses require
use a given MPH file. If not
required licenses can be che
out, no licenses are checked

getLicenseNumber String license = getLicenseNumber() Returns a string with the lic
number for the current sess
128 |

L
ware
nning
e
get a

L
ware
nning
given

L
ware
nning
given
EXAMPLE CODE

The following code tries to check out a license for the AC/DC Module, and
displays an error message if it fails:

if (!checkoutLicense("ACDC"))
alert("There seems to be a problem. Please contact Alice and Bob at 123-

456-7890.");

You can use this to customize license error messages by calling a method
containing this code before any add-on product specific features are used by the
application.
In the Application Builder root node you can further select the Ignore license errors
during launch checkbox. This will make it possible for users to start an application
regardless of which licenses are available. However, this will not work if the
application, at startup, uses features required by an add-on product. The
application has to be created in such a way that the add-on product specific
features are not used in the startup phase of the application but instead are
deferred to later in the workflow.
To emulate a scenario where there are not enough available licenses you can, for
example, disable one or more products in the Licensed and Used Products in Session
dialog, available from the File menu in the COMSOL Desktop environment.
The following code tests if the COMSOL installation has the capability to use an
MPH file:

boolean ok = hasProductForFile(“model_file.mph”);

hasProduct boolean hasProduct(String... product) Returns true if the COMSO
installation contains the soft
components required for ru
the specified products. Cod
completion can be used to
list of valid product names.

hasProductForFile boolean hasProductForFile(String file) Returns true if the COMSO
installation contains the soft
components required for ru
the products required by a
MPH file.

hasProductForFileO
nServer

boolean
checkoutLicenseForFileOnServer(String
file);

Returns true if the COMSO
installation contains the soft
components required for ru
the products required by a
MPH file.

NAME SYNTAX DESCRIPTION
 | 129

Note that even if hasProductForFile return true, in a floating network license
situation there may not be any free licenses to check out. If your application is
going to process several MPH files and you want to make sure all licenses are
checked out before the processing starts, instead use the checkoutLicense or
checkoutLicenseForFile methods.

LICENSE FEATURE STRINGS

The following table contains the product strings for all add-on products in the
COMSOL 6.4 product suite that can be used by the method checkoutLicense:

PRODUCT/FEATURE FEATURE NAME

AC/DC Module ACDC

Acoustics Module ACOUSTICS

Battery Design Module BATTERYDESIGN

CAD Import Module CADIMPORT

CFD Module CFD

Chemical Reaction Engineering Module CHEM

Corrosion Module CORROSION

Design Module DESIGN, CADIMPORT

ECAD Import Module ECADIMPORT

Electric Discharge Module ELECTRICDISCHARGE

Electrochemistry Module ELECTROCHEMISTRY

Electrodeposition Module ELECTRODEPOSITION

Fatigue Module FATIGUE

File Import for CATIA V5 CATIA5

Fuel Cell & Electrolyzer Module FUELCELLANDELECTROLYZER

Geomechanics Module GEOMECHANICS

Granular Flow Module GRANULARFLOW

Heat Transfer Module HEATTRANSFER

Liquid & Gas Properties Module LIQUIDANDGASPROPERTIES

LiveLink™ for AutoCAD® LLAUTOCAD, CADIMPORT

LiveLink™ for PTC® Creo® Parametric™ LLCREOPARAMETRIC,
CADIMPORT

LiveLink™ for Excel® LLEXCEL

LiveLink™ for Inventor® LLINVENTOR, CADIMPORT

LiveLink™ for MATLAB® LLMATLAB
130 |

File Methods

File methods are used to read and write data to a file or portions of a file. Note
that higher-level techniques for reading and writing to files are available from
within the Application Builder user interface. For more information, see the book

LiveLink™ for Revit® LLREVIT, CADIMPORT

LiveLink™ for Simulink® LLSIMULINK

LiveLink™ for Solid Edge® LLSOLIDEDGE, CADIMPORT

LiveLink™ for SOLIDWORKS® LLSOLIDWORKS, CADIMPORT

Material Library MATLIB

MEMS Module MEMS

Metal Processing Module METALPROCESSING

Microfluidics Module MICROFLUIDICS

Mixer Module MIXER

Molecular Flow Module MOLECULARFLOW

Multibody Dynamics Module MULTIBODYDYNAMICS

Nonlinear Structural Materials Module NONLINEARSTRUCTMATERIALS

Optimization Module OPTIMIZATION

Particle Tracing Module PARTICLETRACING

Pipe Flow Module PIPEFLOW

Plasma Module PLASMA

Polymer Flow Module POLYMERFLOW

Porous Media Flow Module POROUSMEDIAFLOW

Ray Optics Module RAYOPTICS

RF Module RF

Rotordynamics Module ROTORDYNAMICS

Semiconductor Module SEMICONDUCTOR

Structural Mechanics Module STRUCTURALMECHANICS

Subsurface Flow Module SUBSURFACEFLOW

Uncertainty Quantification Module UQ

Wave Optics Module WAVEOPTICS

PRODUCT/FEATURE FEATURE NAME
 | 131

 the given
string
h to a file
e scheme

t can be
 or
rom the

der that
m the

he given
. The file
et type
e model

he given
, using a
haracter.
readsheet
 in the
e.

he given
The file
et type
e model

he given
using a
haracter..
readsheet
 in the
e.

a-
ile) into a
e to use
r CSV.
Introduction to the Application Builder and “GUI Command Methods” on
page 158.

NAME SYNTAX DESCRIPTION

readFile* String readFile(String name) Returns the contents in
filename as a string. The
name is the absolute pat
or a path given by the fil
syntax.

openFileStreamReader* CsReader
openFileStreamReader(String
name)

Returns a CsReader tha
used to read line-by-line
character-by-character f
given filename.

openBinaryFileStreamReader* CsBinaryReader
openBinaryFileStreamReader(Stri
ng name)

Returns a CsBinaryRea
can be used to read fro
given file byte-by-byte.

readMatrixFromFile* double[][]
readMatrixFromFile(String name)

Reads the contents of t
file into a double matrix
has the same spreadshe
format as available in th
tree Export node.

readMatrixFromFile* double[][]
readMatrixFromFile(String name,
char delimiter)

Reads the contents of t
file into a double matrix
user-defined delimiter c
The file has the same sp
type format as available
model tree Export nod

readStringMatrixFromFile* String[][]
readStringMatrixFromFile(String
name)

Reads the contents of t
file into a string matrix.
has the same spreadshe
format as available in th
tree Export node.

readStringMatrixFromFile* String[][]
readStringMatrixFromFile(String
name, char delimiter)

Reads the contents of t
file into a string matrix,
user-defined delimiter c
The file has the same sp
type format as available
model tree Export nod

readCSVFile* String[][] readCSVFile(String
name)

Reads a file with comm
separated values (CSV f
string matrix. Expects fil
the RFC 4180 format fo
132 |

separated
iter
atrix.

contents

contents
 append is
are
erwritten.

o the
et format
can be
mFile.

o the
et format
can be
mFile. If
 contents
f

o the
et format
can be

File.

o the
et format
can be

File. If
 contents
f

o the
ified
V/TSV
ad by
 is true,
ppended
readCSVFile* String[][] readCSVFile(String
name, char delimiter)

Reads a file with values,
by a user-defined delim
character, into a string m

writeFile* writeFile(String name, String
contents)

Writes the given string
to the given filename.

writeFile* writeFile(String name, String
contents, boolean append)

Writes the given string
to the given filename. If
true, then the contents
appended instead of ov

writeFile* writeFile(String name,
double[][] data)

Writes the array data t
given file. The spreadshe
is used, which means it
read by readMatrixFro

writeFile* writeFile(String name,
double[][] data, boolean
append)

Writes the array data t
given file. The spreadshe
is used, which means it
read by readMatrixFro
append is true, then the
are appended instead o
overwritten.

writeFile* writeFile(String name,
String[][] data)

Writes the array data t
given file. The spreadshe
is used, which means it
read by
readStringMatrixFrom

writeFile* writeFile(String name,
String[][] data, boolean
append)

Writes the array data t
given file. The spreadshe
is used, which means it
read by
readStringMatrixFrom

append is true, then the
are appended instead o
overwritten.

writeFile* writeFile(String name,
String[][] data, char
delimiter, boolean append)

Writes the array data t
given file using the spec
delimiter character (CS
style). The file can be re
readCSVFile. If append
then the contents are a
instead of overwritten.

NAME SYNTAX DESCRIPTION
 | 133

o the
ified
V/TSV
ad by
 is true,
ppended
If bom is
der mark

t can

t can
 append is
are
erwritten.

ter that
 the given

ter that
 the given
nd is true,
ppended

array
FC 4180
SV.

array
FC 4180
SV. If
 contents
f

 array
FC 4180
SV.

 array
FC 4180
SV. If
 contents
f
writeFile* writeFile(String name,
String[][] data, char
delimiter, boolean append,
boolean bom)

Writes the array data t
given file using the spec
delimiter character (CS
style). The file can be re
readCSVFile. If append
then the contents are a
instead of overwritten.
true, a Unicode byte or
(BOM) is written.

openFileStreamWriter* CsWriter
openFileStreamWriter(String
name)

Returns a CsWriter tha
write to the given file.

openFileStreamWriter* CsWriter
openFileStreamWriter(String
name, boolean append)

Returns a CsWriter tha
write to the given file. If
true, then the contents
appended instead of ov

openBinaryFileStreamWriter* CsBinaryWriter
openBinaryFileStreamWriter(Stri
ng name)

Returns a CsBinaryWri
can be used to write to
file byte-by-byte.

openBinaryFileStreamWriter* CsBinaryWriter
openBinaryFileStreamWriter(Stri
ng name, boolean append)

Returns a CsBinaryWri
can be used to write to
file byte by byte. If appe
then the contents are a
instead of overwritten.

writeCSVFile* writeCSVFile(String name,
String[][] data)

Writes the given string
data to a CSV file. The R
format is used for the C

writeCSVFile* writeCSVFile(String name,
String[][] data, boolean
append)

Writes the given string
data to a CSV file. The R
format is used for the C
append is true, then the
are appended instead o
overwritten.

writeCSVFile* writeCSVFile(String name,
double[][] data)

Writes the given double
data to a CSV file. The R
format is used for the C

writeCSVFile* writeCSVFile(String name,
double[][] data, boolean
append)

Writes the given double
data to a CSV file. The R
format is used for the C
append is true, then the
are appended instead o
overwritten.

NAME SYNTAX DESCRIPTION
134 |

 the given

cheme
te path,
nds out
cheme
rgument
 not exist,
ere is a
e in the
ry.

ven name
leted on
an use a

ver. Both
ames can

ialog and
 to the
 given
oaded file
load:///

leTypes
o filter
ilable for

ser. The
of valid

od Editor.
 File Type
 used.
exists* boolean exists(String name) Tests whether a file with
name exists.

If the name is not a file s
path name or an absolu
then the method first fi
whether a file with file s
path embedded:/// + a
exists. If such a file does
then it tests whether th
file with a matching nam
current working directo

deleteFile* deleteFile(String file) Delete a file with the gi
if it exists. The file is de
the server,. The name c
file scheme path.

copyFile* copyFile(String sourceFile,
String destFile)

Copies a file on the ser
the source and target n
use file scheme paths.

importFile importFile(String name)
importFile(String name,
String[] fileTypes)

Displays a file browser d
uploads the selected file
file declaration with the
name. After this, the upl
can be accessed with up
<name>. The optional fi
argument can be used t
which file types are ava
selection in the file brow
easiest way to get a list
file types is to use code
completion in the Meth
The file types defined by
declarations can also be

NAME SYNTAX DESCRIPTION
 | 135

ialog and
 to the
e given
is defines
plication
. For
f an

ccessed
>’)).
e
//<tag>/

array
irst cell in
el file.
iveLink™

array
pecified
t of an

requires

an Excel
st cell,
thod

Excel®.

et of an
the
ng[][].
iveLink™
importFile importFile(ModelEntity entity,
String name)

Displays a file browser d
uploads the selected file
Filename text field in th
model object entity. Th
an input file that the ap
will need at a later stage
example, the Filename o
interpolation function a
with model.func(’<tag
The uploaded file can b
accessed with upload:/
filename.

writeExcelFile* writeExcelFile(String name,
String[][] data)

Writes the given string
data starting from the f
the first sheet of an Exc
This method requires L
for Excel®.

writeExcelFile* writeExcelFile(String name,
String sheet, String cell,
String[][] data)

Writes the given string
data starting from the s
cell in the specified shee
Excel file. This method
LiveLink™ for Excel®.

readExcelFile* String[][] readExcelFile(String
name)

Reads the first sheet of
file, starting from the fir
into a String[][]. This me
requires LiveLink™ for

readExcelFile* String[][] readExcelFile(String
name, String sheet, String
cell)

Reads the specified she
Excel file, starting from
specified cell, into a Stri
This method requires L
for Excel®.

NAME SYNTAX DESCRIPTION
136 |

rver file
y file
ain file
he server
path does

d to pass
e, a file
eme to
lication.

 is used to
 an
g the file
utFile,
File
th a File

e of an
nt file

is no
the given

ful for
 feedback.
rmation
is being
ntee that
ill exist on
he
 the same
getFilePath* String getFilePath(String name) Returns the absolute se
path of the server prox
corresponding to a cert
scheme path, or null if t
proxy file for the given
not exist.

This method can be use
the path to, for exampl
using the temp:/// sch
external code or an app

In addition, this method
retrieve the filename of
uploaded file when usin
scheme upload:///inp
for example by using a
declaration together wi
Import form object.

getClientFileName String getClientFileName(String
name)

Returns the original nam
uploaded file on the clie
system (or null if there
uploaded file matching
file scheme path).

This method is only use
providing user interface
For example, to get info
on which uploaded file
used. There is no guara
the original file would st
the client or even that t
current client would be
as the original client.

NAME SYNTAX DESCRIPTION
 | 137

h of an
nt file

is no
he given
ns only
 path
plication
er.

ful for
feedback.
rmation
is being
ntee that
ill exist on
he
 the same

name, see
Example
All file methods in the table above that are marked with an asterisk (*) support
working with data files stored in a Model Manager database. Note that all of these
methods automatically load the data file to a working copy directory located on
the same computer that COMSOL Multiphysics runs on. This means that any
updates made to a data file is not persisted to the database unless explicitly saved
as a new file version via the Model Manager database API.

EXAMPLE CODE

This line of code copies the uploaded file file1 to the temp folder with new
filename file2.mphbin and then prompts the user to save the file to any location.

copyFile("upload:///file1", "temp:///file2.mphbin");
fileSaveAs("temp:///file2.mphbin");

This line of code deletes the file file2.mphbin from the temp folder.
deleteFile("temp:///file2.mphbin");

This line of code creates a directory in the user folder, as specified in Preferences.
createDirectory("user:///a/b");

This line of code creates a directory in the Temp folder under C:.
createDirectory("C:\\Temp\\a\\b");

getClientFilePath String getClientFilePath(String
name)

Returns the original pat
uploaded file on the clie
system (or null if there
uploaded file matching t
file scheme path). Retur
the filename part of the
when called from an ap
running in a web brows

This method is only use
providing user interface
For example, to get info
on which uploaded file
used. There is no guara
the original file would st
the client or even that t
current client would be
as the original client.

createDirectory* createDirectory(String name) Creates a file directory
examples below in the
Code section.

NAME SYNTAX DESCRIPTION
138 |

 with
th)
times
nds.
ess

 a

.

 with
th)

ed to
e
 after

To
ality,
used.
and

by

 see
.

 user
n. If
m
value

Note that the method fileSaveAs returns a boolean that indicates if saving the file
was successful or not. Saving a file will fail if, for example, the user does not have
access to the target folder.

Operating System Methods

Operating system methods are used for accessing operating system information
and commands from an application.

NAME SYNTAX DESCRIPTION

executeOSCommand String executeOSCommand(String
command, String... params)

Executes the OS command
the given command (full pa
and parameters. Execution
out after a default 180 seco
Returns everything the proc
printed to its out stream as
string. When applicable, the
command is run server side

executeOSCommand String executeOSCommand(String
command, int timeoutSec, String
params...)

Executes the OS command
the given command (full pa
and parameters. Returns
everything the process print
its out stream as a string. Th
execution is forcibly stopped
timeoutSec seconds if the
command has not finished.
disable the timeout function
timeoutSec value 0 can be
When applicable, the comm
is run server side.

fileOpen fileOpen(String name) Opens the file represented
name with the associated
program on the client. Also
the section “Example code”

getUser String username = getUser() Returns the username of the
that is running the applicatio
the application is not run fro
COMSOL Server, then the
of the preference setting
General>Username>Name is
returned.
 | 139

n file
s are
ries

ency

e
EXAMPLE CODE

The line of code below plays one of the sounds available in the data/sounds folder
of the COMSOL installation and has been embedded in the application and stored
in the Sounds library.

playSound("embedded:///success_1.wav");

In the command sequence of a form object, this is equivalent to selecting a sound
node under Libraries and clicking Run.
The line of code below opens a PDF file embedded in the application and stored
in the File library.

fileOpen("embedded:///li_ion_battery_impedance.pdf");

openURL openURL(String url) Opens a URL in the default
browser on the client.

playSound playSound(String name) Plays the sounds in the give
on the client. Only .wav file
supported; no external libra
are required.

playSound playSound(double hz, int millis) Plays a signal at a given frequ
hz and with given duration
millis in milliseconds on th
client.

NAME SYNTAX DESCRIPTION
140 |

In the command sequence of a form object, this is equivalent to selecting an Open
File node under GUI Commands > File Commands and clicking Run, as shown in the
figure below.

This line of code opens the COMSOL home page in the default browser:
openURL("www.comsol.com");

This line of code runs an application by means of an OS command:
executeOSCommand("C:\\COMSOL64\\Multiphysics\\bin\\win64\\comsol.exe",

"-run", "C:\\work\\tubular_reactor.mph");
 | 141

ress
or

lt
d

lt
d
 or
rom
odes

fied
d
 or
rom
odes

o the
an
not
.

age

ver
his
Email Methods

Email methods are used for sending emails from an application, typically with
attachments containing results from a simulation.

Email Class Methods
The class EmailMessage can be used to create custom email messages.

NAME SYNTAX DESCRIPTION

emailFromAddress String emailFromAddress() Returns the email from add
from the COMSOL Server
preferences setting.

sendEmail sendEmail(String subject, String
bodyText)

Sends an email to the defau
recipient(s) with the specifie
subject and body text.

sendEmail sendEmail(String subject, String
bodyText, ModelEntity... modelEntity)

Sends an email to the defau
recipient(s) with the specifie
subject, body text, and zero
more attachments created f
Report, Export, and Table n
in the embedded model.

sendEmail sendEmail(String toAddress, String
subject, String bodyText,
ModelEntity... modelEntity)

Sends an email to the speci
recipient(s) with the specifie
subject, body text, and zero
more attachments created f
Report, Export, and Table n
in the embedded model.

userEmailAddress String userEmailAddress() Returns the user email
address(es) corresponding t
currently logged in user, or
empty string if the user has
configured an email address

NAME SYNTAX DESCRIPTION

EmailMessage EmailMessage mail = new EmailMessage() Creates a new EmailMess
object.

EmailMessage.setSer
ver

mail.setServer(String host, int port) Sets the email (SMTP) ser
host and port to use for t
email message.
142 |

ssword
erver
d must
ver

ity type

es are
'tls'.
d after

. Note
e not

in text.
 a text

ML
 both a

 a file.
e is
e

 a file
pe.

ed
table

ith a
such as
EmailMessage.setUse
r

mail.setUser(String name, String
password)

Sets the username and pa
to use for email (SMTP) s
authentication. This metho
be called after the setSer
method.

EmailMessage.setSec
urity

mail.setSecurity(String security) Sets the connection secur
for email (SMTP) server
communication. Valid valu
'none', 'starttls', and
This method must be calle
the setServer method.

EmailMessage.setFro
m

mail.setFrom(String fromAddress) Sets the from address.

EmailMessage.setTo mail.setTo(String... to) Sets the to addresses.

EmailMessage.setCc mail.setCc(String... cc) Sets the cc addresses.

EmailMessage.setBcc mail.setBcc(String... bcc) Sets the bcc addresses.

EmailMessage.setSub
ject

mail.setSubject(String subject) Sets the email subject line
that newline characters ar
allowed.

EmailMessage.setBod
yText

mail.setBodyText(String body) Sets the email body as pla
An email can contain both
and an HTML body.

EmailMessage.setBod
yHtml

mail.setBodyHtml(String body) Sets the email body as HT
text. An email can contain
text and an HTML body.

EmailMessage.attach
File

mail.attachFile(String filename) Adds an attachment from
The attachment MIME typ
determined by the filenam
extension.

EmailMessage.attach
File

mail.attachFile(String filename,
String mimeType)

Adds an attachment from
with the specified MIME ty

EmailMessage.attach
FromModel

mail.attachFromModel(ModelEntity
modelEntity)

Adds an attachment creat
from a report, export, or
feature in the model.

EmailMessage.attach
Text

mail.attachText(String text, String
mimeSubType)

Adds a text attachment w
specified sub-MIME type,
plain or HTML.

NAME SYNTAX DESCRIPTION
 | 143

 a byte
IME

ail
bject
Each to, cc, and bcc address string can contain multiple email addresses separated
by a comma or a semicolon character. Whitespace is allowed before and after the
separator character.

EMAIL PREFERENCES

To set general email preferences, open the Email page of the Preferences window.
There you can specify a From address and a Default to address. To set preferences
for an outgoing email (SMTP) server, open the Outgoing Server (STMP) page under
the Email page, as shown in the figure below.

COMSOL Server provides a similar set of email preferences.

EmailMessage.attach
Binary

mail.attachBinary(byte[] binary,
String mimeType)

Adds an attachment from
array with the specified M
type.

EmailMessage.send mail.send() Sends the email to the em
(SMTP) server. An email o
can only be sent once.

NAME SYNTAX DESCRIPTION
144 |

EXAMPLE CODE

The following code configures the email server settings, sends an email, and
attaches a report:

/**
* Sends an email with the simulation report attached.
*/

EmailMessage mail = new EmailMessage();
// Custom email server settings used
if (isOverrideEmail) {
 mail.setServer(emailServerHost, emailServerPort);
 mail.setUser(emailUser, util1.password);
 mail.setSecurity(emailSecurity);
 mail.setFrom(emailFromAddress);
}
mail.setTo(emailTo);
mail.setSubject(translate("Tubular_reactor_simulation", true));
mail.setBodyText(translate("The_computation_has_finished._please_find_the_
report_attached"));
mail.attachFromModel(model.result().report("rpt1"));
mail.send();

This code is run in the Tubular Reactor application, which is available as an
application example in the Application Libraries. The figure below shows part of
the user interface with an input field for the email address.
 | 145

he
 its

).

a
thods
d in
ns.
The figure below shows the corresponding form object and Settings window.

GUI-Related Methods

The graphical user interface (GUI) related methods are used for displaying dialogs
with messages, editing form objects and user interface content, getting run-time
properties of the application user interface, and running methods.

NAME SYNTAX DESCRIPTION

Call a method directly <methodName>() Call a method from t
Methods list by using
name, for example,
method1(), method2(

callMethod callMethod(String name) Alternate way to call
method from the Me
list; used internally an
cases of name collisio
146 |

 (Plot
esh,
layer
phics
the
graphics
cond

 the
rent
gle
he form
one. In

 must
dow
ot be
rm that
nly

 the
rms is
ations
is
ble for
tions.

wn as a
 name.

 the
g.
log
ject; see

displays
 the

displays
 the
useGraphics useGraphics(ModelEntity entity,
String name)
useGraphics(ModelEntity entity,
FormObject graphics)

Plots the given entity
Group, Geometry, M
Explicit Selection or P
Animation) in the gra
form object given by
name, name path, or
form object in the se
argument.

openForm openForm(String name) Shows the form with
given name in the cur
main window. In a sin
window application, t
replaces the current
an application with
subwindows, the form
exist in the main win
layout. If not, it will n
opened. Showing a fo
is already open will o
activate the form.

closeForm closeForm(String name) Closes the form with
given name. Closing fo
only possible in applic
using subwindows. Th
method is not applica
single window applica

closeDialog closeDialog(String name) Closes the form, sho
dialog, with the given

dialog dialog(String name) Shows the form with
given name as a dialo
Equivalent to the dia
method of a Form ob
below.

alert alert(String text) Stops execution and
an alert message with
given text.

alert alert(String text, String title) Stops execution and
an alert message with
given text and title.

NAME SYNTAX DESCRIPTION
 | 147

displays
with the
lays two
o". The
 or "No"
he user

displays
with the
 also
 "Yes"
d

he user

displays
with the
 also
with the
. The
abel of
ser

displays
with the
 also
s with
bels.
he label
 user

opens
he given
confirm String confirm(String text) Stops execution and
a confirmation dialog
given text. It also disp
buttons, "Yes" and "N
method returns "Yes"
depending on what t
clicks.

confirm String confirm(String text, String
title)

Stops execution and
a confirmation dialog
given text and title. It
displays two buttons,
and "No". The metho
returns "Yes" or "No"
depending on what t
clicks.

confirm String confirm(String text, String
title, String yes, String no)

Stops execution and
a confirmation dialog
given text and title. It
displays two buttons
given strings as labels
method returns the l
the button that the u
clicks.

confirm String confirm(String text, String
title, String yes, String no,
String cancel)

Stops execution and
a confirmation dialog
given text and title. It
displays three button
the given strings as la
The method returns t
of the button that the
clicks.

error error(String message) Stops execution and
an error dialog with t
message.

NAME SYNTAX DESCRIPTION
148 |

opens
he given

lass
al Java
e of its

his can
tive
cs error
 error

displays
eld,
 the
s the
. The
ntered
ncel

displays
eld,
 the
s the
and the
xt
text
urns the
 if the
d.

displays
eld,
 the
s the
, the
xt
text
he title
thod
ext or
ton is
error error(String message, Throwable
cause)

Stops execution and
an error dialog with t
message including the
underlying cause of c
Throwable, the gener
exception class, or on
subclasses, such as
RuntimeException. T
be used to “wrap” na
COMSOL Multiphysi
messages with custom
messages.

request String request(String text) Stops execution and
a dialog with a text fi
requesting input from
user. The given text i
label of the text field
method returns the e
text or null if the ca
button is clicked.

request String request(String text, String
defaultString)

Stops execution and
a dialog with a text fi
requesting input from
user. The given text i
label of the text field
default string is the te
initially shown in the
field. The method ret
entered text or null
cancel button is clicke

request String request(String text, String
title, String defaultString)

Stops execution and
a dialog with a text fi
requesting input from
user. The given text i
label of the text field
default string is the te
initially shown in the
field, and the title is t
of the dialog. The me
returns the entered t
null if the cancel but
clicked.

NAME SYNTAX DESCRIPTION
 | 149

he
le in the

 to the

es that
d to the
face.
rg can

 or 2D
ing,
n.

.

g

ntity, a
 table
ame,
s form

then be
the
rived
ment is
ed
w data,

ntity, a
turns
lumn
that is
 matrix.
erical

, but
able
erical
message message(String message) Sends a message to t
message log if availab
application.

message message(arg) Sends a message arg
message log. For an
application this requir
a message log is adde
application user inter
The input argument a
be a scalar, 1D array,
array of the types str
double, int, or Boolea

clearLog clearLog() Clears the log window

clearMessageLog clearMessageLog() Clears the message lo
window.

evaluateToResultsTable evaluateToResultsTable(NumericalFe
ature entity, String name, boolean
clear)
evaluateToResultsTable(NumericalFe
ature entity, FormObject graphics,
boolean clear)

Evaluates the given e
Derived Value, in the
object given by the n
name path, or graphic
object in the second
argument, which will
the default target for
evaluations of the De
Value. If the third argu
true, the table is clear
before adding the ne
otherwise the data is
appended.

evaluateToDoubleArray2D double[][]
evaluateToDoubleArray2D(NumericalF
eature entity)

Evaluates the given e
Derived Value, and re
the nonparameter co
part of the real table
produced as a double
All settings in the num
feature are respected
those in the current t
connected to the num
feature are ignored.

NAME SYNTAX DESCRIPTION
150 |

ntity, a
turns
lumn
that is
er
 the

in the
ted to
 are

ntity, a
turns
lumn
y

matrix.

erical
 but
able
erical

m the

bject.

the type
ting a
r the
he type
ods
 change
 respect
ssing
mes

 for the
 by the

for the
 by the
evaluateToIntegerArray2D int[][]
evaluateToIntegerArray2D(Numerical
Feature entity)

Evaluates the given e
Derived Value, and re
the nonparameter co
part of the real table
produced as an integ
matrix. All settings in
numerical feature are
respected, but those
current table connec
the numerical feature
ignored.

evaluateToStringArray2D String[][]
evaluateToStringArray2D(NumericalF
eature entity)

Evaluates the given e
Derived Value, and re
the nonparameter co
part of the, potentiall
complex, table that is
produced as a string
All settings in the num
feature are respected
those in the current t
connected to the num
feature are ignored.

useResultsTable useResultsTable(TableFeature
tableFeature, String resultsTable)
useResultsTable(TableFeature
tableFeature, FormObject
resultsTable)

Shows the values fro
tableFeature in the
resultsTable form o

getChoiceList ChoiceList getChoiceList(String
name)

Returns an object of
ChoiceList, represen
choice list node unde
declarations branch. T
ChoiceList has meth
that make it easier to
the matrix value with
to changing and acce
values and display na
individually.

setFormObjectEnabled setFormObjectEnabled(String name,
boolean enabled)

Sets the enable state
form object specified
name or name path.

setFormObjectVisible setFormObjectVisible(String name,
boolean visible)

Sets the visible state
form object specified
name or name path.

NAME SYNTAX DESCRIPTION
 | 151

form
e name
econd
d

s
xt for
ject.

 for the
 by the
This
ailable

for the
ied by
h (from

for the
ecified
 path
n the

for the
ed by
th
e first

for the
 by the
from
first

for the
tem
 or

n by
, or
in the
setFormObjectText setFormObjectText(String name,
String text)

Sets the text for the
object specified by th
or name path in the s
argument. This metho
throws an error if it i
impossible to set a te
the specified form ob

setFormObjectEditable setFormObjectEditable(String name,
boolean editable)

Sets the editable state
form object specified
name or name path.
functionality is only av
for text field objects.

setMenuBarItemEnabled setMenuBarItemEnabled(String name,
boolean enabled)

Sets the enable state
menu bar item specif
the name or name pat
menu bar) in the first
argument.

setMainToolbarItemEnabled setMainToolbarItemEnabled(String
name, boolean enabled)

Sets the enable state
main toolbar item sp
by the name or name
(from main toolbar) i
first argument.

setFileMenuItemEnabled setFileMenuItemEnabled(String name,
boolean enabled)

Sets the enable state
file menu item specifi
the name or name pa
(from file menu) in th
argument.

setRibbonItemEnabled setRibbonItemEnabled(String name,
boolean enabled)

Sets the enable state
ribbon item specified
name or name path (
main window) in the
argument.

setToolbarItemEnabled setToolbarItemEnabled(String name,
boolean enabled)

Sets the enable state
toolbar form object i
specified by the name
name path in the first
argument.

useView useView(View view, String name)
useView(View view, FormObject
graphics)

Applies a view to the
graphics contents give
the name, name path
graphics form object
second argument.

NAME SYNTAX DESCRIPTION
152 |

 initial
ontents
ame
 object
nt.

rently
ontents

ame
 object
nt.

iew in
. The

e of the
gs in the

","zx"

iew in
m
.

w in the
bject

e form
e name
first
d
 name
eb Page

pixels of
n client
wser
t is
resetView resetView(String name)
resetView(FormObject graphics)

Resets the view to its
state in the graphics c
given by the name, n
path, or graphics form
in the second argume

getView ViewBase getView(String name)
ViewBase getView(FormObject
graphics)

Returns the view cur
used by the graphics c
given by the name, n
path, or graphics form
in the second argume

goToView goToView(String name); Goes to a standard v
main graphics window
parameter name is on
view orientation strin
following list:
"xy","xz","yx","yz

,"zy".

goToView goToView(String name, String
graphicsname);

Goes to a standard v
the given graphics for
object graphicsname

goToView goToView(String name, FormObject
graphics);

Goes to standard vie
given graphics form o
graphics.

setWebPageSource setWebPageSource(String name,
String source)

Sets the source for th
object specified by th
or name path in the
argument. This metho
throws an error if the
does not refer to a W
form object.

getScreenHeight int getScreenHeight() Returns the height in
the primary screen o
system, or of the bro
window if Web Clien
used.

NAME SYNTAX DESCRIPTION
 | 153

ixels of
n client
wser
t is

ntered
 request
 takes
 as its
ALERTS AND MESSAGES

The methods alert, confirm, and request display a dialog with a text string and
optional user input. The following example uses confirm to ask the user if a direct
or an iterative solver should be used in an application. Based on the answer, the
alert function is then used to show the estimated memory requirement for the
selected solver type in a message dialog:

String answer = confirm("Which solver do you want to use?",
"Solver Selection","Direct", "Iterative");
if (answer.equals("Direct")) {

alert("Using the direct solver will require about 4GB of memory when solving.");
} else {

alert("Using the iterative solver will require about 2GB of memory when
solving.");
}

EXAMPLE CODE

The following code changes the camera zoom angle and updates the graphics for
each change.

useView(model.view("view1"), "/form1/graphics1");
for (int i = 0; i < 25; i++) {

sleep(2000);
model.view("view1").camera().set("zoomanglefull", 12-i*5.0/25);
useGraphics(model.geom("geom1"), "/form1/graphics1");

}

This line of code displays plot group 5 (pg5) in the graphics object graphics1 in
the form with the name Temperature:

useGraphics(model.result("pg5"), "/Temperature/graphics1");

The code below displays the mesh in the model tree node mesh1 in the graphics
object graphics1 contained in the card of a card stack. The second line runs a
zoom extents command to ensure proper visualization of the mesh.

useGraphics(model.mesh("mesh1"), "/mesh/cardstack1/card1/graphics1");

getScreenWidth int getScreenWidth() Returns the width in p
the primary screen o
system, or of the bro
window if Web Clien
used.

storeChanges storeChanges(String form) Commits the values e
in a dialog having On
enabled. The method
the name of the form
argument.

NAME SYNTAX DESCRIPTION
154 |

zoomExtents("/mesh/cardstack1/card1/graphics1");

To clear the contents of a graphics object use a call such as
useGraphics(null, "/form1/graphics1");

The code below displays a request dialog that lets the user type in a filename for
an HTML report. If the user has typed a filename, then a report is generated.

String answerh = request("Enter filename","Filename", "Untitled.html");
if (answerh != null) {

model.result().report("rpt1").set("format","html");
model.result().report("rpt1").set("filename","user:///"+answerh);
model.result().report("rpt1").run();

}

The code below is similar to the code above, but in this case the report is saved in
Microsoft® Word® format (.docx).

String answerw = request("Enter filename","Filename", "Untitled.docx");
if (answerw != null) {

model.result().report("rpt2").set("format","docx");
model.result().report("rpt2").set("filename","user:///"+answerw);
model.result().report("rpt2").run();

}

This line of code sets the view of the graphics object form1/graphics1 to View 5,
as defined in the model tree:

useView(model.view("view5"), "form1/graphics1");
 | 155

You can use Data Access in combination with Editor Tools to create a slider or an
input field that sets the transparency level (alpha) of a plot group. The figure
below shows a Settings window of a slider with the transparency level as Source.

In this case you need to create a method for updating the view that is called to
handle an event from the slider or form object. In the example above, the slider
uses a Local method defined in the Events section. This method contains one line
of code that updates the view:

useView(getView("/form1/graphics1"), "/form1/graphics1");

Note that different transparency levels are not supported when accessing an
application from a browser using COMSOL Server.
156 |

Note that you can also set a view from the command sequence of, for example, a
button: select a view subnode under the Views node in the editor tree and click the
Plot button under the tree.

To go to one of the standard views in the main Graphics window, for example in
an add-in, you can use:

goToView("xy");

In an application you can similarly use one of:
goToView("xz", "form1/graphics1");
goToView("yz", app.form("form1").formObject("graphics1"));

to go to the graphics object graphics1 in the form form1.
This line of code sets the URL source of the form object webpage1 to the
COMSOL web page:

setWebPageSource("/form1/webpage1", "www.comsol.com");

This line of code forms a string containing the screen width and height:
screenSize = toString(getScreenWidth()) + "-by-" +

toString(getScreenHeight());

You can present the string with an input field or a data display object using this
string as a source (the string screenSize needs to be declared first).
 | 157

given

ns to
his
ction.

iated

nt.
ple
s a
e
r not.

ject.

hat is
, to
his
ction.

nes if
a
 saving.

r a
 value
ed the
on
GUI Command Methods

The GUI command methods correspond to the GUI Commands node in the editor
tree. The editor tree is displayed in, for example, the Choose Commands to Run
section in the Settings window for a button object in the Application Builder.

NAME SYNTAX DESCRIPTION

clearAllMeshes clearAllMeshes() Clears all meshes.

clearAllSolutions clearAllSolutions() Clears all solutions.

clearSelection clearSelection(String graphics)
clearSelection(FormObject graphics)

Clears the selection in the
graphics object.

environmentReflections environmentReflections(String
graphicsName)
environmentReflections(FormObject
graphics)

Adds environment reflectio
the given graphics object. T
method is run as a toggle a

exit exit() Exits the application.

fileOpen fileOpen(String name) Opens a file with the assoc
program on the client.

fileSaveAs boolean fileSaveAs(String file) Downloads a file to the clie
See also the section “Exam
code”. The method return
boolean that indicates if th
operation was successful o

printGraphics printGraphics(String graphicsName)
printGraphics(FormObject graphics)

Prints the given graphics ob

rotateEnvironment rotateEnvironment(String
graphicsName)
rotateEnvironment(FormObject
graphics)

Rotates the environment, t
used for realistic reflections
the given graphics object. T
method is run as a toggle a

saveApplication saveApplication(boolean confirm) Saves the application. The
boolean argument determi
the user is prompted with
confirmation dialog before

saveApplicationAs boolean saveApplication() Saves the application unde
different name. If the return
is false then the user cancel
operation and the applicati
was not saved.
158 |

tion.
 the

 can
opy.
lean
a

rver.

ion

rver
r as an
e is

d the
on

iven

ities in

ybox,
, to
his
ction.

 given

ible
en
EXAMPLE CODE

For examples of how to use fileSaveAs, see the book Introduction to the
Application Builder. This method is frequently needed for saving files in general.
You can create an application that saves and exits automatically by running the
following lines of code, for example, after solving:

saveModel(model,"C:\\COMSOL\\file.mph");
exit();

saveApplicationCopyAs boolean saveApplicationCopyAs() Saves a copy of the applica
When running the method
user is presented with a file
browser dialog where they
select where to save the c
The method returns a boo
value where true indicates
successful save.

saveApplicationOnServe
r

saveApplicationOnServer(boolean
confirm)

Saves the application on se
The boolean argument
determines if the user is
prompted with a confirmat
dialog before saving.

saveApplicationOnServe
rAs

boolean saveApplicationOnServerAs() Saves the application on se
under a different name. (O
MPH file.) If the return valu
false then the user cancele
operation and the applicati
was not saved.

scenelight sceneLight(String graphicsName)
sceneLight(FormObject graphics)

Toggles scene light in the g
graphics object.

selectAll selectAll(String graphics)
selectAll(FormObject graphics)

Sets the selection to all ent
the given graphics object.

skybox skybox(String graphicsName)
skybox(FormObject graphics)

Adds visualization of the sk
used for realistic reflections
the given graphics object. T
method is run as a toggle a

transparency transparency(String graphicsName)
transparency(FormObject graphics)

Toggles transparency in the
graphics object.

zoomExtents zoomExtents(String graphicsName)
zoomExtents(FormObject graphics)

Makes the entire model vis
within the extent of the giv
graphics object.

NAME SYNTAX DESCRIPTION
 | 159

or
saveModel(model, "common:///file.mph");
exit();

This is useful in a COMSOL Server setting since using exit() in this way will free
up any licenses that are checked out.

Debug Methods

The debug method is used to display variable contents in the Debug Log window.

EXAMPLE CODE

The code below prints strings and doubles to the Debug Log window.
xcoords[i] = Math.cos(2.0*Math.PI*divid);
ycoords[i] = Math.sin(2.0*Math.PI*divid);
debugLog("These are component values for case 1:");
debugLog("x:");
debugLog(xcoords[i]);
debugLog("y:");
debugLog(ycoords[i]);

Note: As an alternative to debugLog, you can use the message method to send
display strings to the Message window in COMSOL Desktop or to a Message Log
object in an app.

Methods for External C Libraries

The methods for external C libraries are used for linking Application Builder
methods with compiled C-code.

NAME SYNTAX DESCRIPTION

clearDebugLog clearDebugLog() Clears the Debug Log window.

debugLog debugLog(arg) Prints the value of arg to the
Debug Log window. The input
argument arg can be a scalar, 1D
array, or 2D array of the types
string, double, int, or Boolean.
160 |

he
are
s the
od.

he
are
turns

s
l this

ibrary
EXTERNAL METHOD

For more information, see the Application Builder Reference Manual.

METHODS RETURNED BY THE EXTERNAL METHOD

The external method returns an object of type External with the following
methods:

NAME SYNTAX DESCRIPTION

external External external(String name) Returns an interface to an
external C (native) library given
by the name of the library
feature. The External class uses
the Java Native Interface (JNI)
framework.

NAME SYNTAX DESCRIPTION

invoke long invoke(String method, Object...
arguments)

Invokes the named native
method in the library with t
supplied arguments. Strings
converted to char *. Return
value returned by the meth

invokeWideString long invokeWideString(String method,
Object... arguments)

Invokes the named native
method in the library with t
supplied arguments. Strings
converted to wchar_t *. Re
the value returned by the
method.

close void close() Releases the library and free
resources. If you do not cal
method, it is automatically
invoked when the external l
is no longer needed.
 | 161

l to use
ess and
t level.
rom

cond
00. As
ases, the
y

econd

00) /

lStart
d
value for
between
00.

plicitly
gress
to

er-
vel. By
level, but
 active
l has

t been
 it is the

,

atest
string (if
set).
Progress Methods

Progress methods are used to create and update progress information in the Status
bar, in a progress form object, and in a dialog.

NAME SYNTAX DESCRIPTION

setProgressInterval setProgressInterval(String message,
int intervalStart, int intervalEnd)

Sets a progress interva
for the top-level progr
display message at tha
The top level will go f
intervalStart to
intervalEnd as the se
level goes from 0 to 1
the second level incre
top level is increased b
(intervalEnd -

intervalStart) * (s

level progress (0-1

100).

The value for interva
must be between 0 an
intervalEnd, and the
intervalEnd must be
intervalStart and 1

Calling this method im
resets any manual pro
previously set by calls
setProgress().

setProgress setProgress(int value, String message) Sets a value for the us
controlled progress le
default, this is the top
if a progress interval is
(setProgressInterva
been called and
resetProgress has no
called after that), then
second level.

setProgress setProgress(int value) Same as
setProgress(message

value), but uses the l
message or an empty
no message has been
162 |

levels
 0 and
pty

og with
ress bar,
ancel

og with
ress bar,
 optional

g with a
del

g with a
optional

g with a
l model

wo levels
n. Two
d if
.

og with
ss, one
sibly a
vels can
rogress

hown
resetProgress resetProgress() Removes all progress
and resets progress to
the message to an em
string.

showIndeterminateProgr
ess

showIndeterminateProgress(String
message)

Shows a progress dial
an indeterminate prog
given message and a c
button.

showIndeterminateProgr
ess

showIndeterminateProgress(String
message, boolean cancelButton)

Shows a progress dial
an indeterminate prog
given message and an
cancel button.

showProgress showProgress() Shows a progress dialo
cancel button. No mo
progress is included.

showProgress showProgress(boolean modelProgress) Shows a progress dialo
cancel button and an
model progress.

showProgress showProgress(boolean modelProgress,
boolean addSecondLevel)

Shows a progress dialo
cancel button, optiona
progress, and one or t
of progress informatio
levels can only be use
modelProgress is true

showProgress showProgress(boolean modelProgress,
boolean addSecondLevel, boolean
cancelButton)

Shows a progress dial
optional model progre
or two levels, and pos
cancel button. Two le
only be used if modelP
is true.

closeProgress closeProgress() Closes the currently s
progress dialog.

NAME SYNTAX DESCRIPTION
 | 163

e given
ect name
 to
d with
 as
 or a
ontext
d was

progress
the given

iven
ect name
d the
essage.
e
. The
l can be
ute path,
ssbar1,
the
e

progress
the given
e
r
ss.

es not
essage.
EXAMPLE CODE

showProgress(true, true, true);
/* Opens a progress dialog with cancel button showing two levels of progress.
The values shown in progress dialog will be updated to match the two levels
of progress. */

setProgressInterval("Preparing application", 0, 20);
/* Sets the current progress scale to go from 0 to 20. This means that the
top-level progress will go from 0 to 20 when second-level progress goes from
0 to 100. */

startProgress startProgress(String name)
startProgress(FormObject progressBar)

Resets the value of th
progress bar form obj
to 0. The progress bar
control can be specifie
an absolute path, such
form1/progressbar1,
name relative to the c
from which the metho
called.

Nothing is done if no
bar corresponding to
name is found.

setProgressBar setProgressBar(String name, int
workDone, String message)
setProgressBar(FormObject progressBar,
int workDone, String message)

Sets the value of the g
progress bar form obj
in the range 0-100 an
associated progress m
Values out of range ar
converted to 0 or 100
progress bar to contro
specified with an absol
such as form1/progre
or a name relative to
context from which th
method was called.

Nothing is done if no
bar corresponding to
name is found, or if th
progress bar is used fo
showing model progre

setProgressBar setProgressBar(String name, int
workDone)
setProgressBar(FormObject progressBar,
int workDone)

Same as above, but do
update the progress m

NAME SYNTAX DESCRIPTION
164 |

setProgress(0, "Init step 1");
/* Sets the second-level progress to 0 and the second-level progress message
to "Init step 1". */

// do some work

setProgress(40);
/* Sets the second-level progress to 40, this causes the top-level progress
to be updated to 8 (40% of 20). */

// do some work

setProgress(80, "Init step 2");
/* Sets the second-level progress to 80 and the progress message to "Init
step 2". The top-level message is still "Preparing application" and top-
level progress is now 16. */

// do some work

setProgressInterval("Meshing", 20, 40);
/* Sets the top-level interval to 20 - 40 and the progress message to
"Meshing" at this point the value shown at the top-level will be 20. The
second-level progress is cleared when the top-level interval is changed. */

<call-meshing algorithm here>
/* The progress messages and values from the meshing algorithm are shown at
the second-level progress. The top-level progress message will be "Meshing",
but the top-level progress advances from 20 to 40 while second-level
progress advances from 0 to 100. */

setProgressInterval("Solving", 40, 100);
/* The top-level progress message is changed to "Solving" and its value to
40.

<call-solver>
/* Similar to meshing, the progress messages and values from the solver are
shown in the second-level progress bar and the top-level progress value goes
from 40 to 100 while the solver progress goes from 0 to 100. */

closeProgress();

Application Progress Information
Progress information can be displayed in three different ways: in the Status bar, in
a progress form object, and in a dialog. Application progress information is
controlled by the setProgress methods, which take as their input an integer
between 0 and 100 and an optional message. The integer represents how far the
displayed progress bar has progressed. If no message is supplied, the last message
provided is used. For example:

setProgress(10, "Computing data");
setProgress(25);
 | 165

This will keep Computing data as the progress message.
Use the setProgress method by itself if you want to display custom progress in
the task and status bar. Once you have done this, that progress bar will no longer
be updated by progress information from the COMSOL model, but will be
completely dependent on further calls to setProgress for changes in its value.
Precede it with a call to showProgress to also display the built-in progress dialog,
see below.
Note that progress information from the COMSOL model will not be shown in
between calls to setProgress. Progress is reset between method calls. If you want
to combine custom steps of progress in methods with built-in model progress,
then use setProgressInterval instead.
With setProgressInterval, you can control the top two levels of progress
information. The second level can be displayed in a progress dialog and a progress
bar form object, see the code segment below. The second progress level,
controlled by your own custom progress calculation, is connected to the first level
such that one interval at the top level corresponds to the entire second level. Thus
if the interval is 0–50, when the second level progress reaches 40, for example, the
first level will be set to 20 (=(40/100)*50).
Important uses of the method setProgressInterval are listed below:
• Combining calls to the COMSOL model so that you get continuous

progress going from 0–100.
• Computing several studies as well as evaluating several plots. Call

setProgressInterval before each call to the built-in methods with an
interval that approximates how much time each model computation takes.
For example:
setProgressInterval("Computing solution", 0, 80);
model.study("std1").run();
setProgressInterval("Plotting", 80, 100);
useGraphics(model.result("pg3"), "energy_response_plot/graphics1");

• Combining one or more calls to built-in COMSOL methods with custom
methods that in themselves take significant time. In this case, use
setProgressInterval as in the previous example, followed by your own
custom code with appropriate calls to setProgress. These calls should run
from 0 to 100 as they are controlling the second progress level. For example:
setProgressInterval("Computing solution", 0, 60);
model.study("std1").run();
setProgressInterval("Working", 60, 80);
setProgress(0, "Specific message about what I'm doing");
// ...
// Code that does something
// ...
setProgress(60);
166 |

If you, in a running application, wish to no longer use progress intervals, call
resetProgress to return to the original state. This will also reset progress to 0.

The Progress Dialog
A progress dialog can be used to display application progress as described in the
previous section. The progress dialog has the following options:
• Whether to show model progress or not. When off, no progress from the

model part of the application is forwarded to the progress dialog.
• Whether to show one or two progress levels in the progress dialog.
• Whether to include a cancel button. Cancel also works for user-defined

methods, as it halts execution when the next line in the method is reached.

Use the showProgress methods to enable or disable these options. To close the
progress dialog, use the closeProgress method.
You can show a progress dialog with an indeterminate progress bar that keeps
spinning until you close the progress dialog. Only one progress dialog can be
shown at a time. Use the showIndeterminateProgress methods to display this
progress dialog.

The Progress Bar Form Object
The Progress Bar form object can either show overall application progress
information or customized partial progress information. If you have selected the
Include model progress checkbox in the Settings window of the Main Window node,
then the overall application progress information becomes available.
When Include model progress is selected, the progress bar will show the same
information as the progress dialog. That is, one or two levels of progress
information and a cancel button, depending on the settings in the form object.
When Include model progress is cleared, you control the progress bar through the
setProgressBar methods. These take the path name of the progress bar form
object, for example, main/progressbar1.
 | 167

e as a
ing

 for

e as a
, and
the

d
from
onds

e
The
ime
 a
d

turns
tes,
 X hr

s the
and
 Y

rns
 also
 units

onds
,
Date and Time Methods

The date and time methods are used to retrieve the current date and time as well
as information on computation times.

NAME SYNTAX DESCRIPTION

currentDate String currentDate() Returns the current dat
string (formatted accord
to the server’s defaults)
the current date.

currentTime String currentTime() Returns the current tim
string (not including date
formatted according to
server defaults).

formattedDateTime String dateString =
formattedDateTime(long epochInMs)

Returns a formatted an
readable date and time
an input given as millisec
since the epoch.

formattedTime String formattedTime(long timeInMs,
String format)

Returns a formatted tim
using the given format.
format can either be a t
unit or a text describing
longer format. Supporte
formats are:

'hr:min:sec', which re
the time in hours, minu
and seconds in the form
Y min Z sec.

'h:min:s', which return
time in hours, minutes,
seconds in the form X h
min Z s.

'detailed', which retu
the time in seconds and
includes more readable
for longer times.

sleep sleep(long timeInMs) Sleep for the specified
number of milliseconds.

timeStamp long timeStamp() Current time in millisec
since midnight, January 1
1970 UTC.
168 |

ing

e
an be

onTi

n

 time.

amp

 long

tation
t. The
ime

y

 time

 h Y

e in
onds
 Z s.

me in
es

t is
t is
t

by

me("m
getExpectedComputa
tionTime

model.setExpectedComputationTime(String
format)

Returns a string describ
the approximate
computation time of th
application. The string c
altered by the method
setExpectedComputati

me.

setLastComputation
Time

model.setLastComputationTime(long time) Set the last computatio
time, overwriting the
automatically generated

You can use the timeSt
method to record time
differences and set the
measured time in ms (a
integer).

getLastComputation
Time

String model.getLastComputationTime
(String format)

Returns the last compu
time in the given forma
format can either be a t
unit or text describing a
longer format. Currentl
supported formats are:

hr:min:sec Returns the
in hours, minutes, and
seconds in the format X
min Z sec.

h:min:s Returns the tim
hours, minutes, and sec
in the format X h Y min

detailed Returns the ti
seconds and also includ
more readable units for
longer times. This forma
localized and the outpu
translated to the curren
language setting.

For example, you can
retrieve the time in ms
using
getLastComputationTi

s").

NAME SYNTAX DESCRIPTION
 | 169

EXAMPLE CODE

The following code overrides the built-in computation time that is available in the
information nodes in the model tree.

long t0 = timeStamp(); // initialize record of computation time

// code and computations

model.setLastComputationTime(timeStamp()-t0); // record computation time

If it is possible to give a rough estimate of the computation time based on the
given inputs of an application, you can update the expected computation time and
display it in an information card stack or a text object. Assume that there is an
integer input called objects that controls the number of objects in a geometry
array and that the computation roughly increases linearly with this number. The
following code adjusts the expected computation time accordingly.

// Number of minutes of computation time per object
int minutes = objects*2.1;
model.setExpectedComputationTime("About " + minutes + " minutes");

Sleep
The code below makes the application idle for 1000 ms.

long delay = 1000;
sleep(delay);

This technique can be used to display graphics in a sequence.
For more information on information nodes and information cards, as well as the
sleep method, see the book Introduction to the Application Builder.
170 |

 a
ue, all

e
rue'
s

e
rue'

s

 a

e

e

a

 an

e
Conversion Methods

Conversion methods are used to convert between the different data types
Booleans, integers, doubles, strings, and arrays. These methods are shorthand
versions of conversion methods in the standard Java libraries.

NAME SYNTAX DESCRIPTION

toBoolean boolean toBoolean(String str) Converts the given string to
Boolean. ('true' returns tr
other strings return false).

toBoolean boolean [] toBoolean(String[]... strs) Converts all the strings in th
given array to Booleans ('t
returns true, all other string
return false) and returns a
Boolean array.

toBoolean boolean [][] toBoolean(String[][]... strs) Converts all the strings in th
given matrix to Booleans ('t
returns true, all other string
return false) and returns a
Boolean matrix.

toDouble double toDouble(String str) Converts the given string to
double.

toDouble double[] toDouble(String... strs) Converts all the strings in th
given array to doubles and
returns a double array.

toDouble double[][] toDouble(String[]... strs) Converts all the strings in th
given matrix to doubles and
returns a double matrix.

toDouble double toDouble(float flt) Converts the given float to
double.

toDouble double[] toDouble(float... flt) Converts all the floats in the
given array to doubles and
returns a double array.

toDouble double[][] toDouble(float[]... flt) Converts all the floats in the
given matrix to doubles and
returns a double matrix.

toInt int toInt(String str) Converts the given string to
integer.

toInt int[] toInt(String... strs) Converts all the strings in th
given array to integers and
returns an integer array.
 | 171

e

to a

to a

 to a

to a
r of

to a
r of
zeros
ove is
001
 3 will
0.

to a
t
as
 the
tring

the
turns

the

the
turns

the
toInt int[][] toInt(String[]... strs) Converts all the strings in th
given matrix to integers and
returns an integer matrix.

toString String toString(int value) Converts the given integer
string.

toString String toString(double value) Converts the given double
string.

toString String toString(boolean value) Converts the given Boolean
string.

toString String toString(double value, int digits) Converts the given double
string with the given numbe
significant digits.

toString String toString(double value, int
digits,boolean remove)

Converts the given double
string with the given numbe
significant digits with trailing
removed if the Boolean rem
true. For example, 10.0000
with number of digits set to
return 10 rather than 10.00

toString String toString(double value, String format) Converts the given double
string using the given forma
specifier, which is the same
java.util.Formatter. See
corresponding Java format s
documentation for more
information.

toString String[] toString(double[] darray) Converts all the doubles in
given array to strings and re
a string array.

toString String[][] toString(double[][] dmatrix) Converts all the doubles in
given matrix to strings and
returns a string matrix.

toString String[] toString(int[] iarray) Converts all the integers in
given array to strings and re
a string array.

toString String[][] toString(int[][] imatrix) Converts all the integers in
given matrix to strings and
returns a string matrix.

NAME SYNTAX DESCRIPTION
172 |

 the
turns

 the

atrix.
been
certain
 in a

atrix.

ified

atrix.

matrix
ing

artRow

matrix
ing

artRow
Array Methods

Array methods are used to add, remove, insert, and extract subsets of 1D and 2D
arrays.

toString String[] toString(boolean[] barray) Converts all the Booleans in
given array to strings and re
a string array.

toString String[][] toString(boolean[][] bmatrix) Converts all the Booleans in
given matrix to strings and
returns a string matrix.

NAME SYNTAX DESCRIPTION

getColumn String[] getColumn(String[][] matrix, int
column)

Returns a String[] for a
specified column in the m
Useful when values have
read from a file and only
columns should be shown
table.

getColumn double[] getColumn(double[][] matrix, int
column)

Returns a double[] for a
specified column in the m

getColumn int[] getColumn(int[][] matrix, int column) Returns an int[] for a spec
column in the matrix.

getColumn boolean[] getColumn(boolean[][] matrix, int
column)

Returns a boolean[] for a
specified column in the m

getSubMatrix String[][] getSubMatrix(String[][] matrix,
int startCol, int endCol, int startRow, int
endRow)

Returns a rectangular sub
of the input matrix spann
columns from startCol to
endCol, and rows from st
to endRow.

getSubMatrix double[][] getSubMatrix(double[][] matrix,
int startCol,int endCol, int startRow, int
endRow)

Returns a rectangular sub
of the input matrix spann
columns from startCol to
endCol, and rows from st
to endRow.

NAME SYNTAX DESCRIPTION
 | 173

matrix
ing

artRow

matrix
ing

artRow

tion
rns the

tion
rns the

tion
rns the

tion
rns the

y at
x array
 array.

y at
x array
 array.

y at
x array
 array.

y at
x array
 array.

d of an
anded

d of an
anded
getSubMatrix int[][] getSubMatrix(int[][] matrix, int
startCol, int endCol, int startRow, int
endRow)

Returns a rectangular sub
of the input matrix spann
columns from startCol to
endCol, and rows from st
to endRow.

getSubMatrix boolean[][] getSubMatrix(boolean[][] matrix,
int startCol, int endCol, int startRow, int
endRow)

Returns a rectangular sub
of the input matrix spann
columns from startCol to
endCol, and rows from st
to endRow.

insert String[] insert(String[] array, String value,
int index)

Inserts an element at posi
index in an array and retu
expanded array.

insert double[] insert(double[] array, double value,
int index)

Inserts an element at posi
index in an array and retu
expanded array.

insert int[] insert(int[] array, int value, int
index)

Inserts an element at posi
index in an array and retu
expanded array.

insert boolean[] insert(boolean[] array, boolean
value, int index)

Inserts an element at posi
index in an array and retu
expanded array.

insert String[] insert(String[] array, String[]
value, int[] index)

Inserts elements in an arra
positions given by the inde
and returns the expanded

insert double[] insert(double[] array, double[]
value, int[] index)

Inserts elements in an arra
positions given by the inde
and returns the expanded

insert int[] insert(int[] array, int[] value, int[]
index)

Inserts elements in an arra
positions given by the inde
and returns the expanded

insert boolean[] insert(boolean[] array, boolean[]
value, int[] index)

Inserts elements in an arra
positions given by the inde
and returns the expanded

append String[] append(String[] array, String value) Adds an element to the en
array and returns the exp
array.

append double[] append(double[] array, double value) Adds an element to the en
array and returns the exp
array.

NAME SYNTAX DESCRIPTION
174 |

d of an
anded

d of an
anded

 of an
anded

 of an
anded

 of an
anded

 of an
anded

 an
rtened

 an
rtened

 an
rtened

 an
rtened

n array
 array.

n array
 array.

n array
 array.

n array
 array.
append int[] append(int[] array, int value) Adds an element to the en
array and returns the exp
array.

append boolean[] append(boolean[] array, boolean
value)

Adds an element to the en
array and returns the exp
array.

append String[] append(String[] array, String[]
value)

Adds elements to the end
array and returns the exp
array.

append double[] append(double[] array, double[]
value)

Adds elements to the end
array and returns the exp
array.

append int[] append(int[] array, int[] value) Adds elements to the end
array and returns the exp
array.

append boolean[] append(boolean[] array, boolean[]
value)

Adds elements to the end
array and returns the exp
array.

remove String[] remove(String[] array, int index) Removes an element from
array and returns the sho
array.

remove double[] remove(double[] array, int index) Removes an element from
array and returns the sho
array.

remove int[] remove(int[] array, int index) Removes an element from
array and returns the sho
array.

remove boolean[] remove(boolean[] array, int index) Removes an element from
array and returns the sho
array.

remove String[] remove(String[] array, int[] index) Removes elements from a
and returns the shortened

remove double[] remove(double[] array, int[] index) Removes elements from a
and returns the shortened

remove int[] remove(int[] array, int[] index) Removes elements from a
and returns the shortened

remove boolean[] remove(boolean[] array, int[]
index)

Removes elements from a
and returns the shortened

NAME SYNTAX DESCRIPTION
 | 175

gular

gular

gular

gular

ar 2D
anded

ar 2D
anded

ar 2D
anded

ar 2D
anded

ngular
array.

ngular
array.

ngular
array.

ngular
array.

gular
array.

gular
array.

gular
array.
insertRow String[][] insertRow(String[][] matrix,
String[] value, int rowIndex)

Inserts a row into a rectan
2D array and returns the
expanded array.

insertRow double[][] insertRow(double[][] matrix,
double[] value, int rowIndex)

Inserts a row into a rectan
2D array and returns the
expanded array.

insertRow int[][] insertRow(int[][] matrix, int[]
value, int rowIndex)

Inserts a row into a rectan
2D array and returns the
expanded array.

insertRow boolean[][] insertRow(boolean[][] matrix,
boolean[] value, int rowIndex)

Inserts a row into a rectan
2D array and returns the
expanded array.

insertRow String[][] insertRow(String[][] matrix,
String[][] value, int[] rowIndex)

Adds rows to a rectangul
array and returns the exp
array.

insertRow double[][] insertRow(double[][] matrix,
double[][] value, int[] rowIndex)

Adds rows to a rectangul
array and returns the exp
array.

insertRow int[][] insertRow(int[][] matrix, int[][]
value, int[] rowIndex)

Adds rows to a rectangul
array and returns the exp
array.

insertRow boolean[][] insertRow(boolean[][] matrix,
boolean[][] value, int[] rowIndex)

Adds rows to a rectangul
array and returns the exp
array.

replaceRow String[][] replaceRow(String[][] matrix,
String[] value, int rowIndex)

Replaces a row in a recta
2D array and returns the

replaceRow double[][] replaceRow(double[][] matrix,
double[] value, int rowIndex)

Replaces a row in a recta
2D array and returns the

replaceRow int[][] replaceRow(int[][] matrix, int[]
value, int rowIndex)

Replaces a row in a recta
2D array and returns the

replaceRow boolean[][] replaceRow(boolean[][] matrix,
boolean[] value, int rowIndex)

Replaces a row in a recta
2D array and returns the

replaceRow String[][] replaceRow(String[][] matrix,
String[][] value, int[] rowIndex)

Replaces rows in a rectan
2D array and returns the

replaceRow double[][] replaceRow(double[][] matrix,
double[][] value, int[] rowIndex)

Replaces rows in a rectan
2D array and returns the

replaceRow int[][] replaceRow(int[][] matrix, int[][]
value, int[] rowIndex)

Replaces rows in a rectan
2D array and returns the

NAME SYNTAX DESCRIPTION
176 |

gular
array.

f a
returns

f a
returns

f a
returns

f a
returns

a
returns

a
returns

a
returns

a
returns

 array
ray.

 array
ray.

 array
ray.

 array
ray.

 array
rray.

 array
rray.
replaceRow boolean[][] replaceRow(boolean[][] matrix,
boolean[][] value, int[] rowIndex)

Replaces rows in a rectan
2D array and returns the

appendRow String[][] appendRow(String[][] matrix,
String[] value)

Adds a row to the end o
rectangular 2D array and
the expanded array.

appendRow double[][] appendRow(double[][] matrix,
double[] value)

Adds a row to the end o
rectangular 2D array and
the expanded array.

appendRow int[][] appendRow(int[][] matrix, int[]
value)

Adds a row to the end o
rectangular 2D array and
the expanded array.

appendRow boolean[][] appendRow(boolean[][] matrix,
boolean[] value)

Adds a row to the end o
rectangular 2D array and
the expanded array.

appendRow String[][] appendRow(String[][] matrix,
String[][] value)

Adds rows to the end of
rectangular 2D array and
the expanded array.

appendRow double[][] appendRow(double[][] matrix,
double[][] value)

Adds rows to the end of
rectangular 2D array and
the expanded array.

appendRow int[][] appendRow(int[][] matrix, int[][]
value)

Adds rows to the end of
rectangular 2D array and
the expanded array.

appendRow boolean[][] appendRow(boolean[][] matrix,
boolean[][] value)

Adds rows to the end of
rectangular 2D array and
the expanded array.

removeRow String[][] removeRow(String[][] matrix, int
rowIndex)

Removes a row from a 2D
and returns the smaller ar

removeRow double[][] removeRow(double[][] matrix, int
rowIndex)

Removes a row from a 2D
and returns the smaller ar

removeRow int[][] removeRow(int[][] matrix, int
rowIndex)

Removes a row from a 2D
and returns the smaller ar

removeRow boolean[][] removeRow(boolean[][] matrix, int
rowIndex)

Removes a row from a 2D
and returns the smaller ar

removeRow String[][] removeRow(String[][] matrix, int[]
rowIndex)

Removes rows from a 2D
and returns the reduced a

removeRow double[][] removeRow(double[][] matrix, int[]
rowIndex)

Removes rows from a 2D
and returns the reduced a

NAME SYNTAX DESCRIPTION
 | 177

 array
rray.

 array
rray.

angular

angular

angular

angular

gular

gular

gular

gular

returns

returns

returns
removeRow int[][] removeRow(int[][] matrix, int[]
rowIndex)

Removes rows from a 2D
and returns the reduced a

removeRow boolean[][] removeRow(boolean[][] matrix,
int[] rowIndex)

Removes rows from a 2D
and returns the reduced a

insertColumn String[][] insertColumn(String[][] matrix,
String[] value, int columnIndex)

Adds a column into a rect
2D array and returns the
expanded array.

insertColumn double[][] insertColumn(double[][] matrix,
double[] value, int columnIndex)

Adds a column into a rect
2D array and returns the
expanded array.

insertColumn int[][] insertColumn(int[][] matrix, int[]
value, int columnIndex)

Adds a column into a rect
2D array and returns the
expanded array.

insertColumn boolean[][] insertColumn(boolean[][] matrix,
boolean[] value, int columnIndex)

Adds a column into a rect
2D array and returns the
expanded array.

insertColumn String[][] insertColumn(String[][] matrix,
String[][] value, int[] columnIndex)

Adds columns to a rectan
2D array and returns the
expanded array.

insertColumn double[][] insertColumn(double[][] matrix,
double[][] value, int[] columnIndex)

Adds columns to a rectan
2D array and returns the
expanded array.

insertColumn int[][] insertColumn(int[][] matrix, int[][]
value, int[] columnIndex)

Adds columns to a rectan
2D array and returns the
expanded array.

insertColumn boolean[][] insertColumn(boolean[][] matrix,
boolean[][] value, int[] columnIndex)

Adds columns to a rectan
2D array and returns the
expanded array.

replaceColumn String[][] replaceColumn(String[][] matrix,
String[] value, int columnIndex)

Replaces a column in a
rectangular 2D array and
the array.

replaceColumn double[][] replaceColumn(double[][] matrix,
double[] value, int columnIndex)

Replaces a column in a
rectangular 2D array and
the array.

replaceColumn int[][] replaceColumn(int[][] matrix, int[]
value, int columnIndex)

Replaces a column in a
rectangular 2D array and
the array.

NAME SYNTAX DESCRIPTION
178 |

returns

tangular
array.

tangular
array.

tangular
array.

tangular
array.

 of a
returns

 of a
returns

 of a
returns

 of a
returns

 of a
returns

 of a
returns

 of a
returns

 of a
returns

a
returns
replaceColumn boolean[][] replaceColumn(boolean[][] matrix,
boolean[] value, int columnIndex)

Replaces a column in a
rectangular 2D array and
the array.

replaceColumn String[][] replaceColumn(String[][] matrix,
String[][] value, int[] columnIndex)

Replaces columns in a rec
2D array and returns the

replaceColumn double[][] replaceColumn(double[][] matrix,
double[][] value, int[] columnIndex)

Replaces columns in a rec
2D array and returns the

replaceColumn int[][] replaceColumn(int[][] matrix, int[][]
value, int[] columnIndex)

Replaces columns in a rec
2D array and returns the

replaceColumn boolean[][] replaceColumn(boolean[][] matrix,
boolean[][] value, int[] columnIndex)

Replaces columns in a rec
2D array and returns the

appendColumn String[][] appendColumn(String[][] matrix,
String[] value)

Adds a column at the end
rectangular 2D array and
the expanded array.

appendColumn double[][] appendColumn(double[][] matrix,
double[] value)

Adds a column at the end
rectangular 2D array and
the expanded array.

appendColumn int[][] appendColumn(int[][] matrix, int[]
value)

Adds a column at the end
rectangular 2D array and
the expanded array.

appendColumn boolean[][] appendColumn(boolean[][] matrix,
boolean[] value)

Adds a column at the end
rectangular 2D array and
the expanded array.

appendColumn String[][] appendColumn(String[][] matrix,
String[][] value)

Adds columns to the end
rectangular 2D array and
the expanded array.

appendColumn double[][] appendColumn(double[][] matrix,
double[][] value)

Adds columns to the end
rectangular 2D array and
the expanded array.

appendColumn int[][] appendColumn(int[][] matrix, int[][]
value)

Adds columns to the end
rectangular 2D array and
the expanded array.

appendColumn boolean[][] appendColumn(boolean[][] matrix,
boolean[][] value)

Adds columns to the end
rectangular 2D array and
the expanded array.

removeColumn String[][] removeColumn(String[][] matrix,
int columnIndex)

Removes a column from
rectangular 2D array and
the smaller array.

NAME SYNTAX DESCRIPTION
 | 179

a
returns

a
returns

a
returns

returns

returns

returns

returns

ws and
 integer

ws and
 integer

ws and
 integer

ws and
 integer

a

a
removeColumn double[][] removeColumn(double[][] matrix,
int columnIndex)

Removes a column from
rectangular 2D array and
the smaller array.

removeColumn int[][] removeColumn(int[][] matrix, int
columnIndex)

Removes a column from
rectangular 2D array and
the smaller array.

removeColumn boolean[][] removeColumn(boolean[][] matrix,
int columnIndex)

Removes a column from
rectangular 2D array and
the smaller array.

removeColumn String[][] removeColumn(String[][] matrix,
int[] columnIndex)

Removes columns from a
rectangular 2D array and
the reduced array.

removeColumn double[][] removeColumn(double[][] matrix,
int[] columnIndex)

Removes columns from a
rectangular 2D array and
the reduced array.

removeColumn int[][] removeColumn(int[][] matrix, int[]
columnIndex)

Removes columns from a
rectangular 2D array and
the reduced array.

removeColumn boolean[][] removeColumn(boolean[][] matrix,
int[] columnIndex)

Removes columns from a
rectangular 2D array and
the reduced array.

matrixSize int[] matrixSize(String[][] matrix) Returns the number of ro
columns of a matrix as an
array of length 2.

matrixSize int[] matrixSize(double[][] matrix) Returns the number of ro
columns of a matrix as an
array of length 2.

matrixSize int[] matrixSize(int[][] matrix) Returns the number of ro
columns of a matrix as an
array of length 2.

matrixSize int[] matrixSize(boolean[][] matrix) Returns the number of ro
columns of a matrix as an
array of length 2.

transpose String[][] transpose(String[][] matrix) Returns the transpose of
matrix.

transpose double[][] transpose(double[][] matrix) Returns the transpose of
matrix.

NAME SYNTAX DESCRIPTION
180 |

a

a

args-
string

ng
as a
e
en
 and

ing
n

dices
 strs.

st
r -1 if

r that

ing
is

ring

 has
ent.

y
paces.
String Methods

String methods are used to process string variables and string arrays.

transpose int[][] transpose(int[][] matrix) Returns the transpose of
matrix.

transpose boolean[][] transpose(boolean[][] matrix) Returns the transpose of
matrix.

NAME SYNTAX DESCRIPTION

concat String concat(String separator, String ...
strs)

Concatenates the given var
array of strings into a single
using the given separator.

concat String[] concat(String colSepar, String
rowSepar, String[]... matr)

Concatenates the given stri
matrix (which can be given
varargs of rows) into a singl
string. Puts colSepar betwe
values of columns of a row,
rowSepar between rows.

contains boolean contains(String[] strs, String str) Returns true if the given str
array strs contains the give
string str.

find int[] find(String[] strs, String str) Returns an array with the in
to all occurrences of str in

findIn int findIn(String[] strs, String str) Returns the index to the fir
occurrence of str in strs o
no match.

findIn int findIn(String str, String toFind) Returns the first index of st
is the start of the substring
toFind. If there is no substr
matching toFind in str, -1
returned.

length int length(String str) Returns the length of the st
str.

replace String replace(String str, String orig,
String replacement)

Returns a string where orig
been replaced by replacem

split String[] split(String str) Returns an array of strings b
splitting the given string at s

NAME SYNTAX DESCRIPTION
 | 181

y
he

 given

ith
n

 array

gs.

string

s

 array
e
bles.

so be
s

 array
e
gers.

so be
s
Collection Methods

Collection methods are used to copy, compare, sort, and merge variables and
arrays.

split String[] split(String str, String separator) Returns an array of strings b
splitting the given string at t
given separator.

substring String substring(String str, int start, int
length)

Returns a substring with the
length starting at the given
position.

unique String[] unique(String[] strs) Returns an array of strings w
the unique values in the give
array of strings.

NAME SYNTAX DESCRIPTION

copy String[] copy(String... toCopy) Returns a copy of the given
of strings, which can also be
specified as a varargs of strin

copy String[][] copy(String[]... toCopy) Returns a copy of the given
matrix, which can also be
specified as a varargs of row
(string arrays).

copy double[] copy(double... toCopy) Returns a copy of the given
of doubles, which can also b
specified as a varargs of dou

copy double[][] copy(double[]... toCopy) Returns a copy of the given
double matrix, which can al
specified as a varargs of row
(double arrays).

copy int[] copy(int... toCopy) Returns a copy of the given
of integers, which can also b
specified as a varargs of inte

copy int[][] copy(int[]... toCopy) Returns a copy of the given
integer matrix, which can al
specified as a varargs of row
(integer arrays).

NAME SYNTAX DESCRIPTION
182 |

 array
 be
leans.

lso

rows

the
ey

the
they

 the
ey

 the
they

tive
in
((a -
er of
lue).

efault
001.

rs (~
s in
rns

 and
mber

efault
001.
copy boolean[] copy(boolean... toCopy) Returns a copy of the given
of booleans, which can also
specified as a varargs of boo

copy boolean[][] copy(boolean[]... toCopy) Returns a copy of the given
boolean matrix, which can a
be specified as a varargs of
(boolean arrays).

equals boolean equals(String[] str1, String[] str2) Returns true if all strings in
given array are equal and th
have the same number of
elements.

equals boolean equals(String[][] matr1, String[][]
matr2)

Returns true if all strings in
given matrix are equal and
have the same number of
elements.

equals boolean equals(int[] ints1, int[] ints2) Returns true if all integers in
given array are equal and th
have the same number of
elements.

equals boolean equals(int[][] ints1, int[][] ints2) Returns true if all integers in
given matrix are equal and
have the same number of
elements.

equals boolean equals(double dl1, double dl2, double
relErrorTolerance)

Compares whether the rela
error of two doubles is with
allowed tolerance using abs
b) / b), where b is the larg
the doubles (by absolute va

equals boolean equals(double dl1, double dl2) Same as above, but uses a d
relErrorTolerance of 0.0

equals boolean equals(double[] dbls1, double[]
dbls2, double relErrorTolerance)

Compares the relative erro
abs((a - b) / b) of element
the arrays pairwise and retu
true if all relative errors are
below relErrorTolerance
the arrays have the same nu
of elements.

equals boolean equals(double[] dbls1, double[]
dbls2)

Same as above, but uses a d
relErrorTolerance of 0.0

NAME SYNTAX DESCRIPTION
 | 183

rs (~
ts in
turns

and

efault
001.

gs.
in

gers.
in

bles.
in

ted
p to
s

orted
p to
s

orted
p to
s

ith all
en
equals boolean equals(double[][] dbls1, double[][]
dbls2, double relErrorTolerance)

Compares the relative erro
abs((a - b) / b) of elemen
the matrices pairwise and re
true if all relative errors are
below relErrorTolerance
the matrices have the same
number of elements.

equals boolean equals(double[][] dbls1, double[][]
dbls2)

Same as above, but uses a d
relErrorTolerance of 0.0

sort sort(String[] strs) Sorts the given array of strin
NOTE: The array is sorted
place.

sort sort(int[] ints) Sorts the given array of inte
NOTE: The array is sorted
place.

sort sort(double[] doubles) Sorts the given array of dou
NOTE: The array is sorted
place.

sort sort(String[][] strs) Sorts the given 2D array of
strings. The columns are sor
by their row values from to
bottom. NOTE: The array i
sorted in place.

sort sort(int[][] ints) Sorts the given 2D array of
integers. The columns are s
by their row values from to
bottom. NOTE: The array i
sorted in place.

sort sort(double[][] doubles) Sorts the given 2D array of
doubles. The columns are s
by their row values from to
bottom. NOTE: The array i
sorted in place.

merge merge(String[]... toMerge) Returns an array of strings w
strings merged from the giv
arrays.

NAME SYNTAX DESCRIPTION
184 |

 with
 two

 with
 two

r

Model Builder Methods for Use in Add-ins

For writing add-in method code that operates on the current component, current
mesh, current physics, and so on, use the methods in the table below.

These methods return the corresponding entity such that the method code in an
add-in can operate on it. When called from an application a method in this

merge merge(int[]... toMerge) Returns an array of integers
all integers merged from the
given arrays.

merge merge(double[]... toMerge) Returns an array of doubles
all doubles merged from the
given arrays.

NAME SYNTAX DESCRIPTION

getCurrentComponent getCurrentComponent() Returns an object of the type
ModelNode for the current
component.

getCurrentMesh getCurrentMesh() Returns an object of the type
MeshSequence for the current
mesh.

getCurrentNode getCurrentNode() Returns an object of the type
ModelEntity for the current
component.

getCurrentPhysics getCurrentPhysics() Returns an object of the type
Physics for the current physics
interface.

getCurrentPlotGroup getCurrentPlotGroup() Returns an object of the type
ResultFeature for the current
component.

getCurrentStudy getCurrentStudy() Returns an object of the type
Study for the current
component.

selectNode selectNode(ModelEntity entity) Selects a model tree node and
displays its Settings window afte
the execution of a method from
the Model Builder.

NAME SYNTAX DESCRIPTION
 | 185

h

e

ll.
category returns null. Also, null is returned if no entity of the corresponding type
exists such that nothing is current.
General utility methods for writing methods for add-ins are listed in the table
below.

To learn more about using these methods you can review the Application Builder
settings for one of the built-in add-ins by opening the corresponding MPH file.
In a typical Windows® installation the built-in add-in library is located at

C:\Program Files\COMSOL\COMSOL64\COMSOL_Multiphysics\addins

NAME SYNTAX DESCRIPTION

createAddinForm FormFeature
createAddinForm(String tag,
String definition)

Creates a Settings Form node
with the given tag based on the
Form Definition node with the
given name definition. The
Form Definition must be
configured to show as Settings
form.

createAddinMethodCall MethodCallFeature
createAddinMethodCall(String
tag, String definition)

Creates a Method Call node wit
the given tag based on the
Method Definition node with th
given name definition. The
Method Definition must be
configured to use as Method ca
186 |

Programming Examples

This section contains examples that illustrate solving practical tasks by accessing
and manipulating the model object and using the built-in methods. Note that
additional examples of user-defined methods are provided in the Application
Libraries, accessible from the File menu.

Running the Examples

To run the code in the examples below, you can create a method for use in a model
or application. You can, for example, choose the option Blank Model in the Model
Wizard. To create a new method, go to the Developer tab in the Model Builder
and click the New Method button in the ribbon. In the Application Builder, paste
the code into the new method. Finally, you can run the code from the Developer
tab in the Model Builder by choosing the method you just created from the Run
Method toolbar menu. Alternatively, for running a single block of code, you can
use the Java Shell window, with the benefit of not having to switch between the
Model Builder and the Application Builder.

Visual ization Without Solution Data: Grid Datasets

The section “Results” on page 65 shows how to write code for various parts of the
Results node in the model tree, including Datasets, Tables, and Plot Groups. These
examples assume that you have solution data available from solving, for example,
a heat transfer, CFD, or structural mechanics problem.
You can also create visualizations without having associated solution data by either
using grid datasets or using low-level functionality only available through
methods. You can, for example, write code for plotting points and triangles
without any associated solution data. These techniques are useful when creating
applications where customized plot functionality is needed. This section shows
how to use grid datasets, and the next section shows how to use low-level
functionality.

PLOTTING A UNIT SPHERE USING A GRID DATASET

Grid datasets are available in the Model Builder and can be used in applications for
the sole purpose of visualization without any associated solution data. The code
 | 187

below creates a visualization of a unit sphere as an isosurface with the z-coordinate
as color data.

model.func().create("an1", "Analytic");
model.result().dataset().create("grid1", "Grid3D");

with(model.result().dataset("grid1"));
set("source", "data");
set("parmin1", -1);
set("parmax1", +1);
set("parmin2", -1);
set("parmax2", +1);
set("parmin3", -1);
set("parmax3", +1);
set("source", "function");
set("function", "an1");

endwith();

model.result().create("pg1", "PlotGroup3D");
model.result("pg1").create("iso1", "Isosurface");

with(model.result("pg1").feature("iso1"));
set("expr", "x^2+y^2+z^2-1");
set("levelmethod", "levels");
set("levels", 0.0);

endwith();

model.result("pg1").feature("iso1").create("col1", "Color");
with(model.result("pg1").feature("iso1").feature("col1"));

set("expr", "z");
endwith();

model.result("pg1").run();

Comments
If there is no solution-based Dataset available, then the Grid3D dataset needs to
have a Function as its Source. In the example above, a default Analytic function is
created with tag an1. A default Analytic function corresponds to f(x) = x, and its
only purpose is to give the grid dataset an evaluation context.
Note: The alternative is to solve a physics problem on a mesh and reference the
corresponding solution dataset. The method of referencing an arbitrary Function
makes it possible to create visualizations without solution data.

The source for the Grid3D dataset with tag grid1 is set to function, and finally, the
function property of grid1 is set to an1.
The Grid3D dataset has options for max and min parameter bounds, shown in the
example code above. An additional grid resolution option is not shown in this
example. However, you can learn about its syntax by using Record Code from the
Model Builder.
188 |

Visual ization of Points, Curves, and Surfaces

The following examples describe low-level functionality for visualization that is
only available from methods and is not associated with any solution data. For
visualization based on solution data, see the section “Results” on page 65.
The examples below illustrate using the following plot types:
• Point Data

• Line Data

• Surface Data

• Tube Data

• Arrow Data

• Annotation Data

Once created, the plot type names are visible in the Settings window of each plot.
In addition to the properties modified by the examples below, in the Settings
window of these plot types, you can see the number of geometric entities created,
such as number of points, line segments, and triangles. Just as for other types of
plots, you can also change the Range of color and data, as well as Coloring and Style.

POINTS IN 2D
The following code plots a circle of points using the Point Data plot type.

// A circle of points

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 2);
ResultFeature plot = pg.create("pt1", "PointData");
int N = 17;
double[][] p = new double[2][N];
double[] color = new double[N];
double R = 1000;
for (int i = 0; i < N; i++) {

double angle = i*2*Math.PI/N;
p[0][i] = R*Math.cos(angle);
p[1][i] = R*Math.sin(angle);
color[i] = p[1][i];

}
plot.set("pointdata", p)

.set("colordata", color)

.set("coloring", "colortable");
plot.run();

Comments
The first line

String pgTag = model.result().uniquetag("pg");
 | 189

creates a unique tag for the plot group to be created. This is useful if you intend
to add a varying number of plot groups in your model or application.
The line

ResultFeature pg = model.result().create(pgTag, 2);

creates a 2D Plot Group using the newly created unique tag. The second argument
to create defines the dimension of the plot group (2 for 2D, 3 for 3D, and so on).
The line

ResultFeature plot = pg.create("pt1", "PointData");

creates a plot of the type PointData. This plot type is only available through
methods.
The middle part of the example code generates the points making up the circle.
The point coordinates are stored in the 2-by-N array p, along with color data in the
array color of length N. The color data is, in this example, simply based on the
index of the points and is used to control the coloring of each point based on a
color table.
The last few lines populate the fields of the Point Data plot.

plot.set("pointdata", p)
.set("colordata", color)
.set("coloring", "colortable");

The property pointdata takes the 2-by-N array p as its input. The options for the
coloring property are colortable or uniform.
To learn about the syntax for the additional properties available for a Point Data
plot, you can run the above code in a blank model, browse to the Settings window
for the Point Data plot, click Record Code, and change the corresponding plot
properties. Note that the name of the plot type in the Settings window of the plot
in the model tree is Point Data.

TURNING OFF MODEL HISTORY

When using this type of low-level functionality for larger sets of data, such as a
large number of points, the stored model history may become excessively large.
Because of this, it is recommended to temporarily turn off model history recording
when using this type of functionality; see “Turning Off and Resetting The Model
History” on page 73.

POINTS IN 3D
The following code plots points in an undulating pattern in 3D using the Point
Data plot type.

// Undulating points in 3D
190 |

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("pt1", "PointData");
int N = 37;
double[][] p = new double[3][N];
double[] color = new double[N];
double R = 1000;
for (int i = 0; i < N; i++) {

double angle = i*2*Math.PI/N;
p[0][i] = R*Math.cos(angle);
p[1][i] = R*Math.sin(angle);
p[2][i] = R*Math.cos(3*angle);
color[i] = p[1][i];

}
plot.set("pointdata", p)

.set("colordata", color)

.set("coloring", "colortable")

.set("sphereradiusscale", 1);
plot.run();
selectNode(pg);

Comments
When plotting 3D points the line

model.result().create(pgTag, 3);

has the second argument set to 3 in order to create a 3D Plot Group. In 3D, the
point coordinates, p is a 3-by-N array.
The line

.set("sphereradiusscale", 1);

controls the radius of the sphere used to render each point.
To automatically display the newly created plot, the line

selectNode(pg);

is added last in the code segment.
To get a denser set of points, you can increase the integer N to, say, 370.

CURVE IN 3D
The following code plots line segments in the shape of a 3D helix using the Line
Data plot type.

// A 3D helix from line segments

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("line1", "LineData");
int N = 100;
double[][] p = new double[3][N];
int[][] t = new int[2][N-1];
for (int i = 0; i < N; i++) {

double s = 4*Math.PI*i/N;
 | 191

p[0][i] = s/5;
p[1][i] = Math.sin(s);
p[2][i] = Math.cos(s);
if (i > 0) {

t[0][i-1] = i-1;
t[1][i-1] = i;

}
}
plot.set("pointdata", p)

.set("elementdata", t);
plot.run();
selectNode(pg);

Comments
The line

ResultFeature plot = pg.create("line1", "LineData");

creates a plot of the type LineData. This plot type is only available through
methods. Just as for Point Data plots, the point coordinates p is a 3-by-N array. In
addition to pointdata, the LineData plot type takes elementdata as its input. In
the example, this is represented by the 2-by-N array t and contains indexes to the
columns of p, corresponding to the start and end points of the lines.
In a similar way, line segments can be plotted in 2D by creating a 2D plot group
and by letting the point coordinates be a 2-by-N array. See also “Points in 2D” on
page 189.

TRIANGULATED SHAPE IN 2D
The following code plots triangles in the shape of a 2D pentagon by using the
Surface Data plot type.

// A 2D pentagon from triangles

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 2);
ResultFeature plot = pg.create("surf1", "SurfaceData");
int N = 5;
double[][] p = new double[2][N+1];
int[][] t = new int[3][N];
p[0][0] = 0;
p[1][0] = 0;
for (int i = 0; i < N; i++) {

double angle = i*2*Math.PI/N;
p[0][i+1] = Math.cos(angle);
p[1][i+1] = Math.sin(angle);
t[0][i] = 0;
t[1][i] = i+1;
t[2][i] = 1+(i+1)%N;

}
plot.set("pointdata", p)

.set("elementdata", t);
plot.run();
192 |

selectNode(pg);

Comments
The line

ResultFeature plot = pg.create("surf1", "SurfaceData");

creates a plot of the type SurfaceData. This plot type is only available through
methods. Just as for 2D Point Data plots, the point coordinates p is a 2-by-N array.
In addition to pointdata, and similar to the LineData plot type, the SurfData plot
type takes elementdata as its input. In the example, this is represented by the 3-
by-N array t and contains indexes to the columns of p, corresponding to the
vertexes of the triangles. The ordering of the point indexes in the array t is not
important for 2D Surface Data plots.

FUNCTION SURFACE IN 3D
The following code plots triangles in the shape of a 3D rotationally symmetric
sinc-function surface by using the Surface Data plot type.

// A 3D sinc(r) function surface

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("surf1", "SurfaceData");
int Nx = 51;
int Ny = 51;
double[][] p = new double[3][Nx*Ny];
int[][] t = new int[3][2*(Nx-1)*(Ny-1)];
double[] color = new double[Nx*Ny];
int pos = 0;
for (int i = 0; i < Ny; i++) {

for (int j = 0; j < Nx; j++) {
double x = 20*(j-Nx/2)/Nx;
double y = 20*(i-Ny/2)/Ny;
double r = Math.sqrt(x*x+y*y);
double z = 4*((r == 0) ? 1 : (Math.sin(r)/r));
p[0][pos] = x;
p[1][pos] = y;
p[2][pos] = z;
color[pos] = z;
pos++;

}
}
pos = 0;
for (int i = 0; i < Ny-1; i++) {

for (int j = 0; j < Nx-1; j++) {
int p00 = Nx*i+j;
int p01 = Nx*i+j+1;
int p10 = Nx*(i+1)+j;
int p11 = Nx*(i+1)+j+1;
t[0][pos] = p00;
t[1][pos] = p01;
t[2][pos] = p11;
 | 193

pos++;
t[0][pos] = p00;
t[1][pos] = p11;
t[2][pos] = p10;
pos++;

}
}
plot.set("pointdata", p)

.set("elementdata", t)

.set("colordata", color)

.set("coloring", "colortable");
plot.run();
selectNode(pg);

Comments
This example is similar to “Triangulated Shape in 2D” on page 192, but with the
point array being a 3-by-N array for 3D surfaces. For Surface Data plots in 3D, the
ordering of the indexes in the elementdata array t matters. It determines the
direction of the surface normal, which is used for the lighting effect when using
Scene Light in the Graphics window. The surface normal of a triangle is determined
according to the “right-hand rule”. In mathematical terms, the surface normal is
defined as the vector product:

where the indexes into t represent the rows in one of the columns of t and p
represents a column in the array of points p.
To ensure that the lighting effect produces expected results, the triangle surface
normal directions need to consistently point in the same direction as the intended
overall surface normal direction. As an alternative to making sure that the indexes
come in the correct order, the normal direction may be given as an additional
input to a Surface Data plot. This is shown in the next example section, Sphere in
3D.

SPHERE IN 3D
The following code plots triangles in the shape of a 3D sphere by using the Surface
Data plot type.

// A coarse sphere with user-supplied normals

int Nx = 20;
int Ny = 10;
String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("surf1", "SurfaceData");
double[][] p = new double[3][Nx*Ny];
double[][] normals = new double[3][Nx*Ny];
int[][] t = new int[3][2*(Nx-1)*(Ny-1)];
double[] color = new double[Nx*Ny];

n p t 1[][] p t 0[][]–() p t 2[][] p t 0[][]–()×=
194 |

int pos = 0;
double R = 10;
for (int i = 0; i < Ny; i++) {

for (int j = 0; j < Nx; j++) {
double theta = Math.PI*i/(Ny-1);
double phi = 2*Math.PI*j/(Nx-1);
double x = R*Math.sin(theta)*Math.cos(phi);
double y = R*Math.sin(theta)*Math.sin(phi);
double z = R*Math.cos(theta);
p[0][pos] = x;
p[1][pos] = y;
p[2][pos] = z;
normals[0][pos] = x;
normals[1][pos] = y;
normals[2][pos] = z;
color[pos] = z;
pos++;

}
}
pos = 0;
for (int i = 0; i < Ny-1; i++) {

for (int j = 0; j < Nx-1; j++) {
int p00 = Nx*i+j;
int p01 = Nx*i+j+1;
int p10 = Nx*(i+1)+j;
int p11 = Nx*(i+1)+j+1;
t[0][pos] = p00;
t[1][pos] = p01;
t[2][pos] = p11;
pos++;
t[0][pos] = p00;
t[1][pos] = p11;
t[2][pos] = p10;
pos++;

}
}
plot.set("pointdata", p)

.set("elementdata", t)

.set("colordata", color)

.set("normaldata", normals)

.set("coloring", "colortable");
plot.run();
selectNode(pg);

Comments
In this example, information about the surface normal direction is not given
implicitly by the triangle orientation, but instead explicitly by the parameter
normaldata by means of the 3-by-Nx*Ny array normals containing surface normal
vectors at each point. The normal vectors do not need to be normalized; only the
direction is used. The coloring of the sphere is based on the z-coordinate of each
triangle point and is stored for each point in the 3-by-Nx*Ny array color.
 | 195

The sphere is constructed from a discrete grid defined in terms of spherical
coordinate angles, where each grid cell is divided into two triangles. The number
of triangles t is then given by 2*(Nx-1)*(Ny-1).

TUBE PLOT IN 3D, LOGARITHMIC SPIRAL

The following code plots a tube in 3D in the shape of a logarithmic spiral by using
the Tube Data plot type.

// A logarithmic tube spiral in 3D

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("tube1", "TubeData");
int N = 1000;
double[][] p = new double[3][N];
double[] radius = new double[N];
double[] color = new double[N];
for (int i = 0; i < N; i++) {

double par = 0.005*i;
p[0][i] = Math.exp(par)*Math.cos(10*par);
p[1][i] = Math.exp(par)*Math.sin(10*par);
p[2][i] = 0.1*i;
radius[i] = 0.2*Math.sqrt(i+1);
color[i] = i;

}
plot.set("pointdata", p)

.set("radiusdata", radius)

.set("colordata", color)

.set("coloring", "colortable");
plot.run();
selectNode(pg);

Comments
A Tube Data plot is similar to a Point Data, plot but with an absolute radius array
given as an argument to radiusdata. For the Point Data plot type, there is a similar
sphereradiusscale.

ARROWS IN 2D
The following code plots arrows in a circular pattern by using the Arrow Data plot
type.

// Arrows in a circular pattern in 2D

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 2);
ResultFeature plot = pg.create("arrow1", "ArrowData");
int N = 17;
double[][] p = new double[2][N];
double[][] vec = new double[2][N];
double len = 0.2;
for (int i = 0; i < N; i++) {
196 |

double angle = 2*Math.PI*i/N;
p[0][i] = Math.cos(angle);
p[1][i] = Math.sin(angle);
vec[0][i] = -len*p[0][i];
vec[1][i] = -len*p[1][i];

}
plot.set("pointdata", p)

.set("vectordata", vec);
plot.run();
selectNode(pg);

Comments
An Arrow Data plot associates an array of vectors, in the example vec, to each point
p.

ARROWS IN 3D
The following code plots arrows in a logarithmic spiral pattern by using the Arrow
Data plot type.

// Arrows in a logarithmic spiral pattern in 3D

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("arrow1", "ArrowData");
int N = 1000;
double[][] p = new double[3][N];
double[][] vec = new double[3][N];
double[] color = new double[N];
for (int i = 0; i < N; i++) {

double par = 0.005*i;
p[0][i] = Math.exp(par)*Math.cos(10*par);
p[1][i] = Math.exp(par)*Math.sin(10*par);
p[2][i] = 0.1*i;
double len = Math.sqrt(p[0][i]*p[0][i]+p[1][i]*p[1][i]+p[2][i]*p[2][i]);
for (int j = 0; j < 3; j++) {

vec[j][i] = 4*p[j][i]/len;
}
color[i] = i;

}
plot.set("pointdata", p)

.set("vectordata", vec)

.set("colordata", color)

.set("coloring", "colortable");
plot.run();
selectNode(pg);

Comments
In this example, in addition to the example in the section “Arrows in 2D”, color
data is used based on the point index.
 | 197

ANNOTATIONS IN 2D
The following code renders text strings in a circular pattern by using the
Annotation Data plot type.

// Letters in a circular pattern in 2D

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 2);

for (int i = 0; i < 26; i++) {
double angle = 2*Math.PI*i/26;
ResultFeature plot = pg.create("ann"+i, "AnnotationData");
plot.set("pos", new double[]{Math.cos(angle), Math.sin(angle)})

.set("text", "ABCDEFGHIJKLMNOPQRSTUVWXYZ".substring(i, i+1))

.set("showpoint", false);
}
pg.run();
selectNode(pg);

Comments
The property pos takes as its input an array of length 2 representing 2D
coordinates for the position of the string to be rendered. The property text takes
as its input the string to be rendered. The Boolean property showpoint determines
if a point, at the 2D coordinate position, should be rendered or not.

ANNOTATIONS IN 3D WITH LATEX SYNTAX

The following code renders text strings with Greek letters of different colors at the
corners of a cube by using the Annotation Data plot type.

// Greek letters at the corners of a cube

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);

String[] texts = {"\\alpha", "\\beta", "\\gamma", "\\delta", "\\epsilon",
"\\zeta", "\\eta", "\\theta"};
String[] colors = {"black", "blue", "cyan", "gray", "green", "magenta", "red",
"yellow"};
for (int x = 0; x < 2; x++) {

for (int y = 0; y < 2; y++) {
for (int z = 0; z < 2; z++) {

int index = x+2*y+4*z;
ResultFeature plot = pg.create("ann"+index, "AnnotationData");
plot.set("pos", new double[]{x, y, z})

.set("text", "$"+texts[index]+"$")

.set("latexmarkup", true)

.set("color", colors[index]);
}

}
}

pg.run();
selectNode(pg);
198 |

Comments
The Boolean property latexmarkup determines if the text should be interpreted
using LaTeX syntax or not.

Reading and Writing Data to Fi le

The Application Builder provides several built-in methods for reading and writing
different types of files: text files, CSV-files, Excel® files (requires LiveLink™ for
Excel®), and binary files. These file methods are listed in the table “File Methods”
on page 131.
Note that easy-to-use user-interface-based techniques for reading and writing to
file are available in the Form Editor of the Application Builder. It is recommended
that you consider those techniques first before using the programming-based ways
described in this section. For more information, see the book Introduction to the
Application Builder and “GUI Command Methods” on page 158. There, you
can also find information on the various file schemes used in the Application
Builder for reading and writing files when running applications in a web browser.

READING AND WRITING TEXT AND SPREADSHEET FILES OVERVIEW

The following built-in methods are available for reading and writing text files:
• readFile

• readMatrixFromFile

• readStringMatrixFromFile

• readCSVFile

• writeFile

• writeCSVFile

In addition, you can use the low-level methods available in the class CsReader to
read text files line by line or character by character. See the next section,
“Processing Text Files using the CsReader and CsWriter Classes” on page 214, for
more information.
If you have a LiveLink™ for Excel® license, then the following methods are
available for reading and writing Microsoft Excel Workbook files:
• readExcelFile

• writeExcelFile
 | 199

INTRODUCTION TO READING FILES WITH A CSV-FILE EXAMPLE

Assume that you want to automate a certain thermal analysis of a circuit board by
creating an application that reads in data from a spreadsheet. Further assume that
information about the circuit board components is given by a proprietary format
in a spreadsheet with columns for component type, heat dissipation, locations, and
sizes. Assume that such a file looks like:

B,0,0,0,-1.57,350,200,1.57
B,3,30,10,0,40,10,2
C,1,100,30,0,3,10,
C,1,110,30,0,3,10,
B,4,30,30,0,40,10,2
...
C,1,200,30,0,3,10,
B,10,100,150,0,10,20,30
B,10,130,150,0,10,20,30
B,10,160,150,0,10,20,30

Each row of the spreadsheet represents a different component. The first column
can contain a letter, either B or C, denoting that the component can be modeled
as either a Block or a Cylinder primitive. The next column is the total heat
dissipation within the component (measured in watts). The next three columns
represent the location of the component in the global Cartesian coordinate system
(measured in millimeters). Lastly, if the row contains a block component, there are
three more columns that denote the width, depth, and height of the block. If the
row contains a cylinder component, then there are two more columns that contain
the radius and height information, respectively.
For the example shown above, the first row of the spreadsheet represents the
circuit board itself, which is 1.57 mm thick and 350 mm-by-200 mm. It is offset
from the origin by −1.57 mm in the z direction and does not dissipate any heat.
200 |

You can write the data in the spreadsheet out to a comma-delimited text file, also
known as a CSV-file. The user interface of the application used to read the data is
shown in the figure below.
 | 201

The Settings window for the File Import form object is shown in the figure below.

In the Settings window, CSV File (*.csv) is added to the File types list. When
browsing for the file, this setting will filter out any file that is not a CSV-file.
There is also a File Declaration called File 1, which is referenced by the file scheme
syntax upload:///inputFile in the method populateBoard, which is used to read
and process the data. The method is called as an event shown at the bottom of the
Settings window of the File Import form object in the Events section.
Note that if you would like to open a file browser from a button or a menu item,
instead of using a File Import object, you can create a method that calls the built-
in method importFile; for example

importFile("file1");

assuming there is a file declaration file1.
The method populateBoard is listed below.

String[][] D = readCSVFile("upload:///inputFile");
model.geom("geom1").feature().clear();
for (int k = 0; k < D.length; k++) {

if (D[k][0].equals("B")) { // Read in a block
model.geom("geom1").create("P"+k, "Block").set("pos", new
String[]{D[k][2], D[k][3], D[k][4]});

model.geom("geom1").feature("P"+k).set("size", new String[]{D[k][5],
D[k][6], D[k][7]});

}

202 |

else if (D[k][0].equals("C")) { // Read in a cylinder
model.geom("geom1").create("P"+k, "Cylinder").set("pos", new
String[]{D[k][2], D[k][3], D[k][4]});

model.geom("geom1").feature("P"+k).set("r", D[k][5]);
model.geom("geom1").feature("P"+k).set("h", D[k][6]);

}
model.geom("geom1").feature("P"+k).set("selresult", "on");
model.variable().remove("var"+k);
model.variable().create("var"+k).model("comp1");
model.variable("var"+k).selection().named("geom1_P"+k+"_dom");
model.variable("var"+k).set("Q", D[k][1]);

}
model.geom("geom1").run();
zoomExtents("/form1/graphics1");

Comments
In the first line, the data read from the CSV-file is stored in the 2D array D. The
rest of the code parses this array and populates the various parts of a model object.
The application allows you to save the result as an MPH file with variables defined
for the heat sources and geometry objects defined for the components, as shown
in the figures below.
 | 203

You can download the MPH file for this app from:
www.comsol.com/model/using-text-files-to-automate-model-preprocessing-46721

READING EXCEL FILES

The application described above can easily be extended to also read Microsoft
Excel® Workbook files. Note that this requires LiveLink™ for Excel®. In the
Settings window for the File Import form object, you can add Microsoft Excel
204 |

https://www.comsol.com/model/using-text-files-to-automate-model-preprocessing-46721

Workbook (*.xlsx) and Microsoft Excel Workbook (*.xls) to the File types section, as
shown in the figure below.

The next step is to add a few lines of code in the beginning of the method
populateBoard, as shown below.

String file_name = getFilePath("upload:///inputFile");
if (file_name.endsWith(".xls") || file_name.endsWith(".xlsx"))

D = readExcelFile("upload:///inputFile");
else if (file_name.endsWith(".csv"))

D = readCSVFile("upload:///inputFile");
else

error("Unknown file type.");

Comments
The 2D array D can be defined as a global array in the Declarations node in the
application tree. Alternatively, it can be declared as an array that is local to the
method by adding the line

String[][] D = null;

before the if statement. Which option to choose depends on how you would like
to use the 2D array data after having read the file.
The method getFilePath returns the full path and name of the uploaded file. The
if statements control which method is used to read the file based on its file
extension. The file extension is retrieved with the Java® method endsWith(),
which belongs to the String class. Note that you can see which methods are
 | 205

available for a string by typing the name of the string followed by a period and
Ctrl+Space, as shown in the figure below.

WRITING CSV-FILES

You can write to a CSV-file using four different call syntaxes for the method
writeCSVFile, depending on if the contents are strings or doubles and whether
you would like to overwrite an already existing file or appending to its contents.
In the case above, the contents are a mix of numbers and characters, so the 2D
array storing the information needs to be a string array.
Assume that we would like to move one of the components, say, the second to last
one, in the file listed above. We would like to change the corresponding line in the
file from

B,10,130,150,0,10,20,30

to
B,10,130,140,0,10,20,30

This corresponds to a change in the y-coordinate of one of the blocks from 150 to
140.
The following code shows how to make this change and then write data on this
format, assuming that the array D has been declared as a global variable in the
Declarations node, as described above.

int[] sz = matrixSize(D);
D[sz[0]-2][3] = "140.0";
writeCSVFile("temp:///my_layout.csv", D);
fileSaveAs("temp:///my_layout.csv");

Comments
The first line stores the size of the 2D array (or matrix) D in a 1-by-2 array (or
vector) sz. The second line sets the string value of the y-coordinate of the block
of the second-to-last row in D.
206 |

The line
writeCSVFile("temp:///my_layout.csv", D);

writes the data to a file my_layout.csv in a temporary folder whose location is
determined by the Preferences of either COMSOL Multiphysics or COMSOL
Server, depending on which software is used to run the application. For example,
in a typical Windows® installation of COMSOL Multiphysics, the location will be
similar to

C:\Users\paul\AppData\Local\Temp\

where the username is paul.

WRITING FILES IN GENERAL

Note that as a first step in the example above, the file is written to a temporary file
using the writeCSVFile method. This step is done automatically by the
application. In the second step, the method fileSaveAs opens a file browser and
lets the user of the application choose the file location; for example, a folder on
the computer’s local file system or to a network folder. This extra step is needed
in order for the application to function in a web browser. Due to the security
settings of a typical web browser, the application is not permitted to automatically
save a file to an arbitrary location. Instead, the application is allowed to save to a
few specific locations, including the temp folder, whose location is specified in the
Preferences window. The other locations are the user and common folders, also
specified in the Preferences window. For more information, see the book
Introduction to the Application Builder.

WRITING EXCEL FILES

If you have licensed LiveLink™ for Excel®, then you can write to a Microsoft Excel
Workbook file in a way that is similar to that of a CSV-file, with the exception that
the append option is not available. The following code, corresponding to the
previous CSV-file example, shows how to write to an Excel file.

int[] sz = matrixSize(D);
D[sz[0]-2][3] = "140.0";
writeExcelFile("temp:///my_layout.xlsx", D);
fileSaveAs("temp:///my_layout.xlsx");

READING MATRIX FILES

Reading files with numerical data in matrix format is easiest when using the
readMatrixFromFile method. This method assumes that the file has the
spreadsheet format, as available in the model tree Export node. The example below
shows a file on the spreadsheet format.

% Model: my_model.mph
% Version: COMSOL 6.0.0.278
 | 207

% Date: Nov 1 2020, 8:00
% Dimension: 1
% Nodes: 5
% Expressions: 1
% Description: Line graph
% x y
1.2 -0.45
1.11 -0.3
1.0440468877558806 -0.38655264416650392
1.041666666666667 -0.49166666666666667
1.02 -0.15

The first few lines with comments start with the character % and are ignored by the
readMatrixFromFile method. You can optionally omit such lines and just have the
numerical part of a file read by readMatrixFromFile. Assume that this file is
uploaded to an application using a File Import form object and a File declaration
file1. The following code can then be used to read the data into a double array p.

double p[][] = readMatrixFromFile("upload:///file1”);

The code below shows how to both import and visualize these points in an
application that, in addition to a File Import form object and a File declaration file,
has a form form1 and a graphics object graphics1.

double p[][] = readMatrixFromFile("upload:///file1");
double pt[][] = transpose(p);

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 2);
ResultFeature plot = pg.create("pt1", "PointData");

plot.set("pointdata", pt);
plot.run();

useGraphics(model.result(pgTag), "form1/graphics1");

Reading files on the spreadsheet format as a string array can be done with the
method readStringMatrixFromFile. Also, in this case, the comment lines will be
ignored. The code below shows how you can replace the first few lines in the
above example using readStringMatrixFromFile instead of readMatrixFromFile.

String p[][] = readStringMatrixFromFile("upload:///file1");
double pt[][] = transpose(toDouble(p));

The method readStringMatrixFromFile is most useful when parts of the read file
contains text.

WRITING MATRIX FILES

To write numerical matrix data to file, you can use the method writeFile. Assume
that you want to write a matrix of random 2D coordinate values to a file on the
spreadsheet format; for example:
208 |

-0.3604014719437022 0.06964952539192892
-0.043869911848460674 -0.14152948348300798
0.08279441507358754 0.3101282179426158
...
0.4419748551931647 0.4139106589169702
0.15830016844077643 -0.08445989494858042
0.38236182707603905 0.4837445802317204

The code below shows how to do this.
int N = 100;
double[][] p = new double[N][2];
for (int k = 0; k < N; k++) {

p[k][0] = Math.random()-0.5;
p[k][1] = Math.random()-0.5;

}
writeFile("temp:///my_data.txt", p);
fileSaveAs("temp:///my_data.txt");

The resulting file can now be read back in and plotted by using the code of the
previous example. The result, in an application, may look like the figure below.

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant files for this example are:
• writing_matrix_file.mph

• my_data.txt

Note that you can append data to an already existing file by providing an
additional Boolean input argument; for example:

writeFile("temp:///my_data.txt", p,true);
fileSaveAs("temp:///my_data.txt");
 | 209

https://www.comsol.com/model/application-programming-guide-examples-140771

If you would like to export a matrix with a mix of numeric and text data, you can
use the writeFile method with a string array instead of a double array. The syntax
for this case is otherwise identical to that of the double array shown in the example
above.

READING A TEXT FILE TO A STRING

For reading text files into a string, you can use the method readFile. A
straightforward use of readFile is for previewing a text file; for example, before
importing and parsing it, as illustrated by the example application in the figure
below.
210 |

This application has two form objects: a File Import form object referencing a File
declaration file1 and a Text form object referencing a string str declared in the
Declarations node as a global variable.

The File Import form object has an Event that calls the method readString upon
data change.
This method has one line of code, as shown below.

str = readFile("upload:///file1");

Since the Text object is referencing the global string str, the contents of the file
are displayed in the Text object immediately after import.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant files for this example are:
• reading_text_file_to_string.mph

• text_data_file.txt

Parsing of smaller text files can be done with readFile in combination with the
many text processing methods available in the String class. However, it is often
more efficient to use methods in the CsReader class, as described in the section
“Processing Text Files using the CsReader and CsWriter Classes” on page 214,
especially for larger text files. The reason is that when using the readFile method,
the entire file is read into a string with all its contents kept in memory; whereas
when using the CsReader class methods, only small portions of the file are kept in
memory at any given time.
 | 211

https://www.comsol.com/model/application-programming-guide-examples-140771

If you would like to parse smaller text files using readFile, then the built-in
“String Methods” on page 181 are useful. The example code below illustrates
using the built-in methods findIn, substring, split, as well as the regular Java®
methods System.getProperty and String.startsWith. The example parses the
header of a text file containing polygon information to retrieve information about
the number of points of each polygon in the main body of the file (not shown) as
well as the number of properties (for example, color or material property). The
header portion of the file may look like the example below.

Demo file for string parsing
Created on May 1st 2018
begin_header
number_of_points 4
number_of_properties 4
end_header

The figure below shows an extension of the previous demonstration app that
parses this type of file.

The code for parsing the header is listed below. It stores the number of points and
properties in the variables numPoints and numProperties, respectively. To keep
things simple, no error handling is done. For example, the code assumes that there
is exactly one instance of begin_header and end_header.
212 |

numPoints = 0; // Integer variable declared in Declarations
numProperties = 0; // Integer variable declared in Declarations

fileContents = readFile("upload:///file1"); // String variable declared in
Declarations
String eol = System.getProperty("line.separator"); // Finds the system end of
line

int headerBeginIndex = findIn(fileContents, "begin_header");
int headerEndIndex = findIn(fileContents, "end_header");

String headerContents = substring(fileContents, headerBeginIndex,
headerEndIndex-headerBeginIndex); // Converts to string array by splitting at
each line
String[] headerContentsArr = split(headerContents, eol);
int ix = 1;
String[] headerRowArr = new String[2];
do {
 // Split each line at space.
 headerRowArr = split(headerContentsArr[ix], " ");

 if (headerRowArr.length == 2) {
 if (headerRowArr[0].trim().equalsIgnoreCase("number_of_points"))
 numPoints = toInt(headerRowArr[1]);
 if (headerRowArr[0].trim().equalsIgnoreCase("number_of_properties"))
 numProperties = toInt(headerRowArr[1]);
 }
 ix++;
} while (ix < headerContentsArr.length);

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant files for this example are:
• simple_string_parsing.mph

• simple_string_parsing_demo_file.txt

The Java® String class has many methods for text processing. See the online
Java® documentation for more information.

WRITING A STRING TO A TEXT FILE

The following example shows how to use the method writeFile to write a string
to file.

String contents = "# Created by me\r\n"
+"# Version 1.0 of this file format \r\n"
+"# Body follows\r\n"
+"0 1 \r\n"
+"2 3\r\n"
+"4 5\r\n";

writeFile("temp:///my_data.txt", contents);
fileSaveAs("temp:///my_data.txt");
 | 213

https://www.comsol.com/model/application-programming-guide-examples-140771

The use of the file scheme syntax temp:/// is described above in the earlier
examples of this section. The end-of-line characters of this example are for
Windows®; see also “Special Characters” on page 11.
To append additional data to the same file, for example:

String contents_2 = "6 7\r\n"
+"8 9\r\n"
+"10 11\r\n";

use an additional Boolean input argument, which appends data when set to true:
writeFile("temp:///my_data.txt", contents_2, true);
fileSaveAs("temp:///my_data.txt");

PROCESSING TEXT FILES USING THE CSREADER AND CSWRITER CLASSES

The most efficient and flexible way to read and write to a text file is to use the
methods in the CsReader and CsWriter classes, respectively. However, using the
methods of these classes is more complicated than using any of the built-in
methods described above.
The CsReader class inherits all public methods of the abstract Java® class Reader.
In a similar way, the CsWriter class inherits all public methods of the abstract
Java® class Writer. This means that when using these classes, you get access to a
large number of methods for processing text files. These methods are not
documented here, but you can find a lot of information with regards to using these
methods online as well as in books on Java® programming. In addition, you can
see which methods are available by using code-completion Ctrl+Space.

READING TEXT FILES USING THE CSREADER CLASS

The example code below shows how to parse the text file header of the earlier
example by using the CsReader class instead of readFile. Just like in the previous
example, the header may look like:

Demo file for string parsing
Created on May 1st 2018
begin_header
number_of_points 4
number_of_properties 4
end_header

and the corresponding code is listed below (compare with the example “Reading
a Text File to a String” on page 210).

numPoints = 0; // Integer variable declared in Declarations
numProperties = 0; // Integer variable declared in Declarations
maxHeaderLength = 100; // Integer variable declared in Declarations

CsReader reader = openFileStreamReader("upload:///file1");

String line; // Each line in the file
214 |

String[] lineArr; // The contents of each line in an array
int li = 0; // Line counter

boolean begin_header_found = false;
boolean end_header_found = false;

while (!begin_header_found && li < maxHeaderLength && ((line = reader.readLine())
!= null)) {
 if (line.trim().startsWith("begin_header"))
 begin_header_found = true;
 li++;
}

while (begin_header_found && !end_header_found && li < maxHeaderLength && ((line
= reader.readLine()) != null)) {
 lineArr = split(line, " ");
 if (lineArr[0].trim().equalsIgnoreCase("number_of_points"))
 numPoints = toInt(lineArr[1]);
 if (lineArr[0].trim().equalsIgnoreCase("number_of_properties"))
 numProperties = toInt(lineArr[1]);
 if (line.trim().startsWith("end_header"))
 end_header_found = true;
 li++;
}

reader.close();

if (!begin_header_found || !end_header_found)
 error("File does not have the right format.");

Comments
The line

CsReader reader = openFileStreamReader("upload:///file1");

opens a Java® character stream and assigns it to the object reader belonging to
the class CsReader.
The while loop condition contains the statement

(line = reader.readLine()) != null)

which is reading a line from the character stream and storing the result in the string
line. A line is considered to be terminated by one of the characters carriage return
\r, line feed \n, or the composite \r\n. If there are no more lines to read, then
null is returned.
For more information on the string methods used in this and earlier examples,
including findIn, substring, and split, see the section “Writing a String to a
Text File” on page 213.
The line

reader.close();

closes the stream permanently.
 | 215

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant files for this example are:
• text_file_parsing.mph

• simple_string_parsing_demo_file.txt

Note that you can see which additional methods are available for the reader object
by using Ctrl+Space, as shown in the figure below.

By using Ctrl+Space following a string, you can see the many additional methods
available for strings, including the trim method used in the example above:

WRITING TEXT FILES USING THE CSWRITER CLASS

The example of the section “Reading Matrix Files” on page 207 uses an example
on the spreadsheet data format. This section contains an example that writes a file
216 |

https://www.comsol.com/model/application-programming-guide-examples-140771

on the sectionwise format, the other primary format in COMSOL Multiphysics for
saving results data. Data on the sectionwise format can, for example, be read into
an Interpolation Curve geometry primitive. A file on the sectionwise format may
look like this:

% Version: COMSOL 6.0.0.278
% Date: Nov 1 2020, 8:00
% Description: Interpolation curve
% Coordinates
-1.1 -0.8
1.2 -0.9
0.9 1.3
-0.8 1.05
% Elements (segments)
1 2
2 3
3 4

The first few lines with comments start with the character % and are ignored when
imported as an Interpolation Curve. The first section containing data starts on the
line after % Coordinates. The second section containing data starts on the line
after % Elements (segments). Note that the strings Coordinates and Elements
(segments) are not necessary but each section containing data will be assumed to
start after each block of comments, regardless of what comes after the character %.
There may be additional blocks of data when, for example, exporting Contour plot
data.
The following example code uses a CsWriter stream to write interpolation curve
data to a text file. A template point set p is copied in a circular pattern for a given
radius R and number of copies nCopies.

CsWriter writer = openFileStreamWriter("temp:///my_curve.txt");

int nCopies = 10;
double[][] p = {{-1.2, -0.9}, {0.9, -1.1}, {1.3, 0.8}, {-0.9, 1.0}}; // template
int template_length = p.length;
double R = 10;
double px, py;
double pi = Math.PI;
String line;
int i1, i2;

String header = "% Version:\tCOMSOL 6.0.0.278\r\n"
 +"% Date:\tMay 5 2018, 8 : 00\r\n"
 +"% Description:\tInterpolation curve\r\n"
 +"% Coordinates:\r\n";

writer.append(header);

for (int j = 0; j < nCopies; j++) {
 for (int i = 0; i < template_length; i++) {
 px = p[i][0];
 py = p[i][1];
 px = px+R*Math.cos(2*pi*j/nCopies);
 | 217

 py = py+R*Math.sin(2*pi*j/nCopies);
 line = toString(px)+"\t"+toString(py)+"\r\n";
 writer.append(line);
 }
}

writer.append("% Elements (segments):\r\n");

for (int j = 0; j < nCopies; j++) {
 for (int i = 0; i < template_length; i++) {
 i1 = i+1;
 i2 = (i+1)%template_length+1;
 i1 = i1+j*template_length;
 i2 = i2+j*template_length;
 line = toString(i1)+"\t"+toString(i2)+"\r\n";
 writer.append(line);
 }
}
writer.flush();
writer.close();

fileSaveAs("temp:///my_curve.txt");

Comments
The line

CsWriter writer = openFileStreamWriter("temp:///my_curve.txt");

opens a Java® character stream and assigns it to the object writer belonging to
the class CsWriter.
The line

writer.append(header);

appends the contents of the string header to the (empty) file my_curve.txt.
The line

writer.flush();

writes the contents of the character stream buffer to file and empties the buffer but
does not close the stream permanently. At this point, you can still write more data
to the stream.
The line

writer.close();

closes the stream permanently. If you wish to write additional data to the file, you
have to open the stream again and append additional data.
218 |

Just as described above for the reader object, you can see which additional
methods are available for the writer object by using Ctrl+Space, as shown in the
figure below.

You can import the resulting interpolation data as an Interpolation Curve by
selecting the Sectionwise option for Data format. This can be done for a 2D
geometry object or for a Work Plane in 3D. The figure below shows the data
imported to a 2D model.

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771
 | 219

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• write_interpolation_curve_data.mph

WRITING BINARY FILES

You write data to a binary file by using the methods of the class CsBinaryWriter
in a way that is somewhat similar to that of writing text using CsWriter. However,
instead of writing strings and characters, you are writing bytes. To see how many
bytes each data type requires, see the table in the section “Primitive Data Types”
on page 8.
The example code below writes random 3D point data to a binary file. Each point
coordinate is stored as a double and takes 8 bytes to store. The first 4 bytes of the
file stores the number of points in the file as an int.
To conveniently convert between the regular data types, such as double, int, and
byte arrays, the Java® library method java.nio.ByteBuffer is needed. This
method is not part of the standard methods available in the Method Editor and
you need to use the fully qualified Java® class name java.nio.ByteBuffer, as
shown in the example code below.

byte[] bytes8 = new byte[8];
byte[] bytes4 = new byte[4];
CsBinaryWriter bwriter = openBinaryFileStreamWriter("temp:///
my_binary_file.dat");
int N = 1000;
java.nio.ByteBuffer.wrap(bytes4).putInt(N);
bwriter.write(bytes4);

double p[][] = new double[N][3];
for (int k = 0; k < N; k++) {

p[k][0] = Math.random();
java.nio.ByteBuffer.wrap(bytes8).putDouble(p[k][0]);
bwriter.write(bytes8);

p[k][1] = Math.random();
java.nio.ByteBuffer.wrap(bytes8).putDouble(p[k][1]);
bwriter.write(bytes8);

p[k][2] = Math.random();
java.nio.ByteBuffer.wrap(bytes8).putDouble(p[k][2]);
bwriter.write(bytes8);
bwriter.flush();

}
bwriter.close();
fileSaveAs("temp:///my_binary_file.dat");

Comments
The first two lines declare byte arrays of size 8 and 4, respectively
The line
220 |

CsBinaryWriter bwriter = openBinaryFileStreamWriter("temp:///
my_binary_file.dat");

opens a Java® byte stream.
The line

int N = 1000; // The number of points

denotes the number of points written to file.
The line

ByteBuffer.wrap(bytes4).putInt(N);

uses the imported ByteBuffer method to convert the integer N to a byte array
bytes4 of length 4.
The line

bwriter.write(bytes4);

writes the value of N to file.
The for-loop creates N points and writes each x-, y-, and z-coordinate as doubles
using a byte array bytes8 of length 8.
The line

bwriter.flush();

empties the byte buffer and the last two lines
bwriter.close();
fileSaveAs("temp:///my_binary_file.dat");

close the byte stream and display a file browser to the user to select a location to
save the binary file.

READING BINARY FILES

Based on the data format of the previous example, the code below reads a
corresponding binary file and plots the points as 3D point data.

byte[] bytes8 = new byte[8];
byte[] bytes4 = new byte[4];
CsBinaryReader breader = openBinaryFileStreamReader("upload:///file1");

breader.read(bytes4);
int N = java.nio.ByteBuffer.wrap(bytes4).getInt();

double p[][] = new double[N][3];

for (int k = 0; k < N; k++) {
breader.read(bytes8);
p[k][0] = java.nio.ByteBuffer.wrap(bytes8).getDouble();

breader.read(bytes8);
p[k][1] = java.nio.ByteBuffer.wrap(bytes8).getDouble();

 | 221

breader.read(bytes8);
p[k][2] = java.nio.ByteBuffer.wrap(bytes8).getDouble();

}
breader.close();

double pt[][] = transpose(p);

String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("pt1", "PointData");

plot.set("pointdata", pt);
plot.run();

useGraphics(model.result(pgTag), "form1/graphics1");

Comments
The line

CsBinaryReader breader = openBinaryFileStreamReader("upload:///file1");

opens a Java® byte stream based on a File declaration file1, typically referenced
in a File Browser form object, as in the earlier examples on reading text files.
The two lines

breader.read(bytes4);
int N = ByteBuffer.wrap(bytes4).getInt();

read the first 4 bytes and convert them to an int N.
The following for-loop reads chunks of 8 bytes into the byte array bytes8,
converts them and stores the results in a 2D double array p.
The line

breader.close();

closes the byte stream.
The last section of the example code plots the data and is similar to the example
in “Reading Matrix Files” on page 207.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• reading_and_writing_binary_data.mph
222 |

https://www.comsol.com/model/application-programming-guide-examples-140771

This files demonstrates reading and writing binary point data using a Settings Form
in the Model Builder, as shown in the figure below.

ADDITIONAL COMMENTS ON READING AND WRITING BINARY FORMATS

When processing binary files, there are two formats in which bytes can be stored:
little endian and big endian, respectively. By default, Java® uses the big endian
format. For example, the line

p[k][2] = ByteBuffer.wrap(bytes8).getDouble();

is the same as
p[k][2] = ByteBuffer.wrap(bytes8).order(ByteOrder.BIG_ENDIAN).getDouble();

In case the format you are reading is on the little endian format, the corresponding
line should be

p[k][2] = ByteBuffer.wrap(bytes8).order(ByteOrder.LITTLE_ENDIAN).getDouble();

Converting Interpolation Curve Data

The following method converts a geometry Interpolation Curve to an Interpolation
function (by creating an interpolation table). The method demonstrates extracting
 | 223

geometry information from the underlying parameterization of an edge. The edge
does not have to be an Interpolation Curve but can be any single edge.

The curve is checked for being a function curve with monotonously growing x
coordinates, which is required in order to be able to convert to an interpolation
function. Note that since an interpolation curve is represented using splines, even
though the interpolation points form a monotonous sequence, the resulting curve
may not; hence, the second consistency check (the first check can potentially be
skipped).

// Convert using N points
int N = 100;
double monoTol = 1e-6;
int edgeNum=1;

// Update and get geometry information
model.component("comp1").geom("geom1").run("fin");
GeomSequence geom1 = model.component("comp1").geom("geom1");
GeomFeature ic1 = geom1.feature("ic1");
double[][] curvePoints = ic1.getDoubleMatrix("table");

int len = curvePoints.length;
double minX = curvePoints[0][0];
double maxX = curvePoints[len-1][0];
double scale = maxX-minX;
double scaledTol = monoTol*scale;

for (int i = 1; i < len; i++) {
if ((curvePoints[i][0]-curvePoints[i-1][0]) < scaledTol) {

error("Curve needs to be a function curve with monotonously growing x
coordinates.");
224 |

}
}

double minMaxS[] = geom1.edgeParamRange(edgeNum);
double minS = minMaxS[0];
double maxS = minMaxS[1];

double sList[] = new double[N];
for (int k = 0; k < N; k++) {

sList[k] = (double) (N-1-k)/(double) (N-1)*minS+k/(double) (N-1)*maxS;
}
double[][] XY = geom1.edgeX(1, sList);

for (int j = 1; j < N; j++) {
if ((XY[j][0]-XY[j-1][0]) < scaledTol) {

error("Curve needs to be a function curve with monotonously growing x
coordinates.");

}
}

// Create interpolation table
model.func().create("int1", "Interpolation");
with(model.func("int1"));

set("funcname", "int1");
set("interp", "cubicspline");
set("extrap", "linear");

endwith();

model.func("int1").set("table", toString(XY));

Comments
The method assumes that there is a geometry sequence geom1 with an
interpolation curve ic1. It further assumes that there are no other geometry
features and that the geometry object has a single edge. The integer N determines
how granular the interpolation table should be. It is assumed that there is only one
edge in the geometry sequence (edgeNum). Note that the curve parameter range
may not be the unit interval (minS does not have to be 0.0 and maxS does not have
to be 1.0). To run the method more than once, you can create a cleanup method
that contains the lines:

model.func().remove("int1");
model.result().remove("pg1");

for removing previously created model tree nodes.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• converting_curve_to_function.mph
 | 225

https://www.comsol.com/model/application-programming-guide-examples-140771

Plotting Points on a Parametric Surface

The following method retrieves coordinate values for a regularly sampled
parametric surface and plots the corresponding points using a Point Data plot. The
method demonstrates extracting geometry information from the underlying
parameterization of a surface. The example assumes that a parametric surface
geometry object has already been created.

// Sample and plot N-by-N points on a parametric surface
int N = 20;
int faceNum = 1;

// Update and get geometry information
model.component("comp1").geom("geom1").run("fin");
GeomSequence geom1 = model.component("comp1").geom("geom1");
GeomFeature ps1 = geom1.feature("ps1");

double minMaxS[] = geom1.faceParamRange(faceNum);
double minS1 = minMaxS[0];
double maxS1 = minMaxS[1];
double minS2 = minMaxS[2];
double maxS2 = minMaxS[3];

double s1List[] = new double[N];
double s2List[] = new double[N];
for (int k = 0; k < N; k++) {

s1List[k] = (double) (N-1-k)/(double) (N-1)*minS1+k/(double) (N-1)*maxS1;
s2List[k] = (double) (N-1-k)/(double) (N-1)*minS2+k/(double) (N-1)*maxS2;

}

226 |

double s12List[][] = new double[N*N][2];
for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {
s12List[i+N*j][0] = s1List[i];
s12List[i+N*j][1] = s2List[j];

}
}
double[][] XY = geom1.faceX(faceNum, s12List);

// Plot points
String pgTag = model.result().uniquetag("pg");
ResultFeature pg = model.result().create(pgTag, 3);
ResultFeature plot = pg.create("pt1", "PointData");
double[][] p = new double[3][N*N];
double[] color = new double[N*N];
for (int i = 0; i < N*N; i++) {

p[0][i] = XY[i][0];
p[1][i] = XY[i][1];
p[2][i] = XY[i][2];
color[i] = p[1][i];

}
plot.set("pointdata", p)

.set("colordata", color)

.set("coloring", "colortable")

.set("sphereradiusscale", 1);
plot.run();
selectNode(pg);

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• surface_points.mph

Defining a Parametric Sweep

This example shows how to automate the setup of a Parametric Sweep by
specifying the sweep parameters and their values programmatically.
 | 227

https://www.comsol.com/model/application-programming-guide-examples-140771

Assume that we start from a file output.txt on the COMSOL Spreadsheet format
which corresponds to the output of a design of experiments (DoE) study, as
shown in the figure below.

The first two columns are the input parameters and values to this study and the
last two columns are the output. Say that we now would like to create a parametric
sweep based on the two input columns. How do we bring this data into a
Parametric Sweep?
There are several ways of doing this and below are two examples.
The first example reads parameter values for the parameters dw and DV from a text
file. It converts each column into a space-separated string and then configures a
parametric sweep for the Sweep type option Specified combinations. It uses the
built-in readStringMatrixFromFile method and the inserts the contents into the
parametric sweep node in the current study by setting the properties plistarr,
pname, and punit accordingly. In this case the file output.txt is stored in the
model, under Libraries > Files, and is accessed using the file scheme syntax
embedded:///output.txt.

String[][] p = readStringMatrixFromFile("embedded:///output.txt");
String[] pardwArray = getColumn(p, 0);
String[] parVArray = getColumn(p, 1);
String pardw = String.join(" ", pardwArray);
String parV = String.join(" ", parVArray);
model.study("std1").feature("param").set("plistarr", new String[]{pardw, parV});
model.study("std1").feature("param").set("pname", new String[]{"dw", "DV"});
model.study("std1").feature("param").set("punit", new String[]{"um", "V"});

The corresponding file is available for download (see below).
228 |

The second example reads the parameter values for the parameters dw and DV from
the same text file and formats them into the parametric sweep file format readable
from the user interface. Each row is constructed as:

<param_name> "val1 val2 ..." [unit]

The resulting two-line table is written to a file that can be loaded as a sweep
definition from the Parametric Sweep table.

double[][] p = readMatrixFromFile("embedded:///output.txt");
double[] pardw = getColumn(p, 0);
double[] parV = getColumn(p, 1);

int len = pardw.length+2; // +2 for parameter name and unit string, respectively
String[][] parSweep = new String[2][len];
parSweep[0][0] = "dw \"";
parSweep[1][0] = "DV \"";
for (int k = 1; k < len-1; k++) {
 parSweep[0][k] = toString(pardw[k-1],4);
 parSweep[1][k] = toString(parV[k-1],4);
}
parSweep[0][len-1] = "\" [um]";
parSweep[1][len-1] = "\" [V]";

String[][] fileContents = new String[2][1];
fileContents[0][0] = ""; // Not null
fileContents[1][0] = "";

for (int k = 0; k < len; k++) {
 fileContents[0][0] = fileContents[0][0]+" "+parSweep[0][k];
 fileContents[1][0] = fileContents[1][0]+" "+parSweep[1][k];
}

writeFile("temp:///parfile.txt", fileContents);
fileSaveAs("temp:///parfile.txt");

The figure below shows the results of importing the parametric sweep file.

Note: the syntax
String out = toString(double value, int digits)
 | 229

is used to format the numeric value in a string to a specified number of significant
digits.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• thermal_actuator_simplified_read_parameters.mph

Using Selections

USING SELECTIONS FOR EDITING GEOMETRY OBJECTS

The following method generates a plate with an array of cylinders. The cylinders
may be used, for example, in a difference operation to create an array of holes in
the plate.

GeomSequence geom = model.component("comp1").geom("geom1");
geom.create("blk1", "Block");
geom.feature("blk1").set("size", new int[]{10, 10, 1});
geom.create("start_cyl1", "Cylinder");
geom.feature("start_cyl1").set("pos", new double[]{2.5, 2.5, 0});
geom.create("arr1", "Array");
geom.feature("arr1").selection("input").set("start_cyl1");
geom.feature("arr1").set("fullsize", new int[]{2, 2, 1});
geom.feature("arr1").set("displ", new int[]{5, 5, 0});
geom.run("arr1");
230 |

https://www.comsol.com/model/application-programming-guide-examples-140771

The resulting geometry is shown in the figure below.

Assume now that the resulting geometry, from the previous step, corresponds to
an imported geometry object and that you would like to replace the cylinders with
larger cylinders before subtracting and generating the holes. Furthermore, assume
that the cylinder objects are generated by an external software in such a way that,
although you know these objects are cylinders, they are represented as generic
geometry objects with no information on radius, height, or position. The
following method finds the array of cylinders, extracts coordinate information for
each cylinder, deletes the cylinders, creates a new array of wider cylinders, and
 | 231

finally subtracts the cylinders from the plate. The resulting geometry is shown in
the figure below.

The method exemplifies retrieval of geometry object names, coordinate
information, and the use of selections. To start from another geometry object
(which is also necessarily a plate with cylinders), you can replace the string tag in
the variable plateAndCylinders accordingly.

double selTol = 1e-2; // Selection tolerance
double newR = 1.25; // New cylinder radius
double newH = 1; // New cylinder height
double plateThickness = 1; // Plate thickness
String plateAndCylinders = "arr1";

// Update and split geometry
model.component("comp1").geom("geom1").run("fin");
GeomSequence geom = model.component("comp1").geom("geom1");
geom.run(plateAndCylinders);
geom.create("spl1", "Split");
geom.feature("spl1").selection("input").set(plateAndCylinders);
geom.run("spl1");

// Find extents of geometry in x,y,z directions
double[] bBox = geom.getBoundingBox();
double MinX = bBox[0];
double MaxX = bBox[1];
double MinY = bBox[2];
double MaxY = bBox[3];
double MinZ = bBox[4];
double MaxZ = bBox[5];

// Define scaled coordinate tolerance
232 |

double scale = Math.max(Math.max(MaxX-MinX, MaxY-MinY), MaxZ-MinZ);
double scaleSelTol = scale*selTol;

// Create box selection based on geometry extents
geom.create("boxsel1", "BoxSelection");
with(geom.feature("boxsel1"));

// Select boundaries inside box in X-Y direction using tolerance
set("xmin", MinX+scaleSelTol);
set("xmax", MaxX-scaleSelTol);
set("ymin", MinY+scaleSelTol);
set("ymax", MaxY-scaleSelTol);
set("zmin", MinZ-scaleSelTol);
set("zmax", MaxZ+scaleSelTol);
set("condition", "inside");
set("entitydim", -1); // Select objects

endwith();
geom.run("boxsel1");

// Get object names
String[] so = geom.selection("boxsel1").objects();
int nso = so.length;

// Extract cylinder parameters
double[] MinXC = new double[nso];
double[] MaxXC = new double[nso];
double[] MinYC = new double[nso];
double[] MaxYC = new double[nso];
double[] MinZC = new double[nso];
double[] MaxZC = new double[nso];
double[] bBoxC = new double[6];
for (int i = 0; i < nso; i++) {

bBoxC = geom.obj(so[i]).getBoundingBox();
MinXC[i] = bBoxC[0];
MaxXC[i] = bBoxC[1];
MinYC[i] = bBoxC[2];
MaxYC[i] = bBoxC[3];
MinZC[i] = bBoxC[4];
MaxZC[i] = bBoxC[5];

}

double[] radius = new double[nso];
double[] xc = new double[nso];
double[] yc = new double[nso];
double[] zc = new double[nso];
double[] hc = new double[nso];

double ry;
double tol = scale*1e-6; // Tolerance check for skew cylinders, optional
consistency check
for (int i = 0; i < nso; i++) {

xc[i] = (MaxXC[i]+MinXC[i])/2;
yc[i] = (MaxYC[i]+MinYC[i])/2;
zc[i] = (MaxZC[i]+MinZC[i])/2;
hc[i] = MaxZC[i]-MinZC[i];
radius[i] = (MaxXC[i]-MinXC[i])/2;
ry = (MaxYC[i]-MinYC[i])/2;
 | 233

if (Math.abs(radius[i]-ry) > tol)
error("Object is not a circular cylinder.");

}

// Delete all cylinder objects
geom.create("del1", "Delete");
geom.feature("del1").selection("input").init();
geom.feature("del1").selection("input").set(so);
geom.run("del1");

// Add new cylinders
String[] cylname = new String[nso];
for (int i = 0; i < nso; i++) {

cylname[i] = "cyl"+toString(i+1);
geom.create(cylname[i], "Cylinder");
with(geom.feature(cylname[i]));

set("r", newR);
set("h", newH+2*scaleSelTol);
set("pos", new double[]{xc[i], yc[i], plateThickness-2*zc[i]-scaleSelTol});

endwith();
}

// Combine all cylinders into one object
geom.create("uni1", "Union");
geom.feature("uni1").selection("input").set(cylname);
geom.run("uni1");

// Difference between all objects and cylinders
geom.create("dif1", "Difference");
String[] objs = geom.objectNames();
geom.feature("dif1").selection("input").set(objs);
geom.feature("dif1").selection("input2").set("uni1");
geom.run("dif1");

Comments
The method assumes that the input geometry objects have the same structure as
the plate with cylinders example above. Note that to clear the geometry sequence,
you can create a method with the line

model.component("comp1").geom("geom1").feature().clear();

This can be useful if you are running the main method from above repeatedly,
since you need to clear the geometry sequence before each run.
The first of the lines

geom.feature("del1").selection("input").init();
geom.feature("del1").selection("input").set(so);

initializes the selection to be empty of type object. The second line then selects all
objects with names in the array so. In general, a call to init() without input
argument means that the selection is for objects and init(n), where n=0,1,2, or 3,
means that the selection is for points, edges, faces, and domains, respectively. Note
234 |

that in some cases n=-1 is used to denote the object level (instead of an empty
input argument); see the Programming Reference Manual.
The figure below shows an example based on a larger array of cylinders.

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant files for this example are:
• plate_with_four_cylinders.mph

• plate_with_four_hundred_cylinders.mph

SELECTING AND PARTITIONING EDGES FOR A CYLINDER OBJECT

The following two examples show how to make selections for a geometry feature
that partitions the edges in a geometry. In this case the geometry is a cylinder
object but the method is applicable to any geometry object as shown in the
subsequent section.
The first example generates a cylinder and then inserts a PartitionEdges feature
("pare1") to subdivide four specific cylinder edges at parametric positions 0.25,
0.50, and 0.75 along their lengths, runs the partition, and then selects the
partition feature in the Model Builder for further operations. You can, for
example, use such a partition, under the Mesh node, to select edges for mesh
refinement.

clearModel(model);
model.component().create("comp1", true);
ModelNode comp1 = model.component("comp1");
 | 235

https://www.comsol.com/model/application-programming-guide-examples-140771

comp1.geom().create("geom1", 3);
GeomSequence geom1 = comp1.geom("geom1");
geom1.create("cyl1", "Cylinder");
geom1.feature("cyl1").set("r", 0.5);
geom1.feature("cyl1").set("h", 2);
geom1.feature("cyl1").set("pos", new double[]{0, 0, -1});
geom1.run("cyl1");

geom1.create("pare1", "PartitionEdges");
geom1.feature("pare1").selection("edge").set("cyl1", 4, 5, 8, 11);
geom1.feature("pare1").setIndex("param", 0.25, 0);
geom1.feature("pare1").setIndex("param", 0.5, 1);
geom1.feature("pare1").setIndex("param", 0.75, 2);
geom1.run("pare1");
selectNode(geom1.feature("pare1"));

The second example is identical apart from the selection part, which is now
replaced by a call to the method all, which selects all available edges.

clearModel(model);
model.component().create("comp1", true);
ModelNode comp1 = model.component("comp1");
comp1.geom().create("geom1", 3);
GeomSequence geom1 = comp1.geom("geom1");
geom1.create("cyl1", "Cylinder");
geom1.feature("cyl1").set("r", 0.5);
geom1.feature("cyl1").set("h", 2);
geom1.feature("cyl1").set("pos", new double[]{0, 0, -1});
geom1.run("cyl1");

geom1.create("pare1", "PartitionEdges");
geom1.feature("pare1").selection("edge").all();
geom1.feature("pare1").setIndex("param", 0.25, 0);
geom1.feature("pare1").setIndex("param", 0.5, 1);
geom1.feature("pare1").setIndex("param", 0.75, 2);
geom1.run("pare1");
selectNode(geom1.feature("pare1"));
236 |

The all method can be used for most geometry features for selecting all geometric
entities (domains, boundaries, edges, points). The following picture shows the
results of the second example, zoomed in on one of the edges.

To view all available selection methods, type
geom1.feature("pare1").selection("edge")

then press Ctrl + Space. The code-completion popup below will list the options,
as shown in the figure below:

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771
 | 237

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• cylinder_edge_partition_and_selections.mph

SELECTING AND PARTITIONING EDGES FOR GENERAL OBJECTS

The following examples are similar to the ones in the previous section but show
how to make selections for a geometry feature that partitions the edges in one of
several geometry objects. This example features a cone and a block object.
The first example shows how to select and partition all edges of all objects.

clearModel(model);

// Create a 3D component and geometry
model.component().create("comp1", true);
ModelNode comp1 = model.component("comp1");
comp1.geom().create("geom1", 3);
GeomSequence geom1 = comp1.geom("geom1");

// Create a cylinder object
geom1.create("cyl1", "Cylinder");
geom1.feature("cyl1").set("r", 0.5);
geom1.feature("cyl1").set("h", 2);
geom1.feature("cyl1").set("pos", new double[]{0, 0, -1});
geom1.run("cyl1");

// Create a block object
geom1.create("blk1", "Block");
geom1.run("blk1");

// Get the names of all objects
String[] objs = model.component("comp1").geom("geom1").objectNames();
debugLog(objs); // Display all object names in the Debug Log window

// Create an edge partition feature
geom1.create("pare1", "PartitionEdges");
geom1.feature("pare1").selection("edge").all(objs);

// Note, also the following syntax would work:
// geom1.feature("pare1").selection("edge").all();

geom1.feature("pare1").setIndex("param", 0.25, 0);
geom1.feature("pare1").setIndex("param", 0.5, 1);
geom1.feature("pare1").setIndex("param", 0.75, 2);
geom1.run("pare1");

selectNode(geom1.feature("pare1"));

The call to:
geom1.feature("pare1").selection("edge").all(objs);

is very similar to using Ctrl+A in the user interface for selecting all edges.
To instead select all edges of just the second object (the block), use:

geom1.feature("pare1").selection("edge").all(objs[1]);
238 |

Finally, to partition just 4 of the second object’s edges, use:
int[] edges = new int[]{1, 2, 3, 4};
geom1.feature("pare1").selection("edge").set(objs[1], edges);

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• geom_edge_partition_and_selections.mph

USING SELECTIONS TO MEASURE GEOMETRIC OBJECTS

The following example creates a cone of base radius 1 and height 1 and measures
its various geometric properties. This code uses selections based on geometric
entity numbers, however, the selection techniques from the previous section can
also be used.

// Clear the model
clearModel(model);

// Create a 3D component and geometry
model.modelNode().create("comp1");
model.geom().create("geom", 3);

// Add a cone to the geometry
ModelNode comp1 = model.component("comp1");
GeomSequence geom = comp1.geom("geom");
geom.create("cone1", "Cone");
geom.feature("cone1").set("specifytop", "radius");
geom.feature("cone1").set("rtop", 0);
geom.run("cone1");

// Build the geometry
model.geom("geom").run();

// Measure the properties of the geometry

// Select the volumetric domain of the cone object
geom.measure().selection().init(3);
geom.measure().selection().set("cone1", 1);

// Measure properties from domain selection
double vol = geom.measure().getVolume(); // The volume of the cone
double volArea = geom.measure().getBoundaryArea(); // The total boundary area of
the cone based on the domain selection

// Select all of the boundaries of cone object
geom.measure().selection().init(2);
geom.measure().selection().all();

// Measure properties from boundary selection (all)
double bndArea = geom.measure().getArea(); // The total boundary area of the cone
based on selecting all boundaries
 | 239

https://www.comsol.com/model/application-programming-guide-examples-140771

// Select one of the boundaries of the cone object (the bottom surface of the cone)
geom.measure().selection().init(2);
geom.measure().selection().set("cone1", 2);

// Measure properties from boundary selection (boundary 2)
double boundaryPerimeterLength = geom.measure().getBoundaryVolume();

// Select the edges of the bottom surface of the cone
geom.measure().selection().init(1);
int[] edges = new int[]{1, 3, 5, 8}; // The list of edges stored in an array
(vector)
geom.measure().selection().set("cone1", edges);
// geom.measure().selection().set("cone1", 1, 3, 5, 8); // Alternative syntax

// Measure properties from edge selection (edges 1,3,5,8)
double edgePerimeterLength = geom.measure().getLength(); // The total boundary
area of the cone based on selecting all boundaries

// Select two of the vertices: the apex and one of the bottom surface vertices
geom.measure().selection().init(0);
int[] vertices = new int[]{1, 3}; // The list of vertices stored in an array
(vector)
geom.measure().selection().set("cone1", vertices);

// Measure properties from vertex selection (vertices 1,3)
double[] dist = geom.measure().getVtxDistance(); // d[0] is the distance, and
d[i] is the distance in the ith coordinate (i = 1, 2, 3).

// Select the apex vertex
geom.measure().selection().set("cone1", 3);

// Get the coordinates for the apex vertex (3)
double[] coord = geom.measure().getVtxCoord();

// Display the results in the Debug Log window
debugLog("Cone volume = "+vol);
debugLog("Cone area, from domain selection = "+volArea);
debugLog("Cone area, from boundary selection = "+bndArea);
debugLog("Cone bottom surface perimeter length from boundary selection = "+
boundaryPerimeterLength);
debugLog("Cone bottom surface perimeter length from edge selection = "+
edgePerimeterLength);
debugLog("Distance between two points = "+dist[0]);
debugLog("X-distance between two points = "+dist[1]);
debugLog("Y-distance between two points = "+dist[2]);
debugLog("Z-distance between two points = "+dist[3]);
debugLog("X-coordinate of apex vertex = "+coord[0]);
debugLog("Y-coordinate of apex vertex = "+coord[1]);
debugLog("Z-coordinate of apex vertex = "+coord[2]);

// Note that you can also display the results in the Messages window, for example:
message("Cone volume = "+vol);

The syntax:
geom.measure().selection().init(0);
geom.measure().selection().init(1);
240 |

geom.measure().selection().init(2);
geom.measure().selection().init(3);

is used to change the selection mode to vertices, edges, boundaries, and domains,
respectively.
The syntax:

geom.measure().selection().set("cone1", 1, 3, 5, 8);

is equivalent to:
int[] edges = new int[]{1, 3, 5, 8};
geom.measure().selection().set("cone1", edges);

and follows the general pattern:
geom.measure().selection().set(objectName, entityNumbers);

where objectName is the name of the geometry object and entityNumbers is an
integer vector of geometric entity numbers (vertices, edges, boundaries, or
domains).
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• measure_cone.mph

For examples of measuring similar quantities for the entire model using Results
tools, see “Measuring Model Quantities” on page 244.

USING SELECTIONS ON THE FINALIZED GEOMETRY

Selections applied to the finalized geometry differ from those applied to individual
geometry objects within the geometry sequence under the Geometry node.
Finalized geometry selections are used by Model Builder nodes such as Materials,
Mesh, and physics interfaces like Heat Transfer in Solids. They are also used under a
model component, such as Component 1, for defining Variables, Nonlocal Couplings,
and other features that operate on the finalized geometry.
The following example sets up and runs a 3D stationary heat transfer simulation,
using selections defined by direct reference to geometric entity numbers.

clearModel(model);
model.component().create("comp1", true);
model.component("comp1").geom().create("geom1", 3);
model.component("comp1").geom("geom1").geomRep("comsol");
model.component("comp1").mesh().create("mesh1");

model.component("comp1").geom("geom1").create("cyl1", "Cylinder");
model.component("comp1").geom("geom1").feature("cyl1").set("h", 0.1);
model.component("comp1").geom("geom1").feature("cyl1").set("r", 0.005);
model.component("comp1").geom("geom1").run();
 | 241

https://www.comsol.com/model/application-programming-guide-examples-140771

model.component("comp1").geom("geom1").create("arr1", "Array");
model.component("comp1").geom("geom1").feature("arr1").selection("input").set("
cyl1");
model.component("comp1").geom("geom1").feature("arr1").set("fullsize", new
int[]{3, 3, 1});
model.component("comp1").geom("geom1").feature("arr1").set("displ", new
double[]{0.02, 0.02, 0});
model.component("comp1").geom("geom1").run();

model.component("comp1").physics().create("ht", "HeatTransfer", "geom1");

model.component("comp1").material().create("mat1", "Common");
model.component("comp1").material("mat1").label("Steel AISI 4340");
model.component("comp1").material("mat1").propertyGroup("def").set("density",
"7850[kg/m^3]");
model.component("comp1").material("mat1").propertyGroup("def").set("heatcapacit
y", "475[J/(kg*K)]");
model.component("comp1").material("mat1").propertyGroup("def")
 .set("thermalconductivity", new String[]{"44.5[W/(m*K)]", "0", "0", "0",
"44.5[W/(m*K)]", "0", "0", "0", "44.5[W/(m*K)]"});

model.func().create("rn1", "Random");
model.func("rn1").set("type", "uniform");
model.func("rn1").set("nargs", 3);
model.func("rn1").set("mean", 0.5);

model.component("comp1").physics("ht").create("temp1", "TemperatureBoundary",
2);
model.component("comp1").physics("ht").feature("temp1").set("T0", "300[K]");
int[] bnds = new int[]{3, 7, 11, 21, 25, 29, 39, 43, 47};
model.component("comp1").physics("ht").feature("temp1").selection().set(bnds);

model.component("comp1").physics("ht").create("hs1", "HeatSource", 3);
int[] doms = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9};
model.component("comp1").physics("ht").feature("hs1").selection().set(doms);
model.component("comp1").physics("ht").feature("hs1").set("Q0", "1e6*(1+
rn1(x,y,z))");

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/ht", true);
model.study("std1").createAutoSequences("all");
model.sol("sol1").runAll();

model.result().create("pg1", "PlotGroup3D");
model.result("pg1").label("Temperature (ht)");
model.result("pg1").feature().create("vol1", "Volume");
model.result("pg1").feature("vol1").set("colortable", "HeatCameraLight");
model.result("pg1").run();

The following lines illustrate how selections are applied to boundary surfaces in a
physics interface:

model.component("comp1").physics("ht").create("temp1", "TemperatureBoundary",
2);
model.component("comp1").physics("ht").feature("temp1").set("T0", "300[K]");
int[] bnds = new int[]{3, 7, 11, 21, 25, 29, 39, 43, 47};
242 |

model.component("comp1").physics("ht").feature("temp1").selection().set(bnds);

In the first line, the final argument 2 specifies that the selection targets entities of
dimension 2, that is, boundary surfaces. Aside from this dimension specification,
the syntax is similar to selections applied to individual geometry objects.
Similarly, selections for volumetric domains are specified as follows:

model.component("comp1").physics("ht").create("hs1", "HeatSource", 3);
int[] doms = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9};
model.component("comp1").physics("ht").feature("hs1").selection().set(doms);
model.component("comp1").physics("ht").feature("hs1").set("Q0", "1e6*(1+
rn1(x,y,z))");

Here, the argument 3 in the first line refers to entities of dimension 3,
corresponding to domains (volumes) in the geometry.
To use named explicit selections instead of directly referencing entity numbers in
physics features, replace the previous code blocks with the following:

model.component("comp1").selection().create("sel1", "Explicit");
model.component("comp1").selection("sel1").geom(2);
model.component("comp1").selection("sel1").label("Temperature Boundaries");
int[] bnds = new int[]{3, 7, 11, 21, 25, 29, 39, 43, 47};
model.component("comp1").selection("sel1").set(bnds);

model.component("comp1").physics("ht").create("temp1", "TemperatureBoundary",
2);
model.component("comp1").physics("ht").feature("temp1").set("T0", "300[K]");
model.component("comp1").physics("ht").feature("temp1").selection().named("sel1
");

model.component("comp1").selection().create("sel2", "Explicit");
model.component("comp1").selection("sel2").geom(3);
int[] doms = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9};
model.component("comp1").selection("sel2").label("Heat Source Domains");
model.component("comp1").selection("sel2").set(doms);

model.component("comp1").physics("ht").create("hs1", "HeatSource", 3);
model.component("comp1").physics("ht").feature("hs1").selection().named("sel2")
;
model.component("comp1").physics("ht").feature("hs1").set("Q0", "1e6*(1+
rn1(x,y,z))");

Selections created with model.component("comp1").selection() can be placed
anywhere earlier in the code, as long as they are defined before the finalized
geometry is created. This approach is generally preferred, as named explicit
selections promote reuse and improve the clarity of the model structure.
To retrieve the geometric entities associated with physics feature selections, you
can use the inputEntities() method. This should be done after either of the
selection creation methods, whether by direct entity numbers or named explicit
selections, has been called. The following code demonstrates this:

// Retrieve the geometric entities for the Temperature Boundary selection
 | 243

int[] entitiesT =
model.component("comp1").physics("ht").feature("temp1").selection().inputEntiti
es();
debugLog("Geometric entities for the temperature boundary selection:");
debugLog(entitiesT);

// Retrieve the geometric entities for the Heat Source selection
int[] entitiesHS =
model.component("comp1").physics("ht").feature("hs1").selection().inputEntities
();
debugLog("Geometric entities for the heat source domain selection:");
debugLog(entitiesHS);

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_transfer_in_cylindrical_rod_array_selections.mph

Measuring Model Quantit ies

For measuring geometric and mass properties of a finalized geometry, use the
Measure options under Results > Evaluation Group or Results > Derived Values. Note
that, for historical reasons, Derived Values are referred to as Numerical in the
COMSOL API. The Evaluation Group option is a more recent addition to
COMSOL Multiphysics and is the recommended option. The examples below
applies to the Thermal Microactuator Simplified model, which you can find in the
Application Libraries at COMSOL Multiphysics > Multiphysics.
The complete example, including the method code, is part of a collection available
for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• thermal_actuator_simplified_measure.mph

The two code listings below computes the following quantities, using Evaluation
Group and Derived Values, respectively:
• Volume of the entire model (domain 1)
• Surface are of boundary 3
• Length of edge (line) 173
• Distance between vertices 155 and 167
• Mass of the entire model (domain 1)
• Center of mass coordinates
244 |

https://www.comsol.com/model/application-programming-guide-examples-140771
https://www.comsol.com/model/application-programming-guide-examples-140771

The first four quantities use purely geometry measure features: MeasureVolume,
MeasureSurface, MeasureLine, MeasureDistance.
The last two use the MassProperties feature, which also recomputes volume, so
you see the volume twice (once from MeasureVolume, once from MassProperties).
Unit sources:
• Length and distance units are inherited from the Geometry node’s unit

setting.
• Volume and area units come from the model’s Unit System, defined at the

root node.

Using Evaluation Group
// Create the Evaluation Group
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// ——— 1) Volume ———
model.result().evaluationGroup("eg1").create("meas1", "MeasureVolume");
model.result().evaluationGroup("eg1").feature("meas1").set("unit", "um^3");
model.result().evaluationGroup("eg1").feature("meas1").selection().set(1);
model.result().evaluationGroup("eg1").run();

double[][] volumeResult = model.result().evaluationGroup("eg1").getReal();
double volume = volumeResult[0][0];
String volumeUnit =
model.result().evaluationGroup("eg1").feature("meas1").getString("unit");
debugLog("Volume: "+volume+" "+volumeUnit);

// ——— 2) Surface area ———
model.result().evaluationGroup("eg1").create("meas2", "MeasureSurface");
model.result().evaluationGroup("eg1").feature("meas2").set("unit", "um^2");
model.result().evaluationGroup("eg1").feature("meas2").selection().set(3);
model.result().evaluationGroup("eg1").run();

double[][] areaResult = model.result().evaluationGroup("eg1").getReal();
double area = areaResult[0][1];
String areaUnit =
model.result().evaluationGroup("eg1").feature("meas2").getString("unit");
debugLog("Surface area: "+area+" "+areaUnit);

// ——— 3) Line length ———
model.result().evaluationGroup("eg1").create("meas3", "MeasureLine");
model.result().evaluationGroup("eg1").feature("meas3").set("unit", "um");
model.result().evaluationGroup("eg1").feature("meas3").selection().set(173);
model.result().evaluationGroup("eg1").run();

double[][] lengthResult = model.result().evaluationGroup("eg1").getReal();
double length = lengthResult[0][2];
String lengthUnit =
model.result().evaluationGroup("eg1").feature("meas3").getString("unit");
debugLog("Line length: "+length+" "+lengthUnit);

// ——— 4) Distance between two points ———
 | 245

model.result().evaluationGroup("eg1").create("meas4", "MeasureDistance");
model.result().evaluationGroup("eg1").feature("meas4").set("unit", "um");
model.result().evaluationGroup("eg1").feature("meas4").selection().set(155,
167);
// Alternative syntax:
// int[] vertices = new int[]{155, 167};
//
model.result().evaluationGroup("eg1").feature("meas4").selection().set(vertices
);
model.result().evaluationGroup("eg1").run();

double[][] distResult = model.result().evaluationGroup("eg1").getReal();
double distance = distResult[0][3];
String distUnit =
model.result().evaluationGroup("eg1").feature("meas4").getString("unit");
debugLog("Distance: "+distance+" "+distUnit);

// ——— 5) Mass properties ———
model.result().evaluationGroup("eg1").create("mass1", "MassProperties");
model.result().evaluationGroup("eg1").feature("mass1").selection().set(1);
model.result().evaluationGroup("eg1").feature("mass1").setIndex("unit", "um^3",
0);
model.result().evaluationGroup("eg1").feature("mass1").setIndex("unit", "mg",
1);
model.result().evaluationGroup("eg1").feature("mass1").setIndex("unit", "um",
2);

// Enable volume, mass and center-of-mass contributions
model.result().evaluationGroup("eg1").feature("mass1").setIndex("contributionen
abled", true, 0);
model.result().evaluationGroup("eg1").feature("mass1").setIndex("contributionen
abled", true, 1);
model.result().evaluationGroup("eg1").feature("mass1").setIndex("contributionen
abled", true, 2);
model.result().evaluationGroup("eg1").run();

double[][] massResult = model.result().evaluationGroup("eg1").getReal();
double massVolume = massResult[0][4];
double massMass = massResult[0][5];
double cmX = massResult[0][6];
double cmY = massResult[0][7];
double cmZ = massResult[0][8];

// Retrieve the unit strings
String[] massUnits =
model.result().evaluationGroup("eg1").feature("mass1").getStringArray("unit");

debugLog("Mass volume: "+massVolume+" "+massUnits[0]);
debugLog("Mass: "+massMass+" "+massUnits[1]);
debugLog("CofM x: "+cmX+" "+massUnits[2]);
debugLog("CofM y: "+cmY+" "+massUnits[2]);
debugLog("CofM z: "+cmZ+" "+massUnits[2]);
selectNode(model.result().evaluationGroup("eg1").feature("meas1"));

Using Derived Values
// ——— 1) Volume ———
246 |

model.result().numerical().create("meas1", "MeasureVolume");
model.result().numerical("meas1").set("unit", "um^3");
model.result().numerical("meas1").selection().set(1);
double[][] volumeResult = model.result().numerical("meas1").getReal();
double volume = volumeResult[0][0];
String volumeUnit = model.result().numerical("meas1").getString("unit");
debugLog("Volume: "+volume+" "+volumeUnit);
// ——— 2) Surface area ———
model.result().numerical().create("meas2", "MeasureSurface");
model.result().numerical("meas2").set("unit", "um^2");
model.result().numerical("meas2").selection().set(3);
double[][] surfaceResult = model.result().numerical("meas2").getReal();
double area = surfaceResult[0][0];
String areaUnit = model.result().numerical("meas2").getString("unit");
debugLog("Surface area: "+area+" "+areaUnit);

// ——— 3) Line length ———
model.result().numerical().create("meas3", "MeasureLine");
model.result().numerical("meas3").set("unit", "um");
model.result().numerical("meas3").selection().set(173);
double[][] lineResult = model.result().numerical("meas3").getReal();
double length = lineResult[0][0];
String lengthUnit = model.result().numerical("meas3").getString("unit");
debugLog("Line length: "+length+" "+lengthUnit);

// ——— 4) Distance between two points ———
model.result().numerical().create("meas4", "MeasureDistance");
model.result().numerical("meas4").set("unit", "um");
model.result().numerical("meas4").selection().set(155, 167);
double[][] distanceResult = model.result().numerical("meas4").getReal();
double distance = distanceResult[0][0];
String distanceUnit = model.result().numerical("meas4").getString("unit");
debugLog("Distance: "+distance+" "+distanceUnit);

// ——— 5) Mass properties ———
model.result().numerical().create("mass1", "MassProperties");
model.result().numerical("mass1").selection().set(1);

model.result().numerical("mass1").setIndex("unit", "um^3", 0);
model.result().numerical("mass1").setIndex("unit", "mg", 1);
model.result().numerical("mass1").setIndex("unit", "um", 2);

// Enable volume, mass and center?of?mass contributions
model.result().numerical("mass1").setIndex("contributionenabled", true, 0);
model.result().numerical("mass1").setIndex("contributionenabled", true, 1);
model.result().numerical("mass1").setIndex("contributionenabled", true, 2);

double[][] massResult = model.result().numerical("mass1").getReal();
double massVolume = massResult[0][0];
double massMass = massResult[1][0];
double cmX = massResult[2][0];
double cmY = massResult[3][0];
double cmZ = massResult[4][0];

// Retrieve the unit strings
String[] massUnits = model.result().numerical("mass1").getStringArray("unit");
 | 247

debugLog("Mass volume: "+massVolume+" "+massUnits[0]);
debugLog("Mass: "+massMass+" "+massUnits[1]);
debugLog("CofM x: "+cmX+" "+massUnits[2]);
debugLog("CofM y: "+cmY+" "+massUnits[2]);
debugLog("CofM z: "+cmZ+" "+massUnits[2]);

selectNode(model.result().numerical("meas1"));

Comments
Note that when using Derived Values, the massResult array comes back transposed
compared to the array returned by an Evaluation Group.
Instead of using the ASCII letter u for the micro-prefix, you can embed the
Unicode micro sign (\u00b5) in your unit strings. For example:

model.result().evaluationGroup("eg1").feature("meas1").set("unit",
"\u00b5m^3");

This forces the output to render µm^3 rather than um^3.
Rather than hard-coding geometric entity numbers (for example 155, 167), define
a named Explicit selection and reuse it. For example:

// Create the Evaluation Group
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Create Explicit named selections
model.component("comp1").selection().create("sel4", "Explicit");
model.component("comp1").selection("sel4").geom(0);
model.component("comp1").selection("sel4").label("Short Distance");
int[] vertices = new int[]{155, 167};
model.component("comp1").selection("sel4").set(vertices);

// ——— Distance between two points ———
model.result().evaluationGroup("eg1").create("meas4", "MeasureDistance");
model.result().evaluationGroup("eg1").feature("meas4").set("unit", "\u00b5m");
model.result().evaluationGroup("eg1").feature("meas4").selection().named("sel4"
);
model.result().evaluationGroup("eg1").run();

double[][] distResult = model.result().evaluationGroup("eg1").getReal();
double distance = distResult[0][0];
String distUnit =
model.result().evaluationGroup("eg1").feature("meas4").getString("unit");
debugLog("Distance: "+distance+" "+distUnit);

Note: If you use the Record Code or Record Method tools, the generated code will
match the default user interface behavior, it writes all evaluated results into
Evaluation Group tables or Table objects. It will not include direct assignments into
double[][] arrays or double variables as shown above. The 2D array format is
needed because each evaluation feature can compute multiple expressions or
perform parametric sweeps.
248 |

To account for the circumferential contribution in revolved geometries, set the
intvolume flag on a surface measure (and similar for other measures):

model.result().evaluationGroup("eg1").feature("meas2").set("intvolume", true);

This treats the surface integral as a revolved volume.

Using Numerical Results in a Model or Application

The numerical results retrieved using the API are stored in standard Java variables,
such as double and String. This allows you to use them directly in custom model
method code to automate modeling workflows. Similarly, these variables can be
linked to Declarations in the Application Builder for use in simulation apps. For
example, a double variable storing a length can be connected to a Data Display or
Input Field form object, making it visible or editable to the app user. To see an
example of this in practice, open the Tuning Fork demo application from the
Application Libraries at COMSOL Multiphysics > Applications.

Getting Numerical Data

This section provides several examples of how to retrieve general numerical data
from models using method code. The examples cover different types of studies
including parametric sweeps, time-dependent (transient) simulations, and
eigenfrequency analyses.
 | 249

GETTING VALUES AT A POINT

This example is based on the Steady-State 2D Heat Transfer with Conduction
tutorial model, which you can find in the Application Libraries at COMSOL
Multiphysics > Heat Transfer.

Because it is a stationary (steady-state) simulation, it represents one of the simplest
scenarios for demonstrating results evaluation.
The examples below, including method code, is part of a collection available for
download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_convection_2d_get_value_at_point.mph

The following code evaluates the temperature at the location defined by a Cut
Point 2D feature, demonstrating how to use both an Evaluation Group and a Derived
Values feature:

Evaluation Group
// Define a 2D point dataset
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);

// Create an Evaluation Group
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
250 |

https://www.comsol.com/model/application-programming-guide-examples-140771

// Add an EvalPoint feature to that group
model.result().evaluationGroup("eg1").create("pev1", "EvalPoint");
model.result().evaluationGroup("eg1").feature("pev1").set("data", "cpt1");

// Set the expression to be the temperature T
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr", "T", 0);

// Set the unit using Unicode
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "\u00b0C", 0);
// (Or ASCII: "degC" instead)

// Run the group so the feature gets evaluated
model.result().evaluationGroup("eg1").run();

// Read back the number and unit
double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
double pointValue = pointResult[0][0];
String pointValueUnit = model.result().evaluationGroup("eg1")
 .feature("pev1").getString("unit");

// Display result
debugLog("Value at point: "+pointValue+" "+pointValueUnit);

// Alternative Messages window syntax: message("Value at point: "+pointValue+"
"+pointValueUnit);

// (Optional) select it in the Model Builder
selectNode(model.result().evaluationGroup("eg1").feature("pev1"));

Derived Values
// Define a 2D point dataset
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);

// Add an EvalPoint feature to Derived Values
model.result().numerical().create("pev1", "EvalPoint");
model.result().numerical("pev1").set("data", "cpt1");

// Set the expression to be the temperature T
model.result().numerical("pev1").setIndex("expr", "T", 0);

// Set the unit using Unicode
model.result().numerical("pev1").setIndex("unit", "\u00b0C", 0); // Unicode unit
syntax
// (Or ASCII: "degC" instead)

// Read back the number and unit
double[][] pointResult = model.result().numerical("pev1").getReal();
double pointValue = pointResult[0][0];
String pointValueUnit = model.result().numerical("pev1").getString("unit");

// Display result
debugLog("Value at point: "+pointValue+" "+pointValueUnit);
 | 251

// Alternative Messages window syntax: message("Value at point: "+pointValue+"
"+pointValueUnit);

// (Optional) select it in the Model Builder
selectNode(model.result().numerical("pev1"));

Note: If you use the Record Code or Record Method tools, the generated code will
match the default user interface behavior, it writes all evaluated results into
COMSOL table objects. It will not include direct assignments into double[][]
arrays or double variables as shown above. The 2D array format is needed because
each evaluation feature can compute multiple expressions or perform parametric
sweeps.

Evaluating Two Quantities with an Evaluation Group
You can evaluate multiple quantities at once by using an Evaluation Group. In this
example, both the temperature and the effective thermal conductivity are
evaluated at the point by modifying the middle portion of the previous example:

// Set the expressions to be the temperature T and the effective thermal
conductivity
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr",
"ht.kmean", 1);

// Set the unit for Temperature using Unicode
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "\u00b0C", 0);
// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "W/(m*K)", 1);

// Run the group so the feature gets evaluated
model.result().evaluationGroup("eg1").run();

// Read back the numbers and units
double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
double pointValue1 = pointResult[0][0]; // Temperature
double pointValue2 = pointResult[0][1]; // Thermal conductivity
String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
 .feature("pev1").getStringArray("unit");

// Display result
debugLog("Value at point: "+pointValue1+" "+pointValueUnitArray[0]);
debugLog("Value at point: "+pointValue2+" "+pointValueUnitArray[1]);

The results and units are retrieved as elements of arrays, corresponding to the
evaluated expressions.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771
252 |

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_convection_2d_get_value_at_point_2_expression.mph

This file also includes a corresponding method that demonstrates the use of
Derived Values.

Evaluating Quantities For a Parametric Sweep
Building on the previous example, the figure below shows the results of a
parametric sweep where the rectangle height parameter h1 is varied in four steps:
0.9, 1.0, 1.1, and 1.2 m.

For parametric sweeps, such output can also be generated programmatically using
a custom method, as demonstrated in the figure below where the results are
written to the Debug Log.

The following code snipped shows how this can be achieved for an Evaluation
Group in a method.

// Create a CutPoint2D dataset at (x=0.6, y=0.2) using the parametric sweep
dataset dset2
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);
model.result().dataset("cpt1").set("data", "dset2"); // Use data from parametric
sweep

// Create an Evaluation Group named eg1
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
 | 253

// Add an EvalPoint feature pev1 to the group
model.result().evaluationGroup("eg1").create("pev1", "EvalPoint");
model.result().evaluationGroup("eg1").feature("pev1").set("data", "cpt1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr",
"ht.kmean", 1);

// Set the unit for temperature (Unicode)
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "\u00b0C", 0);
// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "W/(m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units
double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
 .feature("pev1").getStringArray("unit");

// Retrieve the unit for the sweep parameter
String parUnit = model.study("std1").feature("param").getString("punit");

// Loop over the sweep and print results
int lengthSweep = pointResult.length;
for (int k = 0; k < lengthSweep; k++) {

 // Extract values
 double pointValue0 = pointResult[k][0]; // Sweep parameter value (rectangle
height)
 double pointValue1 = pointResult[k][1]; // Temperature
 double pointValue2 = pointResult[k][2]; // Thermal conductivity

 // Display the evaluated results

debugLog("Parameter: "+pointValue0+" "+parUnit);
debugLog("Temperature at point: "+pointValue1+" "+pointValueUnitArray[0]);
debugLog("Conductivity at point: "+pointValue2+" "+pointValueUnitArray[1]);}

// (Optional) select it in the Model Builder
selectNode(model.result().evaluationGroup("eg1").feature("pev1"));

Note that the evaluation results are stored in the 2D array pointResult in the same
order as shown in the Evaluation Group table in the user interface. The first index
corresponds to the sweep parameter index, and the second index corresponds to
the evaluated expressions. By default, each row begins with the sweep parameter
value, followed by the results of the specified expressions.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771
254 |

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_convection_2d_get_value_at_point_one_parameter_sweep.mph

Parametric Sweep with Specific Combinations: Two or More Parameters
Continuing with the Steady-State 2D Heat Transfer with Conduction tutorial
model, suppose a parametric sweep is performed over two parameters: the
rectangle height h1 and the boundary temperature T0. Assume the Sweep type is
set to Specific combinations, with the following values:
• Rectangle height h1: 0.9, 1.0, 1.1, and 1.2 m
• Boundary temperature T0: 100, 150, 200, and 200 degC (°C)

Note: When using Specific combinations, the parameter lists must have the same
length, in this case 4 simulation runs, with each entry representing one
combination.
The figure below shows the Parametric Sweep settings used for this configuration
 | 255

We can now use a breakpoint in the Method Editor to stop the code execution at
the assignment of the pointResult array and display the results using the Data
Viewer window:

For information on using breakpoints, see the book Introduction to the
Application Builder.
The code in this case will resemble the one-parameter sweep case. Only the latter
part of the code, where the results are processed, needs to be modified, as shown
below:

// Retrieve units for sweep parameters
String[] parUnit = model.study("std1").feature("param").getStringArray("punit");

// For specific combinations, each row of pointResult already contains h1, T0,
T, and ht.kmean
for (int k = 0; k < pointResult.length; k++) {
 double h1 = pointResult[k][0];
 double T0 = pointResult[k][1];
 double temperature = pointResult[k][2];
 double conductivity = pointResult[k][3];

 debugLog("h1 = "+h1+" "+parUnit[0]);
 debugLog("T0 = "+T0+" "+parUnit[1]);
 debugLog(" Temperature at point: "+temperature+" "+pointValueUnitArray[0]);
256 |

 debugLog(" Thermal conductivity: "+conductivity+" "+pointValueUnitArray[1]);
 debugLog("");
}

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant files for this example are:
• heat_convection_2d_get_value_at_point_two_parameter_sweep_specific_combinations.

mph

• heat_convection_2d_get_value_at_point_four_parameter_sweep_specific_combinations

.mph

The four-parameter example includes two dummy parameters to demonstrate that
the same approach applies when using the Specific combinations option with more
than two parameters.

Parametric Sweep with All Combinations: Two Parameters
Continuing with the Steady-State 2D Heat Transfer with Conduction tutorial
model, assume now that the Sweep type is set to All combinations, with the
following values:
• Rectangle height h1: 0.9, 1.0, 1.1, and 1.2 m
• Boundary temperature T0: 100, 150, and 200 degC (°C)

This results in 4×3=12 simulation runs, covering all combinations of the two
parameters. The figure below shows the Parametric Sweep settings used for this
configuration.

Programmatically, this corresponds to a nested for-loop. This loop is indexed,
starting from 1. Once an Evaluation Group has been created, the indices can be
retrieved using the following call:
 | 257

https://www.comsol.com/model/application-programming-guide-examples-140771

double[][] sweepIndices =
model.result().evaluationGroup("eg1").feature("pev1").getDoubleMatrix("loopleve
l");
debugLog(sweepIndices);

The corresponding output for the array sweepIndices in the Debug Log window is:
{{1, 2, 3}, {1, 2, 3, 4}}

However, in the following example this array will not be needed.
258 |

We can use a breakpoint in the Method Editor to stop the code execution at the
assignment of the pointResult array and display the results using the Data Viewer
window:

Note that the pointResult array has dimensions [12][4], where:
• The first index corresponds to the parameter combination, with the sweep

ordered such that T0 varies fastest (that is, inner loop), and h1 varies slowest
(outer loop).
 | 259

• Each row contains:
- Column 0: h1
- Column 1: T0
- Column 2: Computed temperature at the point
- Column 3: Effective thermal conductivity at the point

In the output, you can confirm this organization:
• Rows [0–2] all have h1 = 0.9, with T0 = 100, 150, 200
• Rows [3–5] have h1 = 1.0, again sweeping over the same T0 values
• and so on...

This structure follows the row-major order of all combinations: for each value of
h1, all values of T0 are iterated through.
The following code snippet shows how data can be retrieved in a method.

// Optionally make sure to use Unicode label for temperature in parametric sweep
model.study("std1").feature("param").setIndex("punit", "\u00b0C", 1);

// Create a CutPoint2D dataset at (x=0.6, y=0.2) using the parametric sweep
dataset dset2
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);
model.result().dataset("cpt1").set("data", "dset2"); // Use data from parametric
sweep

// Create an Evaluation Group named eg1
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Add an EvalPoint feature pev1 to the group
model.result().evaluationGroup("eg1").create("pev1", "EvalPoint");
model.result().evaluationGroup("eg1").feature("pev1").set("data", "cpt1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr",
"ht.kmean", 1);

// Use description labels that are easy to use with Java's string utilities (using
underscore)
model.result().evaluationGroup("eg1").feature("pev1").setIndex("descr",
"Point_temperature", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("descr",
"Point_thermal_conductivity", 1);

// Set the unit for temperature (Unicode)
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "\u00b0C", 0);
// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
260 |

model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "W/(m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units
double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
 .feature("pev1").getStringArray("unit");

// Retrieve the units for the sweep parameters
String[] parUnits =
model.study("std1").feature("param").getStringArray("punit");

// Retrieve the description labels from the Evaluation Group column headers,
assuming they use underscore in their names
String[] columnHeaders =
model.result().evaluationGroup("eg1").getColumnHeaders();
String[] headerNames = new String[columnHeaders.length];
for (int i = 0; i < columnHeaders.length; i++) {
 headerNames[i] = columnHeaders[i].split(" ")[0];
}

// Loop over each row of results
for (int i = 0; i < pointResult.length; i++) {
 double h1 = pointResult[i][0];
 double T0 = pointResult[i][1];
 double pointTemperature = pointResult[i][2];
 double pointConductivity = pointResult[i][3];

 debugLog(headerNames[0]+" = "+h1+" "+parUnits[0]+" , "+headerNames[1]+" = "+
T0+" "+parUnits[1]);
 debugLog(headerNames[2]+": "+pointTemperature+" "+pointValueUnitArray[0]);
 debugLog(headerNames[3]+": "+pointConductivity+" "+pointValueUnitArray[1]);
 debugLog("");
}

// Optionally select it in the Model Builder
selectNode(model.result().evaluationGroup("eg1").feature("pev1"));

The (abridged) output from this code is as follows:
h1 = 0.9 m , T0 = 100.0 °C
Point_temperature: 18.187109113310555 °C
Point_thermal_conductivity: 52.0 W/(m*K)

h1 = 0.9 m , T0 = 150.0 °C
Point_temperature: 27.280663669965747 °C
Point_thermal_conductivity: 52.0 W/(m*K)

h1 = 0.9 m , T0 = 200.0 °C
Point_temperature: 36.37421822662094 °C
Point_thermal_conductivity: 52.0 W/(m*K)

h1 = 1.0 m , T0 = 100.0 °C
Point_temperature: 18.265040746500574 °C
 | 261

Point_thermal_conductivity: 52.0 W/(m*K)

...

h1 = 1.2 m , T0 = 200.0 °C
Point_temperature: 36.67970125214907 °C
Point_thermal_conductivity: 52.0 W/(m*K)

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_convection_2d_get_value_at_point_two_parameter_sweep_all_combinat

ions.mph

Parametric Sweep with All Combinations: Three or More Parameters
Expanding on the previous example, let us now introduce a dummy parameter
par1, for demonstration purposes.
262 |

https://www.comsol.com/model/application-programming-guide-examples-140771

As before, we can use a breakpoint in the Method Editor to pause execution at the
assignment of the pointResult array and inspect the contents using the Data
Viewer window.

Note that the pointResult array has dimensions [24][5], where:
• The first index corresponds to the parameter combination, with the sweep

ordered such that par1 varies fastest (that is, inner loop), then T0 varies
intermediately, and h1 varies slowest (outer loop).
 | 263

• Each row contains:
- Column 0: h1
- Column 1: T0
- Column 2: par1
- Column 3: Computed temperature at the point
- Column 4: Effective thermal conductivity at the point

The code used for a two-parameter sweep with the All Combinations option can be
generalized as follows, by modifying the latter part of the loop:

// Previous code
// ...
/// Loop over each row of results
int numSweepParams = 3; // or headerNames.length - number of result expressions
for (int i = 0; i < pointResult.length; i++) {
 // Print all sweep parameters in one line
 String paramLine = "";
 for (int p = 0; p < numSweepParams; p++) {
 if (p > 0) paramLine += " , ";
 paramLine += headerNames[p]+" = "+pointResult[i][p]+" "+parUnits[p];
 }
 debugLog(paramLine);

 // Print evaluated results
 for (int j = 0; j < pointValueUnitArray.length; j++) {
 debugLog(" "+headerNames[numSweepParams+j]+": "+
 pointResult[i][numSweepParams+j]+" "+pointValueUnitArray[j]);
 }
 debugLog("");
}

This code generalizes to more than three parameters.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant files for this example are:
• heat_convection_2d_get_value_at_point_three_parameter_sweep_all_combinations.mph

• heat_convection_2d_get_value_at_point_four_parameter_sweep_all_combinations.mph

The second example demonstrates the case of four parameters.

Parametric Sweep that Includes an Auxiliary Sweep
A model can include nested parametric sweeps, consisting of an outer sweep and
an inner sweep, where the inner sweep typically represents physics-related
parameters, such as material properties or boundary conditions, rather than
geometric dimensions or mesh settings. One common type of inner sweep is the
auxiliary sweep. For example, in the Steady-State 2D Heat Transfer with
Conduction tutorial model, the boundary temperature can be assigned as an
264 |

https://www.comsol.com/model/application-programming-guide-examples-140771

auxiliary sweep parameter, whereas the rectangle height, being a geometric
property, cannot.
The process of extracting results using an Evaluation Group remains essentially the
same, even when an auxiliary sweep is used.
Assume again that the parameters take the following values:
• Rectangle height h1: 0.9, 1.0, 1.1, and 1.2 m
• Boundary temperature T0: 100, 150, and 200 degC (°C)

The outer sweep is defined as shown in the figure below.

The auxiliary sweep (inner sweep) is defined in settings window for Step 1:
Stationary as shown in the figure below.

The following code snippet shows how data can be retrieved in a method.
// Optionally make sure to use Unicode label for temperature in parametric sweep
model.study("std1").feature("stat").setIndex("punit", "\u00b0C", 0); //
Auxiliary sweep unit

// Create a CutPoint2D dataset at (x=0.6, y=0.2) using the parametric sweep
dataset dset2
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);
 | 265

model.result().dataset("cpt1").set("data", "dset2"); // Use data from parametric
sweep

// Create an Evaluation Group named eg1
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Add an EvalPoint feature pev1 to the group
model.result().evaluationGroup("eg1").create("pev1", "EvalPoint");
model.result().evaluationGroup("eg1").feature("pev1").set("data", "cpt1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr",
"ht.kmean", 1);

// Use description labels that are easy to use with Java's string utilities (using
underscore)
model.result().evaluationGroup("eg1").feature("pev1").setIndex("descr",
"Point_temperature", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("descr",
"Point_thermal_conductivity", 1);

// Set the unit for temperature (Unicode)
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "\u00b0C", 0);
// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "W/(m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units
double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
 .feature("pev1").getStringArray("unit");

// Retrieve the unit for the sweep parameters

// Since h1 is the only parameter in the outer sweep, retrieve its unit directly
as a string
String parUnit = model.study("std1").feature("param").getString("punit");

// Retrieve the unit for the auxiliary sweep parameter
String auxUnit = model.study("std1").feature("stat").getString("punit");

// Retrieve the description labels from the Evaluation Group column headers,
assuming they use underscore in their names
String[] columnHeaders =
model.result().evaluationGroup("eg1").getColumnHeaders();
String[] headerNames = new String[columnHeaders.length];
for (int i = 0; i < columnHeaders.length; i++) {
 headerNames[i] = columnHeaders[i].split(" ")[0];
}

266 |

// Loop over each row of results
for (int i = 0; i < pointResult.length; i++) {
 double h1 = pointResult[i][0];
 double T0 = pointResult[i][1];
 double pointTemperature = pointResult[i][2];
 double pointConductivity = pointResult[i][3];

 debugLog(headerNames[0]+" = "+h1+" "+parUnit+" , "+headerNames[1]+" = "+T0+"
"+auxUnit);
 debugLog(headerNames[2]+": "+pointTemperature+" "+pointValueUnitArray[0]);
 debugLog(headerNames[3]+": "+pointConductivity+" "+pointValueUnitArray[1]);
 debugLog("");
}

// Optionally select it in the Model Builder
selectNode(model.result().evaluationGroup("eg1").feature("pev1"));

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_convection_2d_get_value_at_point_one_parameter_sweep_plus_auxilia

ry_sweep.mph

COMPUTING THE AVERAGE ALONG A BOUNDARY IN A PARAMETRIC SWEEP

Continuing with the Steady-State 2D Heat Transfer with Conduction tutorial
model, consider the case of a parametric sweep over one parameter: the rectangle
height. Suppose now that we want to compute the average temperature along the
right boundary of the rectangle.
In this case, a point dataset is not required, but aside from that, the code remains
very similar to the approach demonstrated earlier. One important detail is to
ensure that the correct dataset corresponding to the parametric sweep is used. In
this example, that is the dataset with the tag dset2.
The following code snippet shows how to use an Evaluation Group to retrieve the
average temperature on a boundary within a method.

// Create the Evaluation Group and set it to use the parametric sweep dataset
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
model.result().evaluationGroup("eg1").set("data", "dset2"); // Set sweep dataset

// Add an AvLine feature to the Evaluation Group to compute average values along
a boundary
model.result().evaluationGroup("eg1").create("av1", "AvLine");
// model.result().evaluationGroup("eg1").feature("av1").set("intsurface",
true); // Needed if an axisymmetric model
model.result().evaluationGroup("eg1").feature("av1").selection().set(4); //
Apply to boundary 4

// Set expressions and units
 | 267

https://www.comsol.com/model/application-programming-guide-examples-140771

model.result().evaluationGroup("eg1").feature("av1").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("av1").setIndex("expr",
"ht.kmean", 1);

model.result().evaluationGroup("eg1").feature("av1").setIndex("unit",
"\u00b0C", 0);
model.result().evaluationGroup("eg1").feature("av1").setIndex("unit", "W/
(m*K)", 1);

// Set optional labels
model.result().evaluationGroup("eg1").feature("av1").setIndex("descr",
"Avg_temperature", 0);
model.result().evaluationGroup("eg1").feature("av1").setIndex("descr",
"Avg_thermal_conductivity", 1);

// Run the Evaluation Group
model.result().evaluationGroup("eg1").run();

// Retrieve results and units
double[][] resultArray = model.result().evaluationGroup("eg1").getReal();
String[] resultUnits = model.result().evaluationGroup("eg1")
 .feature("av1").getStringArray("unit");

// Retrieve sweep parameter unit
String parUnit = model.study("std1").feature("param").getString("punit");

// Loop over results
for (int i = 0; i < resultArray.length; i++) {
 double sweepVal = resultArray[i][0]; // Sweep parameter (h1)
 double avgTemp = resultArray[i][1]; // Average temperature
 double avgCond = resultArray[i][2]; // Average conductivity

 debugLog("Parameter: "+sweepVal+" "+parUnit);
 debugLog(" Average temperature: "+avgTemp+" "+resultUnits[0]);
 debugLog(" Average conductivity: "+avgCond+" "+resultUnits[1]);
}

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_convection_2d_get_value_at_point_one_parameter_sweep_global.mph

The feature type used in the Evaluation Group for computing an average along a
line is AvLine. Similar feature types exist for other combinations of geometric
entities and evaluation operations, as summarized in the table below.

FEATURE TYPE DESCRIPTION

AvVolume Computes the average of an expression over a domain

AvSurface Computes the average over a boundary (2D surface in 3D)

AvLine Computes the average over an edge (curve in 2D/3D)
268 |

https://www.comsol.com/model/application-programming-guide-examples-140771

COMPUTING GLOBAL QUANTITIES IN A PARAMETRIC SWEEP

Continuing with the Steady-State 2D Heat Transfer with Conduction tutorial
model and a parametric sweep over the rectangle height, suppose we now want to
compute a global quantity, for example, the number of degrees of freedom
(DOFs) in the model for each parameter value. (A global quantity is one that is
not associated with a specific geometric entity.)
This value will vary throughout the sweep because, as the rectangle height
changes, the mesh is regenerated and the number of mesh elements, and thus the
number of DOFs, changes.
The variable name for the number of DOFs is numberofdofs.
The following code snippet shows how to use an Evaluation Group to retrieve the
number of degrees of freedom at each step of a parametric sweep within a method.

// Create the Evaluation Group and set it to use the parametric sweep dataset
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
model.result().evaluationGroup("eg1").set("data", "dset2"); // Set sweep dataset

// Add a Global Evaluation feature to the Evaluation Group
model.result().evaluationGroup("eg1").create("gev1", "EvalGlobal");

// Set the expression to evaluate: number of DOFs
model.result().evaluationGroup("eg1").feature("gev1").set("expr", new
String[]{"numberofdofs"});

// Optional: Set a label and unit
model.result().evaluationGroup("eg1").feature("gev1").set("descr", new
String[]{"Number of degrees of freedom"});
model.result().evaluationGroup("eg1").feature("gev1").set("unit", new
String[]{"1"});

// Run the evaluation group for all sweep points
model.result().evaluationGroup("eg1").run();

IntVolume Integrates an expression over a domain

IntSurface Integrates over a boundary surface

IntLine Integrates over an edge

MaxVolume Computes the maximum value within a domain

MaxSurface Computes the maximum over a boundary

MaxLine Computes the maximum along an edge

MinVolume Computes the minimum value within a domain

MinSurface Computes the minimum over a boundary

MinLine Computes the minimum along an edge

FEATURE TYPE DESCRIPTION
 | 269

// Retrieve the results (1 column: DOFs, 1 row per sweep point)
double[][] dofResults = model.result().evaluationGroup("eg1").getReal();

// Retrieve the unit for the sweep parameter
String parUnit = model.study("std1").feature("param").getString("punit");

// Loop through results
for (int i = 0; i < dofResults.length; i++) {
 double h1 = dofResults[i][0]; // Sweep parameter (h1)
 int ndof = (int) dofResults[i][1]; // Number of DOFs
 debugLog("h1 = "+h1+" "+parUnit);
 debugLog(" Number of DOFs: "+ndof);
}

Note: As an alternative to using Evaluation Group features such as AvLine and
MaxVolume, you can define a nonlocal coupling operator under Component >
Definitions > Nonlocal Couplings, and then evaluate it as a global quantity.
This example is part of a collection available for download and is included in the
same file as the previous example, “Computing the Average Along a Boundary in
a Parametric Sweep” on page 267.

NESTED PARAMETRIC SWEEP NODES

Instead of using a single Parametric Sweep feature with the All combinations or
Specified combinations option, you can use multiple nested Parametric Sweep
nodes. Accessing results from a nested sweep is very similar to retrieving data from
a sweep that uses only one Parametric Sweep node.
Consider the earlier example where the sweep type is set to All combinations, with
the following parameter values:
• Rectangle height h1: 0.9, 1.0, 1.1, and 1.2 m
• Boundary temperature T0: 100, 150, and 200 degC (°C)
270 |

This sweep can also be performed by nesting two Parametric Sweep nodes, as
illustrated in the figures below.

The following code snippet shows how to retrieve data from such a nested sweep.
While the process is similar to the single-node case, there are some minor
differences.

// Optionally make sure to use Unicode label for temperature in parametric sweep
model.study("std1").feature("param").setIndex("punit", "\u00b0C", 0);
model.study("std1").feature("param2").setIndex("punit", "m", 0);

// Create a CutPoint2D dataset at (x=0.6, y=0.2) using the parametric sweep
dataset dset2
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.6);
model.result().dataset("cpt1").set("pointy", 0.2);
model.result().dataset("cpt1").set("data", "dset2"); // Use data from parametric
sweep

// Create an Evaluation Group named eg1
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Add an EvalPoint feature pev1 to the group
model.result().evaluationGroup("eg1").create("pev1", "EvalPoint");
 | 271

model.result().evaluationGroup("eg1").feature("pev1").set("data", "cpt1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr",
"ht.kmean", 1);

// Use description labels that are easy to use with Java's string utilities (using
underscore)
model.result().evaluationGroup("eg1").feature("pev1").setIndex("descr",
"Point_temperature", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("descr",
"Point_thermal_conductivity", 1);

// Set the unit for temperature (Unicode)
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "\u00b0C", 0);
// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "W/(m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units
double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
 .feature("pev1").getStringArray("unit");

// Retrieve the units for the sweep parameters
String parUnit1 = model.study("std1").feature("param").getString("punit");
String parUnit2 = model.study("std1").feature("param2").getString("punit");

// Retrieve the description labels from the Evaluation Group column headers,
assuming they use underscore in their names
String[] columnHeaders =
model.result().evaluationGroup("eg1").getColumnHeaders();
String[] headerNames = new String[columnHeaders.length];
for (int i = 0; i < columnHeaders.length; i++) {
 headerNames[i] = columnHeaders[i].split(" ")[0];
}

// Loop over each row of results
for (int i = 0; i < pointResult.length; i++) {
 double h1 = pointResult[i][0];
 double T0 = pointResult[i][1];
 double pointTemperature = pointResult[i][2];
 double pointConductivity = pointResult[i][3];

 debugLog(headerNames[0]+" = "+h1+" "+parUnit2+" , "+headerNames[1]+" = "+T0+"
"+parUnit1);
 debugLog(headerNames[2]+": "+pointTemperature+" "+pointValueUnitArray[0]);
 debugLog(headerNames[3]+": "+pointConductivity+" "+pointValueUnitArray[1]);
 debugLog("");
272 |

}

// Optionally select it in the Model Builder
selectNode(model.result().evaluationGroup("eg1").feature("pev1"));

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_convection_2d_get_value_at_point_two_parameter_sweep_nested_featu

re_nodes.mph

NESTED PARAMETRIC SWEEP NODES, RAGGED SWEEP

In certain cases, the nested node option gives you additional flexibility. For
example, you can perform sweeps where the inner parameter is a function of the
outer parameter. This results in an irregular sweep where some parameter
combinations are missing. Other names for this type of sweep are jagged or ragged
sweep.
The following example of a spinning aluminum disk demonstrates a sweep over a
geometry with a varying number of holes depending on the hole radius. The
example is available for download (see below) and demonstrates accessing results
for a ragged sweep.

// Set number of displayed digits
int digits = 4;

// Set parametric sweep units
model.study("std1").feature("param").setIndex("punit", "1", 0);
model.study("std1").feature("param1").setIndex("punit", "m", 0);

// Create an Evaluation Group named eg1 and set it to the parametric sweep dataset
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
model.result().evaluationGroup("eg1").set("data", "dset2");

// Create an average surface evaluation feature
model.result().evaluationGroup("eg1").create("av1", "AvSurface");
model.result().evaluationGroup("eg1").feature("av1").selection().set(1);

// Set expressions to evaluate and their units
model.result().evaluationGroup("eg1").feature("av1").setIndex("expr",
"solid.disp", 0);
model.result().evaluationGroup("eg1").feature("av1").setIndex("expr",
"solid.mises", 1);
model.result().evaluationGroup("eg1").feature("av1").setIndex("unit",
"\u00b5m", 0);
model.result().evaluationGroup("eg1").feature("av1").setIndex("unit", "MPa",
1);

// Use description labels that are easy to use with Java's string utilities (using
underscore)
 | 273

https://www.comsol.com/model/application-programming-guide-examples-140771

model.result().evaluationGroup("eg1").feature("av1").setIndex("descr",
"Displacement_magnitude", 0);
model.result().evaluationGroup("eg1").feature("av1").setIndex("descr",
"von_Mises_stress", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units
double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
 .feature("av1").getStringArray("unit");

// Retrieve the units for the sweep parameters
// String parUnit1 = model.study("std1").feature("param").getString("punit"); /
/ parUnit1 is not needed since it is 1 (the unit of the number of holes)
String parUnit2 = model.study("std1").feature("param1").getString("punit");

// Retrieve the description labels from the Evaluation Group column headers,
assuming they use underscore in their names
String[] columnHeaders =
model.result().evaluationGroup("eg1").getColumnHeaders();
String[] headerNames = new String[columnHeaders.length];
for (int i = 0; i < columnHeaders.length; i++) {
 headerNames[i] = columnHeaders[i].split(" ")[0];
}

// Loop over each row of results
for (int i = 0; i < pointResult.length; i++) {
 int numHoles = (int) (pointResult[i][0]);
 String holeRadius = toString(pointResult[i][1], digits);
 String avDisp = toString(pointResult[i][2], digits);
 String avStress = toString(pointResult[i][3], digits);

 debugLog(headerNames[0]+" = "+numHoles+" , "+headerNames[1]+" = "+holeRadius+
" "+parUnit2);
 debugLog(headerNames[2]+": "+avDisp+" "+pointValueUnitArray[0]);
 debugLog(headerNames[3]+": "+avStress+" "+pointValueUnitArray[1]);
 debugLog("");
}

// Optionally select it in the Model Builder
selectNode(model.result().evaluationGroup("eg1").feature("av1"));

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• spinning_disk_ragged_sweep_nested_feature_nodes.mph
274 |

https://www.comsol.com/model/application-programming-guide-examples-140771

RETRIEVING DATA FROM A TRANSIENT SIMULATION

This example is based on the Axisymmetric Transient Heat Transfer tutorial
model, which you can find in the Application Libraries at COMSOL Multiphysics >
Heat Transfer.
This is a transient (time-dependent) simulation and retrieving transient data is very
similar to that of a parametric sweep. You will notice that the code below is very
similar to the example in “Evaluating Quantities For a Parametric Sweep” on page
253.

// Remove any existing features
model.result().evaluationGroup().remove("eg1");
model.result().dataset().remove("cpt1");

// Create a CutPoint2D dataset at (R=0.1 (pointx), Z=0.3 (pointy))
// Note, this is an axisymmetric model
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().dataset("cpt1").set("pointx", 0.1);
model.result().dataset("cpt1").set("pointy", 0.3);

// Create an Evaluation Group named eg1
model.result().evaluationGroup().create("eg1", "EvaluationGroup");

// Add an EvalPoint feature pev1 to the group
model.result().evaluationGroup("eg1").create("pev1", "EvalPoint");
model.result().evaluationGroup("eg1").feature("pev1").set("data", "cpt1");

// Set expressions to evaluate: temperature and effective thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr", "T", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("expr",
"ht.kmean", 1);

// Set or confirm the unit for time (optional, defaults to seconds)
model.study("std1").feature("time").set("tunit", "s");

// Set the unit for temperature (Unicode)
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "\u00b0C", 0);
// (Or ASCII: "degC" instead)

// Set the unit for thermal conductivity
model.result().evaluationGroup("eg1").feature("pev1").
 setIndex("unit", "W/(m*K)", 1);

// Run the Evaluation Group for all parametric values
model.result().evaluationGroup("eg1").run();

// Retrieve evaluated values and their corresponding units
double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
String[] pointValueUnitArray = model.result().evaluationGroup("eg1")
 .feature("pev1").getStringArray("unit");

// Retrieve the unit for the transient parameter
String timeUnit = model.study("std1").feature("time").getString("tunit");
 | 275

// Loop over output times (that is, times stored in the solution), which may
differ from internal solver steps
int lengthTimeList = pointResult.length;
for (int k = 0; k < lengthTimeList; k++) {

 // Extract values
 double pointValue0 = pointResult[k][0]; // Time value (similar to a sweep
parameter value)
 double pointValue1 = pointResult[k][1]; // Temperature
 double pointValue2 = pointResult[k][2]; // Thermal conductivity

 // Display the evaluated results
 debugLog("Time: "+pointValue0+" "+timeUnit);
 debugLog("Temperature at point: "+pointValue1+" "+pointValueUnitArray[0]);
 debugLog("Conductivity at point: "+pointValue2+" "+pointValueUnitArray[1]);
 debugLog("");
}

// (Optional) select it in the Model Builder
selectNode(model.result().evaluationGroup("eg1").feature("pev1"));

The (abridged) output from this code is as follows:
Time: 0.0 s
Temperature at point: 5.307062156134634E-5 °C
Conductivity at point: 52.0 W/(m*K)

Time: 10.0 s
Temperature at point: 0.002430733497874371 °C
Conductivity at point: 52.0 W/(m*K)

Time: 20.0 s
Temperature at point: 0.056482830296829434 °C
Conductivity at point: 52.0 W/(m*K)

...

Time: 380.0 s
Temperature at point: 410.03241468409624 °C
Conductivity at point: 52.0 W/(m*K)

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_transient_axi_get_value_at_point_.mph

ACCESSING THE LENGTH OF A PARAMETRIC LIST

There are multiple ways to retrieve the number of parameters or time steps in a
solution. In the previous examples, calls such as:

double[][] pointResult = model.result().evaluationGroup("eg1").getReal();
int lengthSweep = pointResult.length;
276 |

https://www.comsol.com/model/application-programming-guide-examples-140771

can be used to retrieve the length of the sweep.
An alternative for an Evaluation Group is:

int nOfRows = model.result().evaluationGroup("eg1").getNRows();

which returns the number of rows in the corresponding result table.
If you instead have access to a Plot Group (for example, with the tag pg1), you can
use:

int lengthOfSweep = model.result("pg1").getStepCount(0);

Here, the argument to getStepCount represents the parameter index. However,
note that getStepCount belongs to a different part of the API that is more tightly
linked to the solution data structures. As a result, the ordering of parameters
differs from that of an Evaluation Group.
For sweeps involving 1, 2, or 3 parameters, the order is simply the reverse of that
used in an Evaluation Group. For 4 parameters, however, the last two parameters
are combined into a single sequence. Alternatively, you can think of it as the first
two parameters being grouped together.
To illustrate this, consider a sweep over the parameters h1, T0, par1, and par2, as
shown in the figure below.
 | 277

A corresponding 2D Plot Group setting is shown in the figure below.

Here, we can see that the first two parameters h1 and T0 are grouped together.
An expanded view of this list is presented in the following figure.

This list contains 4x3=12 entries, which is reflected by the value returned by:
int lengthOfSweep = model.result("pg1").getStepCount(2);
278 |

The figure below show all the returned values for the inputs 0, 1, and 2, using the
Java Shell window.

ACCESSING A SUBSET OF A LIST OF OUTPUT TIMES

A list of output times can be very long and there could be reasons to access only
the solutions for a subset. Consider the example in the section “Retrieving Data
from a Transient Simulation” on page 275. Recall that this example uses a point
evaluation at a cut point.
To access a subset of output times based on index, you can use the following
syntax:

model.result().evaluationGroup("eg1").feature("pev1").setIndex("looplevelinput"
, "manualindices", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("looplevelindice
s", "range(5,10,45)", 0);

To access a subset of output times based on interpolated times, you can use the
following syntax:

model.result().evaluationGroup("eg1").feature("pev1").setIndex("looplevelinput"
, "interp", 0);
model.result().evaluationGroup("eg1").feature("pev1").setIndex("interp",
"range(11.5,0.5,25.5)", 0);

Note that for interpolated times, the time values given as input do not need to
match the output times of the Time Dependent study step.
If you want to clear the Debug Log window before running the method, you can
call the clearDebugLog() method.
However, keep in mind that the primary purpose of these examples is not to print
results to the Debug Log window, but rather to illustrate how data can be retrieved,
processed, and used in other methods or incorporated into simulation apps.
This example is part of a collection available for download:
 | 279

www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• heat_transient_axi_get_value_at_point_subset.mph

As an alternative to using an Evaluation Group, one can instead use a SolutionInfo
object. This technique is more general but also more advanced.
The example below illustrates how the first and last time output times can be
retrieved from a model using this technique.

// Use a SolutionInfo object to retrieve the first and last output times
SolverSequence sol = model.sol("sol1");
SolutionInfo info = sol.getSolutioninfo();
int[] indx1 = info.getIndices(0, new int[]{0}); // Not needed but used for
demonstration purposes
double[][] values = info.getVals(0, new int[]{0});
double firstTime = values[0][0];
double lastTime = values[0][indx1.length-1];

The the methods getIndices and getVals are described in more detail in the
Programming Reference Manual in the section SolutionInfo Object and its
Methods.

UPDATE A CHOICELIST DYNAMICALLY FOR OUTPUT TIMES

The following method updateOutputTimeList is part of an app where a Combo
Box form object is used to select the output time used for evaluation and
visualization.

// Set dummy expression 1 and use an Evaluation Group to evaluate first and last
times
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
EvaluationGroupFeature eg1 = model.result().evaluationGroup("eg1");
eg1.create("gev1", "EvalGlobal");
eg1.feature("gev1").setIndex("expr", 1, 0);
eg1.run();

// Get first and last output times
eg1.setIndex("looplevelinput", "first", 0);
eg1.run();
double firstTime = eg1.getReal()[0][0];

eg1.setIndex("looplevelinput", "last", 0);
eg1.run();
double lastTime = eg1.getReal()[0][0];

// Calculate N evenly spaced times
int N = numberOfOutputTimes;
double[] times = new double[N];
for (int i = 0; i < N; i++) {
 times[i] = firstTime+i*(lastTime-firstTime)/(N-1);
}

280 |

https://www.comsol.com/model/application-programming-guide-examples-140771

// Convert to string and interpolate
String[] timeStrs = new String[N];
for (int i = 0; i < N; i++) {
 timeStrs[i] = toString(times[i], digits);
}
String interpList = String.join(" ", timeStrs);

// Set expression to evaluate (average)
model.result().evaluationGroup().create("eg2", "EvaluationGroup");
EvaluationGroupFeature eg2 = model.result().evaluationGroup("eg2");
eg2.create("av1", "AvVolume");
eg2.feature("av1").setIndex("expr", "T", 0);
eg2.set("data", "rev1");

eg2.setIndex("looplevelinput", "interp", 0);
eg2.setIndex("interp", interpList, 0);
eg2.run();

// Update choicelist and the current output time used for plot and evaluation
app.declaration("choicelist1").setList(timeStrs, timeStrs);
outputTimeStr = timeStrs[N-1];
changeOutputTime();

The method evaluates a dummy expression, "1", to retrieve the first and last
output times. As an alternative, one can use the SolutionInfo method described
in the section “Accessing a Subset of a List of Output Times” on page 279.
The call

app.declaration("choicelist1").setList(timeStrs, timeStrs);

is used to dynamically update choicelist1, which is used by a Combo Box in the
app’s user interface.
The code for the changeOutputTime method is as follows.

EvaluationGroupFeature eg2 = model.result().evaluationGroup("eg2");
eg2.setIndex("interp", outputTimeStr, 0);
eg2.run();

double[][] pointResult = eg2.getReal();
pointValue = toString(pointResult[0][1], digits);

model.result("pg4").setIndex("looplevel", "interp", 0);
model.result("pg4").set("interp", outputTimeStr);
model.result("pg4").run();

model.result("pg2").setIndex("looplevel", "interp", 0);
model.result("pg2").set("interp", outputTimeStr);
model.result("pg2").run();

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771
 | 281

https://www.comsol.com/model/application-programming-guide-examples-140771

The relevant files for this example are:
• heat_transient_axi_get_average_value_for_subset_evaluation_group_app.m

ph

• heat_transient_axi_get_average_value_for_subset_solution_info_app.mph

ACCESSING EIGENFREQUENCY DATA

This example is based on the Tuning Fork tutorial model, which you can find in
the Application Libraries at COMSOL Multiphysics > Structural Mechanics.
This is a combined parametric and eigenfrequency simulation that is also very
similar to that of a parametric sweep. You will notice that the code below is very
similar to the example in “Evaluating Quantities For a Parametric Sweep” on page
253.
The code below evaluates the eigenfrequencies for a subset of parameter values
from a parametric sweep, using a Global Evaluation feature inside an Evaluation
Group.

// Remove existing features if needed
model.result().evaluationGroup().remove("eg1");

// Create the Evaluation Group and set it to use the parametric sweep dataset
model.result().evaluationGroup().create("eg1", "EvaluationGroup");
model.result().evaluationGroup("eg1").set("data", "dset2"); // Set sweep dataset

// Add a Global Evaluation feature to the Evaluation Group
model.result().evaluationGroup("eg1").create("gev1", "EvalGlobal");

// Set the expression to evaluate a dummy expression 1
model.result().evaluationGroup("eg1").feature("gev1").setIndex("expr", "1", 0);

model.result().evaluationGroup("eg1").setIndex("looplevelinput",
"manualindices", 0);
model.result().evaluationGroup("eg1").setIndex("looplevelindices", "7 8 9", 0);

model.result().evaluationGroup("eg1").setIndex("looplevelinput", "manual", 1);
model.result().evaluationGroup("eg1").setIndex("looplevel", "1 2 3", 1);

// Run the evaluation group for all sweep points
model.result().evaluationGroup("eg1").run();

// Retrieve the unit for the sweep parameter
String parUnit = model.study("std1").feature("param").getString("punit");

// Retrieve the unit for the eigenfrequency parameter
//String auxUnit = model.study("std1").feature("stat").getString("punit");
String efqUnit = model.study("std1").feature("eig").getString("eigunit");

// Retrieve the results
double[][] efqResults = model.result().evaluationGroup("eg1").getReal();

// Loop through results
282 |

for (int i = 0; i < efqResults.length; i++) {
 double L = efqResults[i][0]; // Sweep parameter (L)
 double efq = efqResults[i][1]; // Eigenfrequency (resonant frequency)
 debugLog("L = "+L+" "+parUnit);
 debugLog(" Eigenfrequency: "+efq+" "+efqUnit);
 debugLog("");
}

Specifically it creates an Evaluation Group named eg1 and sets its dataset to dset2,
which contains results from a parametric eigenfrequency sweep.
It uses dummy expression 1 to trigger evaluation at the selected sweep points. It
manually selects which parametric indices and eigenmode indices to evaluate:
• looplevelindices = "7 8 9" selects specific parameter values (for example,

geometry or material settings).
• looplevel = "1 2 3" selects specific eigenmodes at each sweep point.

The Evaluation Group is then run, and the output table contains:
• The parameter value (L) used in the sweep.
• The corresponding eigenfrequency for each selected mode.

Finally, the code logs each parameter and eigenfrequency pair. The
eigenfrequencies vary with the parameter L, due to the fact that the resonance
frequency is a function of the length of the tuning fork.
The (abridged) output from this code is as follows:

L = 0.078 m
 Eigenfrequency: 451.12805182824405 Hz

L = 0.078 m
 Eigenfrequency: 692.8198415933232 Hz

L = 0.078 m
 Eigenfrequency: 1678.173090553073 Hz

...

L = 0.07875 m
 Eigenfrequency: 1657.9561032429424 Hz

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• tuning_fork_get_eigenfrequency_data.mph
 | 283

https://www.comsol.com/model/application-programming-guide-examples-140771

Recursion and Recursively Defined Geometry Objects

Methods can support recursion by having a function calling itself in a recursive
loop. The following examples create recursive CAD geometry models of a
Sierpinski carpet in 2D and a Menger sponge in 3D.

SIERPINSKI CARPET

The following method, create_carpet, initiates the recursion to a certain
recursive level according to a user-defined Parameter mslevel, defined under
Global Definitions in the Model Builder. It sets a limit at 5 levels in order to avoid
creating an exceedingly large geometry. The method assumes that you have
created a 2D Component and that you have declared an integer scalar variable
counter.

int level = (int) model.param().evaluate("mslevel");
if (level < 1)

error("Carpet level needs to be at least 1.");
if (level > 5)

error("Carpet level needs to be at most 5.");
counter = 0;
model.component("comp1").geom("geom1").feature().clear();
model.component("comp1").geom("geom1").autoRebuild("off");
double cx0 = 0, cy0 = 0;
double si0 = 1;
carpet(level, cx0, cy0, si0);
model.component("comp1").geom("geom1").runPre("fin");

The method create_carpet in turn calls the main recursive function carpet, listed
below, using four input arguments for the recursion level, the center x- and y-
coordinates, and the current side length.
284 |

The input arguments are defined in the method’s Settings window, as shown
below.

The code for the method carpet is shown below.
int l = level;
double posx, posy, si1;
String strix;
int l1;
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {
posx = cx+i*si-si;
posy = cy+j*si-si;
strix = toString(i)+toString(j);
if ((Math.abs((i-1))+Math.abs((j-1))) > 0) {

if (l == 1) {
counter = counter+1;
model.component("comp1").geom("geom1").create("sq"+strix+"C"+

toString(counter), "Square");
with(model.component("comp1").geom("geom1").feature("sq"+strix+"C"+

toString(counter)));
set("base", "center");
set("size", new double[]{si});
set("pos", new double[]{posx, posy});

endwith();
model.component("comp1").geom("geom1").feature("sq"+strix+"C"+

toString(counter)).label("Square"+strix+"C"+toString(counter));
} else {

l1 = l-1;
si1 = si/3;
carpet(l1, posx, posy, si1);

}
}

}

 | 285

}

The figure below shows the resulting geometry for a level-3 carpet.

Note that the number of square geometry objects defined for the level 3 carpet is
512. The number of geometry objects for a level-N carpet is 8N. This means that
for the maximum level 5 set by the method create_carpet, the resulting geometry
has 32,768 geometry objects.

MENGER SPONGE

The methods for the Sierpinski carpet readily generalize to 3D. However, in 3D,
you need to be careful not to generate more objects than your computer can
handle. The method assumes that you have created a 3D Component and that you
have declared an integer scalar variable counter.
The following method, create_sponge, initiates the recursion.

int level = (int) model.param().evaluate("mslevel");
if (level < 1)

error("Sponge level needs to be at least 1.");
if (level > 3)

error("Sponge level needs to be at most 3.");
counter = 0;
model.component("comp1").geom("geom1").feature().clear();
model.component("comp1").geom("geom1").autoRebuild("off");
double cx0 = 0, cy0 = 0, cz0 = 0;
double si0 = 1;
sponge(level, cx0, cy0, cz0, si0);
model.component("comp1").geom("geom1").runPre("fin");
286 |

The method sponge, shown below, is called by the above method and recursively
creates a Menger sponge.

int l = level;
double posx, posy, posz, si1;
String strix;
int l1;
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) {

posx = cx+i*si-si;
posy = cy+j*si-si;
posz = cz+k*si-si;
strix = toString(i)+toString(j)+toString(k);
if ((Math.abs((i-1))+Math.abs((j-1))+Math.abs((k-1))) > 1) {

if (l == 1) {
counter = counter+1;
model.component("comp1").geom("geom1").create("blk"+strix+"C"+

toString(counter), "Block");
with(model.component("comp1").geom("geom1").feature("blk"+strix+"C"+

toString(counter)));
set("base", "center");
set("size", new String[]{toString(si), toString(si),

toString(si)});
set("pos", new double[]{posx, posy, posz});

endwith();
model.component("comp1").geom("geom1").feature("blk"+strix+"C"+

toString(counter)).label("Block"+strix+"C"+toString(counter));
} else {

l1 = l-1;
si1 = si/3;
sponge(l1, posx, posy, posz, si1);

}
}

}
}

}

 | 287

The figure below shows the resulting geometry for a level-2 sponge.

In this case, the number of geometry objects grows with the level N as 20N and
the level-2 sponge shown above has 400 block geometry objects.
Note that if you have any of the add-on products for additional CAD
functionality, you can export these geometry objects on standard CAD formats.
Without add-on products, you can export the meshed geometry to any of the
supported mesh formats.
You can download the MPH files for these examples from:
www.comsol.com/model/recursion-and-recursively-defined-geometry-objects-75461

Mesh Information and Statistics

You can retrieve a variety of mesh information and statistical quantities, such as
element quality, the total number of elements, the total mesh volume, and so on.
The figure below shows part of an application displaying such information.
288 |

https://www.comsol.com/model/recursion-and-recursively-defined-geometry-objects-75461

Assuming that you would like to link the various mesh quantities to variables
declared under the Declarations node, the corresponding method code would
include the following lines of code:

a = model.component("comp1").mesh("mesh1").getNumElem();
b = model.component("comp1").mesh("mesh1").getMinQuality("tet");
c = model.component("comp1").mesh("mesh1").getMeanQuality("tet");
d = model.component("comp1").mesh("mesh1").getMinVolume("tet");
e = model.component("comp1").mesh("mesh1").getVolume("tet");

For more information on available mesh quantities, see the COMSOL
Multiphysics Programming Reference Manual.

Accessing Higher-Order Finite Element Nodes

The extended mesh data structure contains information related to the finite
element method including, for example, the placement of higher-order element
nodes. The extended mesh information is contained in the class XmeshInfo and
provides information about the numbering of elements, nodes, and degrees of
freedom (DOFs) in the extended mesh and in the matrices returned by the
Assemble feature and the solvers. For detailed information on XmeshInfo, see the
Programming Reference Manual.
The following example method illustrates how to use the extended mesh
information to plot higher-order nodes in a few important special cases. Note that
general functionality for this is built-in when creating a Mesh Plot under Results
while also using a Study as the referenced Dataset.
 | 289

The example below covers cases with one model component, one geometry, and
a subset of physics combinations. If you apply it to other cases, you will get an
error message.

// Note that this method is only implemented for one component and one geometry
and does not work for all physics combinations.

String stdTag = model.study().uniquetag("stdfe");
model.study().create(stdTag);
model.study(stdTag).label("FE Nodes Study "+stdTag.substring(5));
model.study(stdTag).showAutoSequences("sol");
String solTag = model.sol().uniquetag("sol");
model.sol().create(solTag);
model.sol(solTag).create("st1", "StudyStep");
model.sol(solTag).create("v1", "Variables");

SolverFeature step = model.sol(solTag).feature("v1");

XmeshInfo xmi = step.xmeshInfo();
try {

XmeshInfoNodes testnodes = xmi.nodes();
} catch (Exception e) {

error("Cannot access finite element data. Only implemented for one geometry and
stationary studies.");
}

XmeshInfoNodes mynodes = xmi.nodes();
double[][] coords = mynodes.gCoords();
int[] coordsize = matrixSize(coords);

int sdim = 0;
if (coordsize[0] == 3) {
290 |

sdim = 3;
} else if (coordsize[0] == 2) {

sdim = 2;
} else

error("The geometry of the first component is not 2D or 3D.");

String mesh = "mesh"+stdTag;
model.result().dataset().create(mesh, "Mesh");

String pgTag = model.result().uniquetag("pgfe");
ResultFeature pg = model.result().create(pgTag, sdim);
model.result(pgTag).label("FE Nodes Plot "+pgTag.substring(4));
String nodes = pgTag;
model.result(nodes).create("mesh", "Mesh");
if (sdim == 3) {

with(model.result(nodes).feature("mesh"));
set("data", mesh);
set("meshdomain", "volume");

endwith();
} else {

with(model.result(nodes).feature("mesh"));
set("data", mesh);
set("meshdomain", "surface");

endwith();
}

with(model.result(nodes).feature("mesh"));
set("elemcolor", "none");
set("wireframecolor", "gray");
set("elemscale", 0.999);

endwith();

with(model.result(nodes));
set("edges", true);
set("data", mesh);

endwith();

ResultFeature plot = pg.create("pt1", "PointData");
plot.set("pointdata", coords)

.set("coloring", "uniform")

.set("color", "red");
plot.run();

selectNode(pg);

Comments
The first few lines of the method set up a solver step object step, which is used to
extract the extended mesh information. The extended mesh information, which
contains information on the higher-order nodes, is extracted in the line

XmeshInfo xmi = step.xmeshInfo();

The lines
XmeshInfoNodes mynodes = xmi.nodes();
double[][] coords = mynodes.gCoords();
 | 291

int[] coordsize = matrixSize(coords);

access and store the finite element node coordinates in a 2-by-coordsize (2D) or
3-by-coordsize (3D) array.
The following code segments set up a mesh dataset and an associated mesh plot.
The last section uses the low-level PointData plot type to visualize the finite
element nodes. For more information on this plot type, see “Points in 3D” on
page 190.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• loaded_spring.mph

Accessing System Matrices and Vectors

You can gain low-level access to the finite element system matrices and vectors by
adding nodes of the types Assemble and Input Matrix under a Study node.
The example below shows how to set up and solve a 2D electrostatics problem on
the unit square [0,1]-by-[0,1]. After the original problem is solved, the load
vector is modified at a user-defined coordinate. The code searches for the degree
of freedom closest to the target user-defined coordinate and modifies the load
vector to a user-defined value. The physical interpretation of the modified load is
that of an added volume charge.
To run the example code below, first use the Model Wizard to create a blank
model. Then, add a new method and paste the example code below. Finally, run
292 |

https://www.comsol.com/model/application-programming-guide-examples-140771

the method. You can try changing the variable values in the Initializations section
at the beginning of the code and run again.

// Initializations
double x_load = 0.2; // Target x-coordinate for load
double y_load = 0.2; // Target y-coordinate for load
double load = 1e-9; // Load, volume charge
double dist = 10.0; // Distance to (x_load,y_load) from degree of freedom
int index = 0; // Index of the degree of freedom closest to (x_load,y_load)

// Clear any previous model
clearModel(model);

// Create a new model component
model.modelNode().create("comp1");

// Create the 2D geometry
model.geom().create("geom1", 2);
model.geom("geom1").feature().create("sq1", "Square");
model.geom("geom1").run();

// Create the mesh
model.mesh().create("mesh1", "geom1");
model.mesh("mesh1").feature().create("fre1", "FreeTri");
model.mesh("mesh1").run();

// Setup the electrostatics physics problem
model.physics().create("es", "Electrostatics", "geom1");
model.physics("es").feature().create("gnd1", "Ground", 1);
model.physics("es").feature("gnd1").selection().set(new int[]{1});
model.physics("es").feature().create("sfcd1", "SurfaceChargeDensity", 1);
model.physics("es").feature("sfcd1").selection().set(new int[]{4});
// Add a varying distributed charge density along the rightmost boundary
 | 293

model.physics("es").feature("sfcd1").set("rhoqs", "1e-9*y");
// The following two lines using the ccn1 feature are only needed in version 6.2
and earlier versions
//model.component("comp1").physics("es").feature("ccn1").set("epsilonr_mat",
"userdef");
//model.component("comp1").physics("es").feature("ccn1").set("epsilonr", "1");

// Change to first-order shape functions, to keep things simple
model.component("comp1").physics("es").prop("ShapeProperty").
set("order_electricpotential", 1);

// Create and run the study.
model.study().create("std1");
model.study("std1").feature().create("stat1", "Stationary");
model.study("std1").run();

// Create a 2D plot group with a surface plot for the original problem
model.result().create("pg1", 2);
model.result("pg1").set("data", "dset1");
model.result("pg1").feature().create("surf1", "Surface");

selectNode(model.result("pg1")); // Set focus on the plot node

// Create a reusable solver feature variable
SolverFeature solft;

model.study().create("std2"); // Create a Study 2 node
model.sol().create("sol2"); // Create a dataset Solution 2
// Create a Solver configurations node under Study 2
model.sol("sol2").study("std2");

model.sol("sol2").create("st1", "StudyStep"); // Create a Compile Equations node
solft = model.sol("sol2").feature("st1"); // Assign solver step to variable
solft.set("study", "std2");

model.sol("sol2").create("v1", "Variables"); // Create a Dependent Variables node
solft = model.sol("sol2").feature("v1");

model.sol("sol2").attach("std2");

model.sol("sol2").create("a1", "Assemble"); // Add an Assemble node
solft = model.sol("sol2").feature("a1");
// Now define which system matrices should be output (Noneliminated Output)
// L=Load vector, K=Stiffness matrix, M=Constraint vector, N=Constraint Jacobian
// For more information see the Programming Reference Manual
solft.set("L", "on");
solft.set("K", "on");
solft.set("M", "on");
solft.set("N", "on");

// Create a Stationary Solver 2 node: Study 2 > Solver Configurations > Solution 2
model.sol("sol2").create("s2", "Stationary");
// Create an Input Matrix node under Stationary Solver 2
solft = model.sol("sol2").feature("s2").create("im1", "InputMatrix");
// Define which system matrices should be input
294 |

solft.set("L", "on");
solft.set("K", "on");
solft.set("M", "on");
solft.set("N", "on");

// Find the degree of freedom coordinate closest to the target coordinate
solft = model.sol("sol2").feature("v1");
XmeshInfo xmi = solft.xmeshInfo();
XmeshInfoDofs mydofs = xmi.dofs();
double[][] coords = mydofs.gCoords();
int[] coordsize = matrixSize(coords);
double new_dist = dist;
for (int k = 0; k < coordsize[1]; k++) {
 new_dist = Math.sqrt((coords[0][k]-x_load)*(coords[0][k]-x_load)+
(coords[1][k]-y_load)*(coords[1][k]-y_load));
 if (new_dist < dist) {
 index = k;
 dist = new_dist;
 }
}

// Run the solver sequence up to and including the Assemble node
model.sol("sol2").runFromTo("st1", "a1");

// Extract system matrices and vectors
solft = model.sol("sol2").feature("a1");

// K
int KM = solft.getM("K");
int KN = solft.getN("K");
int KNnz = solft.getNnz("K");
int[] Ki = solft.getSparseMatrixRow("K");
int[] Kj = solft.getSparseMatrixCol("K");
double[] Kv = solft.getSparseMatrixVal("K");
// For more information, see the Programming Reference Manual

// L
double[] Lv = solft.getVector("L");

// N
int NM = solft.getM("N");
int NN = solft.getN("N");
int NNnz = solft.getNnz("N");
int[] Ni = solft.getSparseMatrixRow("N");
int[] Nj = solft.getSparseMatrixCol("N");
double[] Nv = solft.getSparseMatrixVal("N");

// M
double[] Mv = solft.getVector("M");

// Modify the load
Lv[index] = load;

// Put the system matrices and vectors back in again
solft = model.sol("sol2").feature("s2").feature("im1");
 | 295

// K
solft.createSparseMatrix("K", KM, KN, KNnz, true);
solft.addSparseMatrixVal("K", Ki, Kj, Kv);

// L
solft.createVector("L", Lv.length, true);
solft.setVector("L", Lv);

// N
solft.createSparseMatrix("N", NM, NN, NNnz, true);
solft.addSparseMatrixVal("N", Ni, Nj, Nv);

// M
solft.createVector("M", Mv.length, true);
solft.setVector("M", Mv);

// Solve Stationary Solver 2 with the modified system
model.sol("sol2").runFromTo("s2", "s2");

// Plot the results
model.result().create("pg2", "PlotGroup2D");
model.result("pg2").set("data", "dset2");

model.result("pg2").create("surf1", "Surface");
// Plot electric potential and original mesh overlayed with no smoothing
model.result("pg2").feature("surf1").set("resolution", "norefine");
model.result("pg2").feature("surf1").set("smooth", "none");

model.result("pg2").create("surf2", "Surface");
model.result("pg2").feature("surf2").set("resolution", "norefine");
model.result("pg2").feature("surf2").set("coloring", "uniform");
model.result("pg2").feature("surf2").set("color", "gray");
model.result("pg2").feature("surf2"). set("wireframe", true);

model.result("pg2").run();
selectNode(model.result("pg2")); // Set focus on the plot node

Comments
In the previous example, “Accessing Higher-Order Finite Element Nodes” on
page 289, the XmeshInfoNodes methods are used to access finite element nodes
that have the same length as the number of finite element nodes. In this example,
the XmeshInfoDofs methods are used to access the degrees of freedom vector,
which has the same length as the load vector.
Note that only the load vector is modified. The other matrices and vectors are
merely extracted and then put back into the system again.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• accessing_system_matrices.mph
296 |

https://www.comsol.com/model/application-programming-guide-examples-140771

Data Validation

In the Settings window for input fields, the section for Data Validation has a
subsection Numerical validation with settings that allow you to validate user inputs
with respect to values. The figure below shows an example of settings for entering
a radius.

The Filter options, the Lower bound and Upper bound settings are only visible if the
selection in the Unit dimension check combo box is set to one of None, Append unit
to number, or Append unit from unit set.
The Value input fields for Lower bound and Upper bound allow you to use global
parameters or scalar declaration variables. Using scalar declaration variables in this
field supports the same type of data conversions as when using declaration names
as a method input argument in a command sequence. This means that scalar
Integer and Double declaration variable will always work and scalar String
declarations will work if they can be converted to a Double.
Using declaration variable names or global parameters in the Value input fields can
only be used when Unit dimension check is set to Append unit to number or Append
unit from unit set. In that case, the bounds are checked based on the numerical
value entered by the user in the input field. In a Value input field, you cannot use
expressions in terms of declared variables but only a single declaration name. If a
parameter exists with the same name as a declaration variable, then the value of the
global parameter will be used.
 | 297

The scope of declaration names used in a Value field is limited to the parent form
of the input field.
Note that the bounds are updated dynamically as the value of the parameters or
declaration variable is changed. This means that several input fields, not actively
changed by the user, can fail numerical validation at once caused by a change in
another input field, which causes the value of a parameter used in a validation
bound to change.
The Error message text field allows you to write a customized error message to be
shown when the input values are out of bounds. The error message text can
contain eval(variable), which is also allowed in the title for plot groups in the
Model Builder. In addition, the Tooltip of the input field allows use of
eval(variable). The variable can be the name of any global parameter or scalar
declaration. If a parameter and a declaration with the same name exists, then the
parameter is used. In addition to parameter and declaration names the special
strings MINVALUE and MAXVALUE can be passed to eval and will return the value
entered as lower bound or upper bound.
When using eval for a parameter, it will return the evaluated value of the
parameter using the same unit that is used to enter the bounds in the Value input
field. For a scalar declaration the string value of the declaration is returned which
will be true or false for a boolean declaration.

ACCESS TO OLD VALUE AND NEW VALUE IN EVENT METHODS

You can create a method for an On data change event directly from the Events
section of an input field, as shown in the figure below.
298 |

In such a case, the method will automatically get a scalar String input argument
with the name newValue, as shown in the figure below.

The variable newValue will get the new value entered in the input field by the user
of the app.
In addition to the new value, you may need to access to the old value entered in
the input field, for example, to be able to restore it if your custom data validation
fails. For this purpose, you can use the event object and its associated methods
which are accessible from methods that are called from events. The event object
has the following methods:

event.getOldValue()
event.getNewValue()

which return the old and new value, respectively, of the source associated with the
form object. The methods return an object called Value which is similar to the
DataSource object returned when you call:

app.declaration(<declarationName>)

A DataSource object has the methods getBoolean, getBooleanArray,
getBooleanMatrix, getDouble, and so on to allow accessing the value stored in the
DataSource object no matter what type it has. It also has the corresponding set
methods to allow setting a value. For more information, see “Data Source and
Declaration” on page 112.
The Value object is a read-only version of the DataSource object with only the get
methods.
 | 299

ACCESS TO FORMS AND FORM OBJECTS IN EVENT METHODS

For methods that are called from events, you can access the properties formTag and
formObjectTag for the form object that triggered the event. This way, you can
access the form object from the event method using the syntax:

app.form(<formTag>).formObject(<formObjectTag>)

To make it more convenient to access the user control that triggered the event
there is also a method

event.getUserControl()

that returns the form object, menu item, or ribbon item that triggered the event.
The event object is additionally available for methods called from command
sequences in, for example, menu items and ribbon items. The interface
IPropertyAccess which has methods for getting and setting values on all user
interface controls such as form objects, menu items and so on can then be returned
by the getUserControl method.

DATA VALIDATION FROM DIALOGS

A form that is shown as a dialog can function in two different ways. The first way,
which is the default option, works on a copy of the data and stores changes when
the user clicks OK in the dialog. The second way is enabled by changing the Store
changes value of the form, used as a dialog, from On request to Immediately, as
shown in the figure below.

Changes performed in the dialog will then be stored to the associated source
variable or parameter immediately and it will work like a regular form in the main
application window.
300 |

To accomplish storing of the values when the dialog is set to work on a copy,
corresponding to the first option above, and store the values on request, the
Settings window for a button object has a checkbox Store changes in the section
Dialog Actions, as shown in the figure below. When this checkbox is selected, the
values in the dialog are stored from the copy used by the dialog to the actual values
after the command sequence specified for the button has been run. Part of this
command sequence can include a method that performs validation of the data that
the user has entered in the dialog. The figure below shows an example of this
scenario, with a method validation, for an OK button used in a dialog.

However, this validation approach will not work. This is due to the fact that when
the dialog is set to Store changes on request, the values have not yet been stored
when the validation method runs since dialog actions such as Store changes are
performed after the command sequence for the button has been run. This means
that the validation code cannot access the new values to perform a validation on
them.
To remedy this, there is an access method that can be used together with form
objects such that the value currently entered in them can be used for data
validation before they have been stored in their associated source. The syntax for
calling this access method is:

app.form(<formTag>).formObject(<formObjectTag>).getValue();

This call will return a Value object, the same type of object described earlier and
used for calls to event.getOldValue() and event.getNewValue(). With this type
 | 301

of access to the current value in the form object, a data validation can be
performed. The following form object types support the getValue method.
• Input field
• Toggle Button
• Checkbox
• Combo box
• File import
• Array input
• Radio button
• Selection input
• Text
• List box
• Table
• Slider
• Knob
• Gauge

If the user has clicked OK in a dialog and the data validation fails, you typically want
to show an error dialog and then leave the dialog open to allow the user to correct
the input fields that failed validation. This not possible to achieve using a direct
approach since if the OK button is set to have Store changes as a Dialog Action the
storing of the data will always be performed after the command sequence, defined
in the Settings window of the OK button, has been run.
To remedy this, there is a method for programmatically store changes:

storeChanges(String name)

which will store the changes for a given form, used as a dialog.
Note that you can call:

closeDialog(<dialogTag>)

to close a specific dialog.
When using the technique described above, you can clear the Store changes and
Close dialog checkboxes, in the Dialog Actions section for the OK button and instead
call storeChanges and closeDialog as part of the flow in the validation method if
the validation passes.
Having a way to programmatically store changes also helps with the case where
the dialog contains a button that also performs something when closing the
dialog, for example, a Compute button. A validation may then be followed by, for
example, a compute method. In order to get this compute method to work on the
302 |

new values entered in the dialog, storeChanges can be called after the data
validation has been performed but before the compute method is called.

EXAMPLE OF DATA VALIDATION IN FORMS AND DIALOGS

This example illustrates the use of data validation in a form and a dialog. This app
is very simple and does not fulfill any other function than to demonstrate
important aspects of data validation. The app consists of a form with one input
field that expects the user to type the string open dialog, as shown in the figure
below

If the user types a different string, then an alert window with a message Unknown
command is shown:

and the string value for the Command is reset to the default Type open dialog.
 | 303

If the correct string open dialog is entered, then a dialog opens, as shown in the
figures below.

The dialog expects an integer between 1 and 10, in the first input field. In addition,
it expects the value in the second input field to be identical to the value in first
input field. If all these criteria is fulfilled, no error message is shown and the app
starts from the beginning showing the string Type open dialog in the main form.
If the user enters different values, as shown in the figure below:
304 |

then an error message is shown with the message The value of y must be equal
to x.

When the user now closes the Error message dialog, the user gets a new
opportunity to enter matching values in the dialog.
The data validation functionality in this demonstration app is implemented using
an On data change event for the Command input field in the main form form1, as
shown in the figure below.
 | 305

The code in method3 shows the user of event.getNewValue and
event.getOldValue, as shown below:

String value = event.getNewValue().getString();
String oldValue = event.getOldValue().getString();
if (value.toLowerCase().equals("open dialog")) {
 dialog("/form2");
} else {
 alert("Unknown command.");
 command = oldValue;
}

The dialog form2 has Store changes set to On request, as shown in the figure below.

In the dialog, the value of the variable x is validated in the On data Change event
of the input field with label Number x (1-10) and also when clicking the OK button.
The y value is only validated when clicking the OK button. The data validations are
implemented using the form object access method getValue. The OK button
306 |

makes use of the storeChanges method. The figure below shows the method run
for the On data change event for the input field with label Number x (1-10).

The corresponding code in method2 is as follows:
int valueX =
app.form("form2").formObject("inputfield1").getValue().getInt();
if (valueX < 1 || valueX > 10) {
 error("The value of x must be greater than or equal to 1 and less than or
equal to 10.");
}

 | 307

The OK button calls method1 for the On data Change event, as shown in the figures
below.

The corresponding code in method1 is as follows:
int valueX =
app.form("form2").formObject("inputfield1").getValue().getInt();
308 |

int valueY =
app.form("form2").formObject("inputfield2").getValue().getInt();
method2();
if (valueX != valueY) {
 error("The value of y must be equal to x.");
} else {
 storeChanges("/form2");
 closeDialog("/form2");
 command = "Type open dialog";
}

Using Selections in Add-ins

In order to use selections in the Model Builder from an add-in, you leave the
source settings empty when using a selection input form object at the time the
add-in is created. Then you use a method to create an explicit selection in the
current model and link it to the selection input object of the add-in.
The figure below shows a simple add-in Boundary Selections used to demonstrate
this functionality. It contains a form with a selection input object and a button.
When the add-in is in focus, the user can click on one or more boundaries in the
 | 309

graphics window to create the selection. Clicking the button triggers an Alert
with a dialog where the selected boundaries are listed.

The figure below shows the form of the add-in as it appears when in use in a
model:
310 |

When the add-in Settings form is added to a model, an On load event is triggered
that runs a method createSelection. The Settings form is shown in the figure
below:

The code for the method createSelection is listed below:
// Create explicit selection in the model.
if (model.selection().index(selectionTag) < 0) {
 SelectionFeature selection = model.selection().create(selectionTag,
"Explicit");
 selection.geom(2);
 selectioninput1.set("source", selection);
}
// Activate the selection whenever the settings form is selected
selectioninput1.set("active", true);

The variable selectionTag stores a unique identifier for the Model Builder Explicit
selection feature. This string needs to be different enough not to accidentally
 | 311

collide with the user’s selection features, used for other purposes, in the Model
Builder. The figure below shows the declaration of this String variable.

In addition, a shortcut selectioninput1 is used for the selection input object, as
shown in the figure below.
312 |

The figure below shows the Settings window for the Selection Input form object
selectioninput1. Note the empty selection of the Source and Graphics to Use When
Active. These settings are set by the method createSelection.
 | 313

The figure below shows the Settings window for the Button form object button1.

When this button is clicked, a method displaySelection is run. The code for this
method is shown below.

SelectionFeature selection = model.selection(selectionTag);
alert("Selection boundaries are: "+concat(", ",
toString(selection.entities())));

For your own add-in, you can replace this code with any number of actions that
accepts an explicit selection as an input. For example, you can add the following
lines of code to the end of the method displaySelection in order to add a variable
a, local to this explicit selection, having the value 5.

model.component("comp1").variable().create("var1");
model.component("comp1").variable("var1").selection().geom("geom1", 2);
model.component("comp1").variable("var1").set("a", "5");
model.component("comp1").variable("var1").selection().named(selectionTag);

This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771
314 |

The relevant files for this example are:
• selection_input_add_in_source.mph

• busbar_with_selection_add-in_demo.mph

For more information on creating and using add-ins, see the book Introduction
to the Application Builder.

Using Built-In Methods from an External Java Library

When developing an external Java® library to be used in the Application Builder,
it is possible to call the built-in methods from the external library. In order to do
so, the com.comsol.api JAR-file needs to be added to the project build path, and
the classes that call the methods need to extend the ApplicationLanguageBase
class. The following steps explain how to create a simple example JAR library when
using the Eclipse® integrated development environment:
1 Start Eclipse®.
2 Create a new Java® project. Enter JavaLibDemo as the project name and click

Next.
3 Go to the Libraries tab and click Add External JARs. Add the JAR-file

com.comsol.api_1.0.0.jar from the plugins directory under the COMSOL
Multiphysics installation directory; for example
C:\Program Files\COMSOL\COMSOL64\Multiphysics\plugins

4 Click Finish.
5 Right-click the src folder in your Eclipse project and select New > Package. Enter

demo as the package name and click Finish.
6 Right-click the demo package in your Eclipse project and select New > Class. Enter

Hello as the class name.
7 Click on Superclass > Browse and select ApplicationLanguageBase. Click OK and

Finish.
8 In the editor window for the Hello class, add the following method and save the

file:
public static void hello() {

alert("Hello!");
}

9 Right-click the JavaLibDemo project and select Export > Java > JAR file. Select the
export destination JAR-file and click Finish.

10Start COMSOL Multiphysics and create a Blank Model.
 | 315

11In the Application Builder, under the application tree, right-click Libraries and
select External Java Library. In the Settings window, click Browse and select the
JAR-file previously exported from Eclipse®.

12In the Application Builder, add a form, button, and method for the button.
13In the Method Editor for the method, add the following code:

Hello.hello();

14Click Test Application and click the button in the application to verify that the
alert method is invoked.

Measuring the Java Heap Space Memory

Software components that are based on Java®, such as certain parts of COMSOL
Multiphysics, are predefined to use only a limited amount of memory. This limit,
the Java® heap space, is specified during startup. Note that the Java® heap space
only affects certain parts of the software and not, for example, meshing or solvers.
By default, COMSOL Multiphysics allocates 2 GB of Java® heap space memory.
See the Reference Manual for information about increasing the available heap
space memory.
In a method, you can measure the amount of heap space memory currently in use.
For example, while debugging, you can add the following code:

Runtime runtime = java.lang.Runtime.getRuntime();
runtime.gc();
debugLog("Used memory (MB): "+(runtime.totalMemory()-runtime.freeMemory())/
(1024*1024));

The first line adds a request to run the Java® garbage collector.
In order to monitor the memory usage in an application, you can replace debugLog
with message.

Time-Limited and Hardware-Locked Applications

By writing a few lines of code you can make your application expire after a set date
and lock the application to specific hardware.
The example MPH file used in this section is available in the Application Gallery
at www.comsol.com/model/time-limited-and-hardware-locked-application-
70151.
316 |

https://www.comsol.com/model/time-limited-and-hardware-locked-application-70151
https://www.comsol.com/model/time-limited-and-hardware-locked-application-70151

PASSWORD PROTECTION

The settings of an application can in principle be read from the file system by a
user, including method code. By making your application password protected for
editing, the method code will no longer be readable. This setting is available from
the root node in either the model tree or the application tree, as shown in the
figure below.

Before implementing a time limit or hardware lock, as described below, make sure
your application is password protected. Password protection for running the
application is not required for this purpose.

TIME-LIMITED APPLICATION

To have an application expire after a specific date, create a method as follows:
java.text.SimpleDateFormat f = new java.text.SimpleDateFormat("yyyy-MM-dd");
//java.text.SimpleDateFormat f = new java.text.SimpleDateFormat("MM/dd/yyyy");

ok = false;
try {

java.util.Date d = f.parse(timeoutDate);
long currentTime = timeStamp();
long timeoutTime = d.getTime()+24*60*60*1000; // To allow running until the end

of the day
if (currentTime < timeoutTime) {

ok = true;
}

}
catch (java.text.ParseException e) {

debugLog("Failed to parse timeout date "+timeoutDate);
debugLog(e.getMessage());

}

In this method, you need to decide on a date format. Two format examples are
shown and you can uncomment the line corresponding to the format you would
like to use. For more details on available formats, see the Java® documentation for
 | 317

SimpleDateFormat. This method has one string input argument, timoutDate, and
one Boolean output argument, ok, as shown below.

The expiration date is defined as a string variable, trial_date, in Declarations >
String, as shown below.

HARDWARE-LOCKED APPLICATION

To lock an application to the MAC address of a specific network card on a
computer, create a method as follows:

ok = false;
try {

java.util.List < java.net.NetworkInterface > nis =
java.util.Collections.list(java.net.NetworkInterface.getNetworkInterfaces());

for (java.net.NetworkInterface ni : nis) {
StringBuilder macString = new StringBuilder();
byte[] macBytes = ni.getHardwareAddress();
if (macBytes != null && macBytes.length > 0) {

for (byte b : macBytes) {
318 |

if (macString.length() > 0) {
macString.append(":");

}
macString.append(String.format("%02x", b));

}
if (contains(allowedAddresses, macString.toString())) {

ok = true;
break;

}
}

}
}
catch (java.net.SocketException e) {}

In order to check the MAC address when running an application, you need to
enable Allow access to network sockets under Security in Preferences. However, for
a compiled application, no security changes are needed.
This method has one array 1D string input argument, allowedAddresses, and one
Boolean output argument, ok, as shown below.

The MAC address is defined as a string array mac_addresses in Declarations > Array
1D String, as shown below.
 | 319

Note that you can provide a list of MAC addresses to allow use on a computer with
multiple network cards or multiple computers.

CHECKING FOR ALLOWED DATE AND HARDWARE

To check for both the MAC address and the date, create a method
check_allowed_to_run as follows:

if (!check_mac_address(mac_addresses)) {
alert("You are not allowed to run this application on this computer.",

"COMSOL");
exit();

}

if (!check_date(trial_date)) {
alert("The trial for this application has expired "+trial_date, "COMSOL");
exit();

}

The figure below shows this method in the Method Editor.

You can call this type of method at startup of the application, for example, as an
On load event for the main form of the application. In the Tuning Fork example
application, available in the Application Library of COMSOL Multiphysics, there
is a method p_init_application that is run as an On load event for the main form.
In this case, the method p_init_application can be edited as follows:

check_allowed_to_run();

if (model.sol("sol1").isEmpty()) {
solution_state = "nosolution";

}
else {

solution_state = "solutionexists";
}

zoomExtents("graphics1");
320 |

Notice the call to the method check_allowed_to_run in the first line. The figure
below shows this method in the Method Editor.

The method p_init_application is then called as an On load event. This is
specified in the Settings window of the main form, as shown in the figure below.

Get and Set of 3D Camera Parameters

The following method code demonstrates how to programmatically retrieve and
log the complete set of camera settings for the View with tag view1 in the
Component with tag comp1. It captures parameters for: zoom angle, position,
target, up vector, rotation point, view offset, manual grid flag, and axis spacings.
This information can be used in order to at a later point restore the exact camera
state in your application.

// Cache the camera feature
 | 321

ViewFeature view1Camera = model.component("comp1").view("view1").camera();

// Retrieve zoom angle
zoomAngle = view1Camera.getDouble("zoomanglefull");

// Retrieve position vector
position = new double[3];
for (int i = 0; i < 3; i++) {
 position[i] = view1Camera.getDouble("position", i);
}

// Retrieve target vector
target = new double[3];
for (int i = 0; i < 3; i++) {
 target[i] = view1Camera.getDouble("target", i);
}

// Retrieve up vector
up = new double[3];
for (int i = 0; i < 3; i++) {
 up[i] = view1Camera.getDouble("up", i);
}

// Retrieve rotationPoint vector
rotationPoint = new double[3];
for (int i = 0; i < 3; i++) {
 rotationPoint[i] = view1Camera.getDouble("rotationpoint", i);
}

// Retrieve viewOffset
viewOffset = new double[2];
for (int i = 0; i < 2; i++) {
 viewOffset[i] = view1Camera.getDouble("viewoffset", i);
}

// Retrieve manualGrid flag
manualGrid = view1Camera.getBoolean("manualgrid");

// Retrieve axis spacings
xSpacing = view1Camera.getDouble("xspacing");
ySpacing = view1Camera.getDouble("yspacing");
zSpacing = view1Camera.getDouble("zspacing");
322 |

In this example, the variables are stored globally under the Declaration node,
shown in the figures below.

The following method code shows how to restore the camera settings.
// Cache the camera feature
ViewFeature view1Camera = model.component("comp1").view("view1").camera();

// Restore zoom angle
view1Camera.set("zoomanglefull", Double.toString(zoomAngle));

// Restore position vector
for (int i = 0; i < position.length; i++) {
 view1Camera.setIndex("position", Double.toString(position[i]), i);
}

// Restore target vector
for (int i = 0; i < target.length; i++) {
 view1Camera.setIndex("target", Double.toString(target[i]), i);
}

// Restore up vector
for (int i = 0; i < up.length; i++) {
 view1Camera.setIndex("up", Double.toString(up[i]), i);
}

// Restore rotation point vector
for (int i = 0; i < rotationPoint.length; i++) {
 view1Camera.setIndex("rotationpoint", Double.toString(rotationPoint[i]), i);
}

// Restore view offset
for (int i = 0; i < viewOffset.length; i++) {
 | 323

 view1Camera.setIndex("viewoffset", Double.toString(viewOffset[i]), i);
}

// Restore manual grid flag
view1Camera.set("manualgrid", manualGrid);

// Restore axis spacings
view1Camera.set("xspacing", Double.toString(xSpacing));
view1Camera.set("yspacing", Double.toString(ySpacing));
view1Camera.set("zspacing", Double.toString(zSpacing));

selectNode(model.component("comp1").view("view1"));

In the last line of code, the call to selectNode ensures that the view is updated
automatically.
The figure below shows these two methods, named StoreCamera and
RestoreCamera respectively, as Method Call nodes in the Model Builder.

These two methods can be added to any 3D model in order to store and restore
camera settings.
This example is part of a collection available for download:
www.comsol.com/model/application-programming-guide-examples-140771

The relevant file for this example is:
• saving_camera_settings.mph
324 |

https://www.comsol.com/model/application-programming-guide-examples-140771

Index

1D array 14, 46, 173

2D array 14, 46, 173

A accessing 293

add-in 27, 185, 309

selections 309

Add-in Libraries 27

alert 147, 154

anisotropic diffusion coefficient 49

Annotation Data plot type 198

AppEventHandlerList methods 125

Application Builder 78

Application Builder Reference Manual

161

application example

tubular reactor 145

application methods 26

application object 7, 39, 78, 126

app variable 80

classes 80

application tree 78

array 14

methods 173

array input object 90

Arrow Data plot type 196, 197

assignments 9

auto complete 21

automatic solver sequence 64

auxiliary sweep 264

average

computing 267, 268

axisymmetric property 42

B backslash 12

backspace 12

basic data type 43

big endian 223

binary file

processing 223

reading 221

writing 220

Blank Model 43

boolean

data type 8, 43

Boolean variable 8

conversion 171

bound 297

boundary condition 57

built-in method library 126

button

object 90

C C libraries

external 160

card stack object 91

carriage return 12

catch 20

C-code

linking 160

char

data type 8

character

data type 8

character stream 215

characters

special 214

Chatbot window 32

checkbox object 91

choice list 81, 120, 151

methods 119

classes

application object 80

code completion 21
 | 325

code generation 21

collection methods 182

color 83

of user interface component 82

combo box object 91

Compact History 73

Compile Equations node 62

computation time 170

last 169

Compute 62

COMSOL Desktop 69

COMSOL Help Desk 75

COMSOL Multiphysics 7, 39

COMSOL Multiphysics Programming

Reference Manual 289

confirm 11, 148, 154

contour plot 65

contour plot data 217

control flow statements 18

conversion

between data types 9

methods 171

coordinate information 231, 232

Copy as Code to Clipboard 43

creating

feature node 54, 58

model object 41, 69

CSV-file 199, 206

curve

interpolation 217

parameterization 224

cut point

dataset 49, 128

D data display object 92

Data Source

class 81

data types

primitive 8

data validation 297

dialog 300, 303

new value 299

old value 299

Data Viewer window 29, 259, 263

dataset 66, 188

DataSource object 299

date and time methods 168

debug

methods 160

Debug Log window 160

declaration 297

type 76

Declaration methods 125

Declarations 14, 16, 79

deformation plot 49

degrees of freedom 289

Dependent Variables node 62

Derived Values 250

description 20

parameter 20, 50

variable 20

Developer tab 187

dialog 146, 147

data validation 300, 303

Dialog Actions 301

diffusion coefficient

anisotropic 49

dimension

spatial 42

disable form object 82, 87, 89, 151

Display Name

for choice list 151

double 9

data type 8, 43

variable conversion 171

double quotation mark 11

E edge

parameterization 224

Editor Tools window 51
326 |

eigenfrequency data 282

Electric Currents 68

element

order 289

size 48, 55

elementary math functions 17

email

class 142

methods 142

preferences 144

email attachment

export 142

report 142

table 142

embedded model 69

enable form object 80, 82, 87, 89, 151

endian 223

equation

object 93

error dialog 20

Error message 298

eval 298

Evaluation Group 250, 253, 268

events 122, 300

example code 126, 187

Excel® file 67, 136, 199, 204, 207

exception

handling 20

exit 158

application 159

expiration date for application 316

explicit selection 309

export

email attachment 142

external C libraries 160

external Java llibrary 315

F face

parameterization 226

feature node

creating 54, 58

removing 55, 58

file

methods 131, 132

name 136

open 139

reading 199

writing to 199

File Declaration 202

file import 202

file import object 93

file open

system method 139

file scheme

syntax 132, 202

Filter 297

finite element

accessing 289

system matrix 292

vector 292

floating point number 8

for loop 19, 89, 125

form

class 81, 86

declarations 17

list methods 125

form collection 94

form feed 12

form method 27

form object 93

class 81, 88

list methods 125

types 89

FormList methods 125

FormObjectList methods 125

Fully Coupled node 64

G general properties 82

generating code 21

Geometry node 54
 | 327

geometry object 54, 55

names 232

get 43, 44

global method 27

global parameter 50

global quantity

computing 269

graphics

object 95, 147

view 152, 155

grid dataset 187

GUI command

methods 158

GUI related methods 146

H hardware lock 316

heap space 316

Heat Transfer in Solids 56, 68

higher-order element nodes 289

history

model 73

HTML

report 155

hyperlink object 97

I if-else statement 18

image object 97

import

file 202

information card stack object 98

information node 170

inherit

color 83

input field 297

input field object 99

integer

data type 8, 43

variable conversion 171

integral

computing 269

interpolation curve 217, 223, 224

interpolation function 223

Introduction to COMSOL Multiphysics

25, 39

Introduction to the Application Builder

7, 21, 25, 26, 78, 120, 132, 170, 199,

207, 315

isosurface 188

item

class 81

list methods 125

menu 111

object 111

toolbar 111

ItemList methods 125

iterative solver 62

Iterator class and method 58

J jagged arrays 14

Java

character stream 215

classes for read/write 214

Documentation, model object class

structure 75

external library 315

heap space 316

math library 17

programming language 7, 8, 126

syntax 9

unary and binary operators 9

Java Shell window 28, 47, 51, 279

K keyboard shortcut

Ctrl+Space 21

knob object 106

L legend 48, 50

length of parametric sweep 277

license

check out 160

method 128
328 |

lighting 194

Line Data plot type 191

line object 101

list box object 101

literals 9

little endian 223

load vector 296

loading

model 69, 127

local method 27

locking application to hardware 316

log object 102

looplevel 67, 258, 279, 282, 283

Lower bound 297

M MAC address 316

main application class 80, 84

main user interface component classes

81

Main Window

class 81, 85

node 81

material

link 49

tag 120

Materials node 59

math functions 17

maximum

computing 269

maximum value 66

measuring

geometric and mass properties 244

menu

item 111

mesh

information and statistics 288

mesh element size 48, 55

Mesh node 55, 127, 128

message log object 102, 150

message method 154

method 7, 126

form 27

get 44

global 27

local 27

name 27

Method class 124

Method Editor 126

using 7, 21

method name 28

Microsoft® Word® format 155

minimum

computing 269

model 69

loading 69, 127

saving 69, 127

Model Builder 39

model component 42

model data access 25

model history 73, 190

turning off 190

Model Java-file 73

model methods 26

Model M-file 73

model object 7, 39, 58, 78, 126

class structure 75

tag 39

model tree 39

node 57, 58

model utility methods 70, 126

Model Wizard 43, 69

models, working with multiple 69

MPH file 69, 126, 159

multiphysics 68

Multiphysics node 68

multiple models 69

N name

form 78, 80

form object 78, 80
 | 329

in application object 80

method 27, 28

scoping 40

shortcut 16, 78

user interface component 78, 80

Name, of a feature 58

network card 316

new value

data validation 122, 299

newline 11, 12

node

finite element 289

nonlinear solver 64

normal

surface 194, 195

number of parameters 276

number of time steps 276

numerical

Derived Values 67

numerical data 249

numerical results 249

Numerical validation 297

O old value

data validation 122, 299

On data change event 122, 298

operating system

methods 139

operators 52

Java 9

model object 52

OS commands 139

P parameter 20, 49, 50, 67

method 19, 26

real and imaginary part 52

parameterization

edge 224

face 226

parametric solution 67

parametric sweep 227, 253, 255, 257

Parametric Sweep, nested feature

nodes 270, 273

parsing

text file 214

path, getting 205

physics interface 57, 61

play sound 140

plot

group 50, 154

mesh element nodes 128

point trajectories 128

surface 53, 65

table surface 67

useGraphics 147

Plot Group node 65

plot type

Annotation Data 198

Arrow Data 196, 197

Line Data 191

Point Data 189, 190, 292

Surface Data 192, 193, 194

Tube Data 196

Point Data plot type 189, 190, 292

point trajectories plot 128

precedence, of operators 9, 52

primitive data types 8

printing

graphics 158

programming examples 126, 187

Programming Reference Manual 39, 64,

126, 128, 235, 289

progress 162

dialog 163, 167

methods 162

progress bar object 102, 164, 166, 167

properties

general 82

property and property values 43
330 |

R radio button object 103

ragged arrays 14, 47

ragged sweep 273

reading

binary file 221

CSV-file 200

Excel® file 204

file 199

matrix file 207

Microsoft Excel® Workbook file 204

spreadsheet 200

text file 214

text file to string 210

real and imaginary part

of parameter 52

Record Code 23, 63, 252

Record Method 252

recursion 284

recursive loop 284

removing

feature node 55, 58

report 145

email attachment 142

HTML 155

Microsoft® Word® format 155

request 149, 154

reset

model history 73

Results node 65

results table object 103, 151

RGB color 83

S save application 159

save as 158, 159

saving

model 69, 127

scene light 159

sectionwise

format 217, 219

sectionwise format 217

selection 238

explicit 235, 309

finalized geometry 241

geometry 235, 239

selection input

object 104, 309

selections 232

add-in 309

set 43

setIndex 43

shortcuts 16, 78

Shortcuts node 16

single quotation mark 12

sleep 170

slider object 105

SMTP 144

solution

data 187

data structure 62

parameteric 67

Solution node 62

Solver Configurations node 61

solver sequence 61

spacer object 107

spatial dimension 42

special character 12

Java 69

special characters 214

sphere 188

spreadsheet 200

format 132, 207, 208, 216, 228

Stationary Solver node 62

Stationary study step 61

status bar 162

Store changes, in dialog 300

stream

character 215

String

data type 10, 43
 | 331

methods 181

string variable 67

conversion 172

methods 181

strings

comparing 11

concatenating 11

Study node 60

subform object 93

subset of output times 279

surface

parameterization 226

Surface Data plot type 192, 193, 194

surface normal 194, 195

surface plot 53, 65

Sweep type 255, 257

system matrix

accessing 293

system methods 139

OS commands 139

system vector 293

T tab 12

table 67

email attachment 142

object 108, 150

Table node 67

table surface plot 67

tag 80

model object 39

physics interface 57

Tag, of a feature 58

tag, unique 190

temporary folder

location 207

text file 199

reading 214

writing 214

text label object 109

text object 108

time 168

time-limited application 316

title 147

toggle button object 109

toolbar

item 111

object 110

Tooltip 298

transient (time-dependent) simulations

275

transparency 156, 159

transparent

color 83

try and catch 20

Tube Data plot type 196

type declaration 76

Type, of a feature 58

U unique tag 190

unit 51

object 110

Unicode 248

Unit List 81

unit set

methods 119

unit sphere 188

Unit System 51

Upper bound 297

username 139

V Value input field 297

Value object 299

variable 26

description 20

name completion 22

video object 110

view

graphics 152, 155

visualization 187

W web page object 111
332 |

while loop 19

with statement 19

writing

CSV-file 206

Excel file 207

matrix file 208

string to text file 213

text file 214

to binary file 220

to file 199, 207

Z zoom extents 154, 159
 | 333

334 |

	Introduction
	Syntax Primer
	Data Types
	Primitive Data Types
	Assignments and Literals
	Unary and Binary Operators in Methods (Java Syntax)
	Type Conversions and Type Casting
	Strings and Java Objects
	Arrays

	Declarations
	Form Declarations

	Built-in Elementary Math Functions
	Control Flow Statements
	The IF-ELSE Statement
	The For Statement
	The While Statement
	The With Statement
	Exception Handling

	Important Programming Tools
	Ctrl+Space for Code Completion
	Recording Code
	Model Methods and Application Methods
	Global Methods, Form Methods, and Local Methods
	Method Names
	The Java Shell and Data Viewer Windows
	The Chatbot Window
	Attaching Model History, Model Tree Nodes, or Images

	Chatbot Functionality in the Method Editor

	Introduction to the Model Object
	Model Object Tags
	Creating a Model Object
	Creating Model Components and Model Object Nodes
	Get and Set Methods for Accessing Properties
	The get Methods
	The set Method
	The setIndex Method
	Methods Associated with Set and Get Methods
	Example Code

	Parameters and Variables
	Accessing a Global Parameter
	Variables

	Unary and Binary Operators in the Model Object
	Geometry
	Removing Model Tree Nodes

	Mesh
	Physics
	Creating and Removing Model Tree Nodes
	Retrieving the Type of a Physics Feature

	Material
	Study
	Quick Way of Using a Study
	Modifying Low-Level Solver Settings
	Checking if a Solution Exists

	Results
	Multiphysics
	Working with Model Objects
	A Complete Example in 1D
	A Complete Example in 3D
	Turning Off and Resetting The Model History
	Optimizing Physics Feature Creation Performance
	Limitations with Loading and Saving Models

	The Model Object Class Structure

	The Application Object
	Shortcuts
	Example Code

	Accessing the Application Object
	The Name of User Interface Components
	Important Classes
	The Main Application Class
	Declaration Classes
	Method Class
	Main User Interface Component Classes

	Get and Set Methods for the Color of a Form Object
	General Properties
	Example Code

	The Main Application Methods
	Example Code

	Main Window
	Example Code

	Form
	Example Code

	Form Object
	Example Code
	Array Input
	Button
	Card Stack
	Checkbox
	Combo Box
	Data Display
	Equation
	File Import
	Form
	Form Collection
	Graphics
	Hyperlink
	Image
	Information Card Stack
	Input Field
	Line
	List Box
	Log
	Message Log
	Progress Bar
	Radio Button
	Results Table
	Selection Input
	Slider
	Knob
	Spacer
	Table
	Text
	Text Label
	Toggle Button
	Toolbar
	Unit
	Video
	Web Page

	Item
	Example Code

	Data Source and Declaration
	Scalar, Array 1D, and Array 2D Methods
	Example Code
	Details of the Java Implementation of Declaration Classes
	Choice List and Unit Set Methods
	Unit Set Methods
	GraphicsData Methods

	AppEvent Class
	Value Class

	AppEventHandler Class
	Method Class
	Form, Form Object, and Item List Methods

	The Built-in Method Library for the Application Builder
	Model Utility Methods
	License Methods
	Example code
	License Feature Strings

	File Methods
	Example Code

	Operating System Methods
	Example Code

	Email Methods
	Email Class Methods
	Email Preferences
	Example Code

	GUI-Related Methods
	Alerts and Messages
	Example Code

	GUI Command Methods
	Example Code

	Debug Methods
	Example Code

	Methods for External C Libraries
	External Method
	Methods Returned by the External Method

	Progress Methods
	Example Code

	Date and Time Methods
	Example Code

	Conversion Methods
	Array Methods
	String Methods
	Collection Methods
	Model Builder Methods for Use in Add-ins

	Programming Examples
	Running the Examples
	Visualization Without Solution Data: Grid Datasets
	Plotting a Unit Sphere using a Grid Dataset

	Visualization of Points, Curves, and Surfaces
	Points in 2D
	Turning Off Model History
	Points in 3D
	Curve in 3D
	Triangulated Shape in 2D
	Function Surface in 3D
	Sphere in 3D
	Tube Plot in 3D, Logarithmic Spiral
	Arrows in 2D
	Arrows in 3D
	Annotations in 2D
	Annotations in 3D with LaTeX Syntax

	Reading and Writing Data to File
	Reading and Writing Text and Spreadsheet Files Overview
	Introduction to Reading Files with A CSV-File Example
	Reading Excel Files
	Writing CSV-Files
	Writing Files in General
	Writing Excel Files
	Reading Matrix Files
	Writing Matrix Files
	Reading a Text File to a String
	Writing a String to a Text File
	Processing Text Files using the CsReader and CsWriter Classes
	Reading Text Files using the CsReader Class
	Writing Text Files using the CsWriter Class
	Writing Binary Files
	Reading Binary Files
	Additional Comments on Reading and Writing Binary Formats

	Converting Interpolation Curve Data
	Plotting Points on a Parametric Surface
	Defining a Parametric Sweep
	Using Selections
	Using Selections for Editing Geometry Objects
	Selecting and Partitioning Edges for a Cylinder Object
	Selecting and Partitioning Edges for General Objects
	Using Selections to Measure Geometric Objects
	Using Selections on the Finalized Geometry

	Measuring Model Quantities
	Using Numerical Results in a Model or Application
	Getting Numerical Data
	Getting Values at a Point
	Computing the Average Along a Boundary in a Parametric Sweep
	Computing Global Quantities in a Parametric Sweep
	Nested Parametric Sweep Nodes
	Nested Parametric Sweep Nodes, Ragged Sweep
	Retrieving Data from a Transient Simulation
	Accessing The Length of a Parametric List
	Accessing a Subset of a List of Output Times
	Update a Choicelist Dynamically for Output Times
	Accessing Eigenfrequency Data

	Recursion and Recursively Defined Geometry Objects
	Sierpinski Carpet
	Menger Sponge

	Mesh Information and Statistics
	Accessing Higher-Order Finite Element Nodes
	Accessing System Matrices and Vectors
	Data Validation
	Access to Old Value and New Value in Event Methods
	Access to Forms and Form Objects in Event Methods
	Data Validation from Dialogs
	Example of Data Validation in Forms and Dialogs

	Using Selections in Add-ins
	Using Built-In Methods from an External Java Library
	Measuring the Java Heap Space Memory
	Time-Limited and Hardware-Locked Applications
	Password Protection
	Time-Limited Application
	Hardware-Locked Application
	Checking For Allowed Date and Hardware

	Get and Set of 3D Camera Parameters

	Index

