INTRODUCTION TO

Application Builder

5.6

W COMSOL

Introduction to Application Builder

© 1998-2020 COMSOL

Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474, 7,623,991, 8,457,932,
8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625; 10,019,544; 10,650,177; and 10,776,541. Patents
pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the
license agreement.

COMSOL, the COMSOL logo, COMSOL Muttiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server,
and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property
of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by,
sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/
trademarks.

Version: COMSOL 5.6

Contact Information

Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact
Technical Support, or search for an address and phone number. You can also visit the Worldwide

Sales Offices page at www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located at the COMSOL Access page at
www.comsol.com/support/case. Other useful links include:

* Support Center: www.comsol.com/support

* Product Download: www.comsol.com/product-download

* Product Updates: www.comsol.com/support/updates

+ COMSOL Blog: www.comsol.com/blogs

 Discussion Forum: www.comsol.com/community

» Events: www.comsol.com/events

+ COMSOL Video Gallery: www.comsol.com/video

* Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM02001 |

http://www.comsol.com/contact/
http://www.comsol.com/contact/offices/
http://www.comsol.com/support/case/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates/
http://www.comsol.com/blogs/
http://www.comsol.com/community/
www.comsol.com/patents/
http://www.comsol.com/events/
http://www.comsol.com/video/
https://www.comsol.com/comsol-license-agreement/
https://www.comsol.com/trademarks/
https://www.comsol.com/trademarks/
http://www.comsol.com/support/knowledgebase/

Contents

Preface. 9
Introduction 10
The Application Builder Desktop Environment............. 12
The Application Builder and the Model Builder. 20
Parameters, Variables, and Scope 21
Running Applications. o o i 23
Running Applications in COMSOL Multiphysics. 23
Running Applications with COMSOL Server 31
Compiling and Running Standalone Applications 36
Publishing COMSOL Applications 42
Getting Started with the Application Builder............... 44
ThEMES . . oo 50
The Form Editor 51
The Individual Form Settings Windows 51
Local Forms 53
Form Editor Preferences L 55
Form Objects 55
Editor Tools in the Form Editor 61
BUttON. . 63
GraphiCs. . oo 75
Input Fieldo 93
Unit. .o 100
Textlabel ... 100
Data Display ... 101

| 3

4

Sketch and Grid Layout 110
Copying Between Applications., 126
Using Forms in the Model Builder 127
INPULS. . oo 129
The MainWindow 133
Menu Barand Toolbar. ... 135
RibboN . 138
Events ... 139
Events at Startup and Shutdown. 140
Global Events 140
Form and Form Object Events. |44
Using Local Methodso oot |45
Declarations\ 146
SCalar 150
Array 1D oo 153
Array 2D Lo |54
Choice List. v 156
File o 158
UnitSet ... 159
ShOCULS .« . | 64
Graphics Data |66
The Method Editor. ... |70
Converting a Command Sequence to a Method. 170
Language Elements Window. 175
Editor Tools in the Method Editor.................... 176
Data Access in the Method Editor.................... 178

Recording Code ... 180

Checking Syntax 183
Findand Replace.......... ... o o i i | 84
Model Expressions Window L 185
Use Shortcuto 185
Syntax Highlighting, Code Folding, and Indentation |87
Method Editor Preferences 189
Ctrl+Space and Tab for Code Completion............. 190
Creating Local Variables.ot 192
Local Methods. 193
Methods with Input and Output Arguments. 195
Debugging |97
StoppingaMethod.........o 199
The Model Object 199
Language Element Examples, 199
Running Methods in the Model Builder................ 203
Creating Add-Ins 211
Add-In Libraries. ... o 214
Workflow when Creating and Editing Add-Ins.......... 216
Libranes. . .o 217
IMAgES. . o et 218
SOUNS v vttt 218
Files. . 220
Appendix A —Form Objects. 221
List of All Form Objects. 221
Toggle Button 222
Check Box. ..o 225

Combo BOX. . oot 229

LiNE. 250
Web Page ... 251
IMAGE .« 252
Video ..o 253
Progress Bar. i 254
LOg vt 257
Message Log ..o 258
Results Table........ ..o 259
PO . 261
Form Collection 263
CardStack. ..o 265
File Import. .. 270
Information Card Stack oo 273
Array INpUL. ..o 276
RadioButton. 280
Selection INPUL ... 282
TeXt o 286
ListBOX oo 287
Table. .o 291
Slider. .o 296
Knob. ... 298
Hyperlink 300
Toolbar ... 302
SPACEN. 303
Appendix B — Copying Between Applications. 305
Appendix C — File Handling and File Scheme Syntax. 307
File Handling with COMSOL Server 307

6|

File Scheme Syntax. ... o i 310

File Import . ..o 312
File Export . ..o 319
Appendix D — Keyboard Shortcuts. 328
Appendix E — Built-In Method Library 331
Appendix F — Guidelines for Building Applications 349
Appendix G — The Application Library Examples......... 352

8|

Preface

The typical user of a simulation package is someone who holds a PhD or an MSc,
has several years of experience in modeling and simulation, and underwent
thorough training to use the specific package. He or she typically works as a
scientist in the R&D department of a big organization or as an academic
researcher. Because the theory of simulation is complicated and the typical
simulation package presents many options, it is up to the user to employ his or her
expertise to validate the model and the simulation.

This means that a small group of simulation experts is serving a much larger group
of people working in product development, production, or as students studying
physics effects. Simulation models are oftentimes so complicated that the person
who implemented the model is the only one who can safely provide input data to
get useful output. Hence the use of computer modeling and simulation creates a
bottleneck in product development, production, and education.

In order to make it possible for this small group to service the much larger group,
the Application Builder offers a solution. It enables simulation experts to create an
intuitive and very specific user interface for his or her otherwise general computer
model — a ready-to-use application. The general model can serve as a starting
point for several different applications, with each application presenting the user
with input and output options relevant only to the specific task at hand. The
application can include user documentation, checks for “inputs within bounds”,
and predefined reports at the click of a button.

Creating an application often requires a collaborative effort by experts within the
areas of: physics, numerical analysis, programming, user-interface design, and
graphic design.

To a reasonable extent, COMSOL’s Technical Support team can recommend
physics and numerical analysis settings for your application. In addition, the
COMSOL documentation and online resources can be of great help. For
programming and design, the Technical Support team can provide very limited
help. These are areas where your own development efforts are critical.

The Application Builder makes it easy for a team to create well-crafted applications
that avoid accidental user input errors while keeping the focus on relevant output
details.

We at COMSOL are convinced that this is the way to spread the successtul use of
simulation in the world and we are fully committed to helping make this possible.

Introduction

A COMSOL® application is an intuitive and efficient way of interacting with a
COMSOL Multiphysics® model through a highly specialized user interface. This
book gives a quick overview of the Application Builder desktop environment with
examples that show you how to use the Form Editor and the Method Editor.
Reference materials are also included in this book, featuring a list of the built-in
methods and functions that are available. For detailed information on how to use
the Model Builder, see the book Introduction to COMSOL Multiphysics.

If you want to check out an example application before reading this book,
open and explore one of the applications from the Application Libraries in
one of the Applications folders. Keep it open while reading this book to
try things out. Only the Applications folders contain applications with user
interfaces. The other folders in the Application Libraries are tutorial
models with no user interfaces.

The Application Builder is included in the Windows® version of COMSOL
Multiphysics and accessible from the COMSOL Desktop® environment.
COMSOL Multiphysics and its add-on products are used to create an application.

A license for the same add-on products is required to run the application from the
COMSOL Multiphysics or COMSOL Server™ products.

Additional resources, including video tutorials, are available online at
www.comsol.com.

RUNNING APPLICATIONS WITH COMSOL MULTIPHYSICS

With a COMSOL Multiphysics license, applications can be run from the
COMSOL Desktop in Windows®, macOS, and Linux®.

RUNNING COMPILED APPLICATIONS

By using COMSOL Compiler™ you can compile your application to an
executable file for Windows®, Linux®, and macOS. You can freely distribute the
executable and it can be run without any license file.

RUNNING APPLICATIONS WITH COMSOL SERVER

With a COMSOL Server license, a web implementation of an application can be
run in major web browsers on platforms such as Windows®, macOS, iOS, Linux®,
and Android™. In Windows®, you can also run COMSOL applications by
connecting to a COMSOL Server with an easy-to-install COMSOL Client,
available for download from www.comsol.com. In addition, you can run
COMSOL applications by connecting to a COMSOL Server from your Android™

10|

www.comsol.com/video/
www.comsol.com/video/

device via the COMSOL Client for Android™ app on the Google Play™ store.
COMSOL Server does not include the Application Builder, Physics Builder, or
Model Builder tools that come with the COMSOL Desktop environment. Any
application created with the Application Builder will automatically work with a
web browser or any client.

GUIDELINES FOR BUILDING APPLICATIONS

If you are not experienced in building a graphical user interface or programming,
you may want to read “Appendix F — Guidelines for Building Applications” on
page 349.

ADDITIONAL DOCUMENTATION

Additional documentation with information relevant to building applications can
be found in the books: Application Programming Guide, Application Builder
Reference Manual, and Programming Reference Manual.

The Application Builder Desktop Environment

MODEL BUILDER and APPLICATION BUILDER — COMSOL DESKTOP ENVIRONMENT —
Switch between the Model Builder and the Application The COMSOL Desktop environment provides access
Builder by clicking this button. to the Application Builder, including the Form and

Method Editors, as well as the Model Builder.

L »
- -
APPLICATION BUILDER WINDOW — SETTINGS and EDITOR TOOLS WINDOWS — Click any application
The Application Builder window with the tree node or form object to see its associated Settings window.
application tree. The Editor Tools window is used to quickly create form objects.

The screenshot above is representative of what you will see when you are working
with the Application Builder. The main components of the Application Builder
desktop environment are:

» Application Builder window and ribbon tab
+ COMSOL Desktop environment

« Form Editor (sce page 51)

¢ Method Editor (see page 170)

12|

THE APPLICATION TREE

The application tree consists of the
following nodes:

* Inputs

¢ Themes

¢ Main Window
¢ Forms

¢ Events

¢ Declarations
¢ Methods

¢ Libraries

The Inputs node contains subnodes that are
of the type Application Argument. These can
be used for input arguments to the
application when starting it from the
command line of the operating system.

The Themes node has a Settings window
with choices for the desktop color themes,
as well as font, text color, and other settings
that will affect the general appearance of an
application.

The Main Window node represents the main
window of an application and is also the
top-level node for the user interface. It
contains the window layout, the main menu
specification, and an optional ribbon
specification.

The Forms node contains subnodes that are
forms or folders containing local forms.
Each form may contain a number of form
objects such as input fields, graphics
objects, and buttons.

The Events node contains subnodes that are

Application Builder

ot iEE
4[] tuning_fork.mph (root)
ﬁ Inputs
% Themes

- D Main Window
- E Menu Bar
4 [Z] File {file}
El Save {save}
El Save As {sgveds]
4 B Forms
D main
D selectllSize
D information
[D mainComputer
D toolbarComputer
[D mainTablet
D toolbarTablet
D notationsTablet
[D mainSmartphone
D toolbarSmartphone
Events
4 = Declarations

= Boolean

123 Integer

25 Double

abe String

<> Material {materiallist}

<> Simulation Type List {simulationTypelist}

,@ Shortcuts
4 [Methods
initializeApplication
resetToDefault
enableButtons
checkFindPrenglength
computeAndUpdateResults
runFrequencyStudy
playSoundForFrequency
createReport
inputChanged
initGraphicsAndButtons
setMaterial
4 [fffj Libraries

[#] Images

=] Sounds

fE3 Files

ot [ota] [tet] [[stat] [] Lot] Ftet] [[tt] [s7]

global events. These include all events that are triggered by changes to the various
data entities, such as global parameters or string variables. Global events can also
be associated with the startup and shutdown of the application.

The Declarations node is used to declare global variables, which are used in
addition to the global parameters and variables defined in the model.

113

The Methods node contains subnodes that are methods. Methods contain code for
actions not included among the standard run commands of the model tree nodes
in the Model Builder. The methods may, for example, execute loops, process
inputs and outputs, and send messages and alerts to the user of the application.
Methods can modify the model object of a running application or the model
object represented by the Model Builder in the current session.

The Libraries node contains images, sounds, and files to be embedded in an MPH
file so that you do not have to distribute them along with the application. In
addition, the Libraries node may contain Java® utility class nodes and nodes for
external]ava® and C libraries.

14 |

THE FORM EDITOR

FORM TAB — The Form tab in the ribbon
gives easy access to the Form Editor.

FORM OBJECTS — Each form contains form objects
such as input fields, check boxes, graphics, images,
buttons, and more.

Form Editor WINDOW — The tabbed Form Edi-
tor window allows you to move objects around by
dragging. Click an object to edit its settings.

Rdnar toch

Lipanditin

= el Lyt for Contamed Form Chjects

SETTINGS and EDITOR TOOLS WINDOWS —
Click any application tree node or form object to see
its associated Settings window. The Editor Tools
window is used to quickly create form objects.

Use the Form Editor for user interface layout by creating forms with form objects

such as input fields, graphics, and buttons.

The main components of the Form Editor are:

e Form ribbon tab

» Application Builder window with the application tree

e Form window
« Editor Tools window

* Settings window

| 15

Creating a New Form

To create a new form, right-click the Forms node of the application tree and select
New Form. You can also click New Form in the ribbon. Creating a new form will
automatically open the Form Wizard with a number of layout templates.

If your application already has a form, for example forml, and you would like to
edit it, you can open the Form Editor in either of two ways:

 In the application tree, double-click the forml node.
 In the application tree, right-click the forml node and select Edit.

You can also add forms that are local to other forms. When applicable, this option
is available as a menu option from the New Form button.

16 |

THE METHOD EDITOR

METHOD TAB — The Method METHOD WINDOW — The tabbed SETTINGS WINDOW — Click any
@b in the rllb:non glves easdy ;C' Method Window allows you to switch application tree node to see its asso-
cess to tools for writing and de- between editing different methods. ciated Settings window.

bugging code.

MODEL EXPRESSIONS, LANGUAGE ELEMENTS, and EDITOR TOOLS WINDOWS — These win-
dows display tools for writing code. The Model Expressions window shows all constants, parameters,
variables, and functions available in the model. The Language Elements window is used to insert template
code for built-in methods. The Editor Tools window is used to extract code for editing and running mod-
el tree nodes.

Use the Method Editor to write methods for actions not covered by the standard
use of the model tree nodes. A method is another name for what is known in other
programming languages as a subroutine, function, or procedure.

The main components of the Method Editor are:

Method ribbon tab
Application Builder window with the application tree
Method window

Model Expressions, Language Elements, Editor Tools, and Settings
windows (these are stacked together in the figure above)

| 17

Creating a New Method

To create a new method, right-click the Methods node in the application tree and
select New Method. You can also click New Method in the ribbon. In the Global
Method dialog box you can change the name of the method.

3 Global Method X

MName: method]

oK Cancel

Creating a new method will automatically open the Method Editor. Methods
created in this way are global methods and accessible from all methods, form
objects, and from the Developer tab in the Model Builder ribbon. By first clicking
a form node you also have the option of creating a Form Method which is local to
a form.

A sequence of commands associated with, for example, a button or menu
item can be automatically converted to a new method by clicking Convert
to Method. Open the new method by clicking Go to Method. You can also
create a method that is local to a form or form object by clicking Convert
to Form Method or Convert to Local Method, respectively. These options are
shown in the figure below.

« Choose Commands to Run ‘ﬁ « Choose Commands to Run]
b B Forms b [Forms
b B GUI Commands b B GUI Commands
b [Libraries v B Methods
4 % Model (root) b [l Libraries

b @ Global Definitions 4 & Model (root)

b i@ Compenent 1 (compl) b) Global Definitions

4 b Study 1 b @ Component 1 (comp1)

[= Statienary 4 oo Study 1
b [Tre Solver Configurations [= stationary
4 B Results v [fre Solver Configurations
b £ Derived Values 4 [Results

Edit Node » Run i Plot = SetValue | | Show Edit Node » Run @i Plot SetValue | | Show

Show as Dialog | ImportFile) Enable " Disable Show as Dislog | ImportFile () Enable . Disable
" "

Command Icon| Arguments Command Icon| Arguments
Compute Study 1 = method1
Plot Temperature (ht) form1/graphics1
Plot Electric Potential (ec) form1/graphics1

- W
“E Convertto Method Go to Method
TrroTog SHE

5F Convertto Form Method

& Position and Size
5F Convertto Local Method

AppTaTaTes Appearance

If a method already exists, say with the name method1, then you can open the
Method Editor in any of these ways:

 In the application tree, double-click the methedl node.

18]

 In the application tree, right-click the methodl node and select Edit.

+ Below the command sequence in the Settings window of a form object or an
event, click Go to Method.

APPLICATION BUILDER PREFERENCES

To access Preferences for the Application Builder, choose Preferences from the File
menu and select the Application Builder page.

3 Preferences.

Add-in Libraries
Application Builder
Application Libraries
Client/Server

Color Themes

Desktop windows

[] Use separate desktop window for Application Builder
Editors

Maximum number of editers before closing: 15

Show editor preview

Email
Files

Forms

General

Geometry

Graphics and Plot Windows
Graphics Interaction
Graphics Toolbars

Help

LiveLink Connections
Mesh

Methods

Model Builder

Multicore and Cluster Computing
Parametric Sweep

Part Libraries

Physics Builder

Quick Access Toalbar
Remote Computing
Results

Security

Show Mare Options
Updates

Factory Seftings

Factory Seftingsfor All | Import.. Export.. oK Cancel

You can configure the COMSOL Desktop environment so that the Application
Builder is displayed in a separate desktop window. Select the check box Use
separate desktop window for Application Builder.

You can use the keyboard shortcuts Ctrl+Shift+M and Ctrl+Shift+A to switch
between the Model Builder and Application Builder, respectively.

You can set an upper limit to the number of open Form Editor or Method Editor
window tabs. Select the check box Maximum number of editors before closing and
edit the number (default 15). Keeping this number low can speed up the loading
of applications that contain a large number of forms.

119

The Application Builder and the Model Builder

Use the Application Builder to create an application based on a model built with
the Model Builder. The Application Builder provides two important tools for
creating applications: The Form Editor and the Method Editor. In addition, an
application can have a menu bar or a ribbon. The Form Editor includes
drag-and-drop capabilities for user interface components such as input fields,
graphics objects, and buttons. The Method Editor is a programming environment
that allows you to modify the data structures that represent the different parts of
a model. The figures below show the Model Builder and Application Builder
windows.

Mode
- ® StEL e

D
B ae

4 % helical_static_mixer.mph (root)
4 () Global Definitions
P Parameters 1
I Step 1 (stepl)
b (%) Geometry Parts
4 Default Model Inputs
5 Materials
Component 1 {comp 1)
= Definitions
A Geometry 1
22 Materials
=* Laminar Flow (spf)
%= Fluid Properties 1
%= Initial Values 1
T Wall 1
= Inlet 1
= Outlet 1
¥ Transport of Diluted Species (tds)
iy Multiphysics
A Mesh 1
4~ Study 1
[= Step 1: Stationary
[= Step 2: Stationary 2
> [fr. Solver Configurations
4 B Results
b
b
b
b
b
b
b
b
b
b
b
b

R
L.

B Tebles

W Velocity (spf)

Wi Pressure (spf)

Wi Streamlines (spf)

~¥ Pressure Cut Line

Wi Dimensionless Concentration (tds)
i Scaled Dimensionless Concentration (tds)
~# Concentration Cut Lines

W& Contact Probability (tds)

Wi Scaled Contact Probability (tds)
Export

[# Reports

4[] helical_static_mixer.mph (roct)
9 Inputs
2 Themes
4 [T Main Window
4 [File Menu
[] Save {save}
7] Save As {saveAs)
4[] Ribbon
4 [™] Home {home}
; Input finput}
b Geometry {geometry)
Fl Simulation {simulation}
4[] Mesh {createMesh}
7] Coarse {coarseButton)
V] Normal {normatButton}
[] Fine {fineButton;
] Compute feompute)
! Visualization {visualization}
; Documentation {dacumentation}
4 [Forms
™ main
4[] geometry
4 [Forms
[bladePropertis
[™] operatingConditions
4 [resutts
4 [Forms
[0 valuesAfterLastBlade
4 [information
4 [Forms
8 computationTime
[status
Events
b = Declarations
b B Methods
b [ffi] Libraries

When creating an application, you typically start from an existing model.
However, you can just as well build an application user interface and the
underlying model simultaneously. You can easily, at any time, switch between the
Model Builder and Application Builder. The model part of an application, as
represented by the model tree, is sometimes called an embedded model.

20 |

The tools in the Application Builder can access and manipulate the settings in the
embedded model in several ways; For example:

 If the model makes use of parameters and variables, you link these directly
to input fields in the application by using the Form Wizard or Editor Tools.
In this way, the user of an application can directly edit the values of the
parameters and variables that affect the model. For more information, see
pages 61 and 93.

* By using the Form Wizard or Editor Tools, you can include a button in your
application that runs a study node and thereby starts the solver. In addition,
you can use this wizard to include graphics, numerical outputs, check boxes,
and combo boxes. For more information, see pages 44 and 61.

» The Data Access tool and the Editor Tools window can be used to directly
access low-level settings in the model for use with form objects or in
methods. For more information, see pages 61, 104, and 176.

* By using the Record Code tool, you can record the commands that are
executed when you perform operations within the model tree and its nodes.
These will then be available in a method for further editing. For more
information, see page 180.

Parameters, Variables, and Scope

The model tree may contain both parameters and variables that are used to control
the settings of a model. The figure below shows the model tree of an application
with nodes for both Parameters and Variables.

4 % helical_static_mixer.mph (root)
4 () Global Definitions
Fi Parameters 1
_I” Step 1 (step?)
[_l Geometry Parts
45 Default Model Inputs
Materials
4 |§ Component1 (comp1)
4 = Definitions
2= Variables 1
[Boundary System 1 {sys1)
; View 1

b Geometry 1

Parameters are defined under the Global Definitions node in the model tree and are
user-defined constant scalars that are usable throughout the Model Builder. That
is to say, they are “global” in nature. Important uses are:

e Parameterizing geometric dimensions

| 21

» Specifying mesh element sizes

* Defining parametric sweeps

Variables can be defined in either the Global Definitions node or in the Definitions
subnode of any model Component node. A globally defined variable can be used
throughout a model, whereas a model component variable can only be used within
that component. Variables can be used for spatially or time-varying expressions,
including dependent field variables for which you are solving.

In the Model Builder, a parameter or variable is a string with the additional
restriction that its value is a valid model expression. For more information on the
use of parameters and variables in a model, see the book Introduction to
COMSOL Multiphysics.

An application may need additional variables for use in the Form Editor and the
Method Editor. Such variables are declared in the Application Builder under the
Declarations node in the application tree. The figure below shows the application
tree of an application with multiple declarations.

4 E] helical_static_mixer.mph (root)
ﬁ Inputs
% Themes

[D Main Window

b B Forms
Events

4 = Declarations
abe String
25 Double
255 Array 1D String
= Boolean
<Z» Murner of Blades List {numt
=] Shortcuts

I [y Methods
[1 ihraries

The declared variables in the Application Builder are typed variables, including
scalars, arrays, Booleans, strings, integers, and doubles. Before using a variable,
you have to declare its type.

The fact that these variables are typed means that they can be used directly in
methods without first being converted using one of the built-in methods. This
makes it easier to write code with typed variables than with parameters and
variables representing model expressions. However, there are several tools
available in the Application Builder for converting between the different kinds of
variables. For more information, see pages 146 and 331. For more information on
typed variables, see the Application Programming Guide.

22 |

Running Applications

With a COMSOL Multiphysics license, applications can be run from the
COMSOL Desktop environment. With a COMSOL Server license, applications
can be run in major web browsers on a variety of operating systems and hardware
platforms. In addition, you can run applications by connecting to COMSOL
Server with clients for Windows® or Android®.

By using COMSOL Compiler™, you can compile your application to an
executable file that can be run in the Windows®, Linux®, and macOS operating
systems.

The following two sections explain how to run applications in these different
settings. The third section, “Publishing COMSOL Applications” on page 42,
describes your rights to publish applications.

Running Applications in COMSOL Multiphysics

In COMSOL Multiphysics, you run an application using any of these ways:
* Click Test Application in the ribbon or in the Quick Access Toolbar.

+ Seclect Run Application in the File menu or in the Quick Access Toolbar.
« Double-click an MPH file icon on the Windows® Desktop.

» Seclect Test in Web Browser in the ribbon.

TESTING AN APPLICATION

Test Application is used for quick tests. It opens a separate window with the
application user interface while keeping the Application Builder desktop
environment running.

N
> N0,
Test Preview Testin Web

Application Form Browser -

Test

While testing an application, you can apply changes to forms, methods, and the
embedded model at run time by clicking the Apply Changes button. Not all
changes can be applied at run time, and in such a case, you are prompted to close
the application and click Test Application again.

To preview the layout of a form without running the application, click Preview
Form in the ribbon.

| 23

When Test Application is used, all methods are automatically compiled with the
built-in Java® compiler. Any syntax errors will generate error messages and the
process of testing the application will be stopped. To check for syntax errors before
testing an application, click the Check Syntax button in the Method tab.

[Language Elements jupe) = B+C »a=
EM

T
Ea'gl\dodel Expressions

Check Goto Record Use Create Local
Syntax Mode Code Shortcut Variable

Check Syntax finds syntax errors by compiling the methods using the built-in Java®
compiler. Any syntax errors will, in this case, be displayed in the Errors and
Warnings window in the Method Editor. For more information, see “The Method
Editor” on page 170.

RUNNING AN APPLICATION

Run Application starts the application in the COMSOL Desktop environment.
Select Run Application to use an application for production purposes. For example,
you can run an application that was created by someone else that is password
protected from editing, but not from running.

B I heEHBE »
Home Definitior
D MNew

Q Run Application

Open

Recent

DoOUBLE-CLICKING AN MPH FILE

When you double-click an MPH file icon on the Windows® Desktop, the
application opens in COMSOL Multiphysics, provided the MPH file extension is
associated with COMSOL Multiphysics. The application may either be opened for
editing or for running. You control this behavior from the root node of the
application tree. The Settings window for this node has a section titled Application
in which you may select either Edit application or Run application. A change in this
setting will be applied when you save the MPH file.

¥ Application

[] Ask to save application when closing
When starting with COMSOL Multiphysics:

Edit application -

Edit application
Run application

24 |

The option Edit application will open the application in the Application Builder.

The option Run application will open the application in runtime mode for
production purpose use. This option is similar to selecting Run Application in the
File menu with the difference that double-clicking an MPH file will start a new
COMSOL Multiphysics session.

If you have installed the COMSOL Client for Windows®, the MPH file extension
may instead be associated with the COMSOL Client, and double-clicking an
MPH file will prompt you to log in to a COMSOL Server installation.

IGNORING LICENSE ERRORS

In the Settings window for the application tree root node, the check box Ignore
license errors during launch is used to control the behavior with respect to licensed
products when running applications.

¥ Application

[] Ask to save application when closing

When starting with COMSOL Multiphysics:
Run application -

Ignore license errors during launch

When selected, an application can be started even if all required licenses are not
available. It is still not possible to use the functionality of products for which the
license is not available. However, you can write methods to create an application
such that the functionality used is dynamically adapted to which types of licenses
are available.

TESTING AN APPLICATION IN A WEB BROWSER

Test in Web Browser is used for testing the application in a web browser. This
functionality makes it easy to test the look and feel of the application when it is
accessed from a web browser connected to a COMSOL Server installation.

VMoo » ® | e

Remove Disable Test Test .i.n.weh Tile Move
All All Application Browser - - To -
Bre E" Test in Chrome™ Browser | View

E" Test in Firefox ® Browser
E" Test in Internet Explorer® Browser
E" Test in Microsoft Edge® Browser

You can choose which of the installed web browsers you would like the application
to launch in. Test in Web Browser opens a separate browser window with the

| 25

application user interface while keeping the Application Builder desktop
environment running.

TEST APPLICATION VS. TEST IN WEB BROWSER

Test Application launches the application with a user interface based on Microsoft®.
NET Framework components, whereas Test in Web Browser launches the
application with a user interface based on HTML5 components. Test Application
will display the user interface as it would appear when the application is run with
COMSOL Multiphysics or COMSOL Server, provided the COMSOL Client for
Windows® is used to connect with the COMSOL Server installation. Test in Web
Browser will display the user interface as it would appear when the application is
run with COMSOL Server, provided a web browser is used to connect with the
COMSOL Server installation.

For testing the appearance and function of an application user interface in web
browsers for macOS, 108, Linux®, and Android™, a COMSOL Server installation
is required.

The table below summarizes the different options for running an application.

SERVER SOFTWARE CLIENT SOFTWARE TOOL OR COMPONENT
COMSOL Multiphysics Test Application

COMSOL Multiphysics Test in Web Browser

COMSOL Multiphysics Run Application

COMSOL Server COMSOL Client for Windows®

COMSOL Server COMSOL Client for Android®

COMSOL Server Web Browser

N/A Executable file compiled with COMSOL Compiler

The Server column represents the software components that perform the
CPU-heavy computations. The Client column represents the software tool or
component used to present the application user interface. In the case of executable
files, all computations are done locally. For more information on compiled
applications, see “Compiling and Running Standalone Applications” on page 36.

SAVING A RUNNING APPLICATION

When you test an application, it is assigned the name Untitled.mph and is a copy
of the original MPH file. This is not the case when running an application.

By default, the user of an application will not be prompted to save changes when
exiting the application. You control this behavior from the root node of the
application tree. The Settings window for this node has a section titled Application

26 |

in which you may select the check box Ask to save application when closing, as

shown in the figure below.

¥ Application

[] Ask to save application when closing

As an alternative, you can add a button or menu item with a command to save the

application. For more information, see page 138.

APPLICATION LIBRARIES

From the File menu, select Application Libraries to run and explore the example

applications that are included in the COMSOL installation. Many of the
screenshots in this book are taken from these examples.

(s]

b

L& »

File Home Definitions

MNew

[Run Application

o @ = 0 B

T

Open

Recent

Application Libraries

Save

Save As

Revert to Saved

Compact History

COMSOL Multiphysics Server
Help

Licensed and Used Products

Preferences

Exit

Ctrl+N

Ctrl+0

Ctrl+5

m
Geometry Ma

é

| 27

You run an application, or open it for editing, by clicking the corresponding
buttons below the Application Libraries tree.

o

R Untitfed.mgh - COMSOL Multiphyzics
W o e metry Matesiaks Meh Study Resuls Developer
Application Libraries
Refresh [Updete COMSOL Application Libraries £} Application Gallery
Search
4 [COMSOL Muliphysics
4 [l Applications
& cluster_setup_validsticn
O helical static_mixer
transmissian_line_cabculatoe
fubilar_reactor
tuning fork
B Acoustics
7] Chemical Engineesing
B Cluster and Batch Tuterials
Sl Drtussan This app demaonstrates the folowing:
B Dectromagnetics
7 tquation Based - Gecmatry pacts and parameterized geometries
B Fuid Dynamics « lark therne
| Grophysics = Materil app with t reflections
| Huat Tandh « Repurt generation for both Microsoft® Word and Mitrosalt ® PowesPaing
| Heat Tunsfer « Oiptiors for setting ddferent mesh sizes
Meshing Tuterisk - Improved graphics visualization by showing/hiding different geometry objects
] Multiphysics » Enablng and deiabihng sbben dems baied on the sohdion state.
v [Structural Mechanics
¥ ACDE Module Helical static muers are cften used Lo mix manemers and initistors which then react during a polymerization
} ‘Bemustics Modula proess. Th field is inchuded in the anshysis in order pte the extent of b
nee N streams injecied into the static mixer thiough semicircle-shaped inbets,
s Battery Design Module
T CAD Import Modude The spp can be used to estimate the degres of mixing in & gystem including cne 10 five helical Blades whese
% CFD Modube dirnersirs can sl be varsed, The monomers’ lquid properses and inet velooty can she be vaned.
#=! Chemical Reaction Engineering Madule
& Composite Materiaks Module Hara haical static paisar
< Comosion Modude - COMEIL Muinh
D Design Module s products tiphrysics
(2 ECAD Import Meodule Physics interfaces Lamanar Flow .
W3 Fleerreal Cirevite Medule Traeport of Diluted Species
m — m
M = 8 Crested in COMSOL Multiphysics 5.5 (Buikd: 266)
B RunAgplication | @/ Open Computation time 8 manutes
G| Open POF Docurment Authar COMSOL
Last modified Oct 22, 2020 21053 PM
Created Ot 22, 2020 2:30:53 PM

HHHp chmr

Applications that contain a model, but no additional forms or methods, cannot be
run and only opened for editing. Applications that contain forms and methods are
collected in folders named Applications.

The applications in the Application Libraries are continuously improved and
updated. You can update the Application Libraries by clicking Update COMSOL
Application Libraries.

Additional applications that are not part of the Application Libraries may be
available from the COMSOL website in the Application Gallery. To find these
applications, click the Application Gallery button. This will open a browser with
the web page for the Application Gallery.

Each application has an associated thumbnail image that is displayed in the
Application Libraries. In the COMSOL Server web interface, the thumbnail image
is displayed on the Application Library page.

To set the thumbnail image, click the root node of the application tree. The
Settings window has two options for choosing the image: Set from Graphics
Window and Load from File. You can also Clear the image.

28 |

The Load from File option allows you to load images in the PNG or JPG file

formats. Choose an image size from 280-by-210 to 1024-by-768 pixels to ensure
that the image displays properly as a thumbnail in COMSOL Multiphysics and

COMSOL Server.

Settings
helical_static_mixermph

~ Pratection

Editing not protected Set Password

Running not protected = 5et Password
¥ Used Products

COMSOL Multiphysics

¥ Presentation

Title: Helical Static Mixer

Description: Helical static mixers are often used to mix
monemers and initiators that then react during
a polymerization process,

The purpose of the Helical Static Mixer
application is to demonstrate this mixing
Author: COMSOL
Computation time
Expected: 10 min
Last: 4minds
Thumbnail

Set from Graphics Window Load from File... Clear

Unit System

Graphics

The Set from Graphics Window option automatically creates two thumbnail images:

* An image of size 280-by-210 pixels shown in the Settings window of the
application tree root node and in the Application Libraries.

* Animage of size 1024-by-768 used as the default title page image in reports

and in the Application Libraries in COMSOL Server.

| 29

PASSWORD PROTECTION

An application can be password protected to manage permissions. You assign
separate passwords for editing and running in the Settings window, accessible by
clicking the root node of the application tree in the Application Builder window.
You must have permission to edit an application in order to create passwords for
running it.

Settings T EX
¥ Protection

Editing not protected Set Password

Running not protected = Set Password

¥ Used Products 3 Protect Edit with Password X

COMSOL Multiphysics

Mo current password

MNew password: sssnee

¥ Presentation
LIl]]

Retype new password:

Title: Helical 5

MNote: Lost passwords cannot be recovered.
Helical st oK
menomg

polymerization process,

Description: Cancel

When you open a password-protected MPH file, for editing or running, a dialog
box prompts you for the password:

3 Password Protected File X

Enter password: | |

To remove password protection, create an empty password.

The password protection is used to encrypt all model and application settings,
including methods. However, binary data, such as the finalized geometry
including embedded CAD files, mesh data, and solution data, is not encrypted.

SECURITY SETTINGS

When creating an application with the Application Builder, it is important to
consider the security of the computer hosting the application. Both COMSOL
Multiphysics and COMSOL Server provide a very similar set of security settings
for controlling whether or not an application should be allowed to perform
external function calls, contain links to C libraries, run MATLAB functions, access
external processes, and more.

30 |

The security settings in COMSOL Multiphysics can be found in the Security page
in the Preferences window accessed from the File menu. In COMSOL Server, they
are available in the Preferences page in the COMSOL Server web interface if you
are logged in as an administrator. If you are not sure what security settings to use,
contact your systems administrator.

Running Applications with COMSOL Server

COMSOL applications can be run by connecting to COMSOL Server from a web
browser or a COMSOL Client for Windows®. The COMSOL Client for
Windows® allows a user to run applications that require a LiveLink™ product for
CAD, as described in Running Applications in the COMSOL Client.

Running applications in a web browser does not require any installation or web
browser plug-ins. Running an application in a web browser supports interactive
graphics in 1D, 2D, and 3D. In a web browser, graphics rendering in 3D is based
on WebGL™ technology, which is included with all major web browsers.

RUNNING APPLICATIONS IN A WEB BROWSER

Using a web browser, you can point directly to the computer name and port
number of a COMSOL Server web interface — for example,
http://comsol-server-machine-url.com:2036, assuming that port number
2036 is used by your COMSOL Server installation. You need to provide a
username and password to log in. If you are running COMSOL Server locally, the
address field will typically be localhost:2036.

a = %

| 31

When logged in, the Application Library page displays a list of applications to run.

Rty Wi B O dvphrtion Ubewy | DML X | =

€ [

COMSOL Server

Library

Jimarch X Fier Al SortBy:Name T sunan BHER

(083 o o ® [OR =5

[upload Absorptive Muffler Designer B-H Curve Checker Beam Section Calculator Beam Section Calculator
{Using LiveLink™ for

A Administration [} i Ry |
p Ucensed and Used | i
Products 1
© Your Serings <
ium in browser - Rk in b owser - A in brower . B i browser =

(0B @ [0R+3 @

Bike Frame Analyzer Biosensor Design Centrifugal Governor Charge Exchange Cell
Simulator Samutator

o o SE

Click Run in browser to run an application. Applications are run in separate tabs in
the browser.

[— .+ SR
PO D o " = @
P =
= . g o i s a0 = 7]
Wiwded Des Feet -
Campasr Bt epen B i Bmemul felewen fiensen oy LA
D o o Qae | » @-oll0 a
| it i -
| Fenrr Wil
| P 7
| Comepation e " -
Cormpi 2.
[T 6 -
o Ak
s g tim
Mo camagetan gy -
| eutpur o e g Ve
| St M .
| et g e ot itz &
| e spemrs rons-potecmsam em. um
R]
|| B e
| o e et b et
| e ey
| vt o o o gy ey
D it st b 104
@ Gy e 0 i
)
e
= e L bt g b gt o e b A bt e

32 |

Limitations When Running Applications in Web Browsers

When you create applications to run in a web browser, make sure you use the grid
layout mode in the Application Builder; See “Sketch and Grid Layout” on page
110. This will ensure that the user interface layout adapts to the size and aspect
ratio of the browser window. For low-resolution displays, make sure to test the
user interface layout in the target platform to check that all form objects are visible.
Applications that contain resizable graphics forms may not fit in low-resolution
displays. In such cases, use graphics with fixed width and height to make sure all
form objects fit in the target browser window. Depending on the type of web
browser and the graphics card, there may be restrictions on how many graphics
objects can be used in an application. You can get around such limitations by,
instead of using multiple graphics objects, reuse the same graphics object by
switching its source.

When running in a web browser, the LiveLink™ products for CAD software
packages are not supported.

When running COMSOL applications in web browsers for smartphones and
certain tablets, not all functionality is supported. Typical limitations include the
ability to play sounds or open documents. In addition, file upload and download
may not be supported.

If the application allows the user to make selections, such as clicking on boundaries
to set boundary conditions, running in a web browser is different from running in
COMSOL Multiphysics or the COMSOL Client for Windows®. In a web
browser, boundaries are not automatically highlighted when hovering. Instead, it
is required to click once to highlight a boundary. A second click will make the
selection. A third click will highlight for deselection and a fourth click will deselect.
The process is similar for domains, edges, and points.

Note that file browsing functionality is slightly different depending on the web
browser and depending on the version of the web browser. This may impact the
user experience when running an application that has functionality for saving files
to the client computer. For example, the location of the downloads folder can be
changed in the settings of many web browsers. A web browser may also allow the
user to manually specify the download location for each file. Please refer to the
documentation of your target web browsers for details.

RUNNING APPLICATIONS IN THE COMSOL CLIENT

As an alternative to using a web browser for running applications, the COMSOL
Client for Windows® can be used to connect to COMSOL Server for running
applications natively in the Windows® operating system. This typically gives better
graphics performance and supports more sophisticated graphics rendering in 1D,
2D, and 3D. In addition, the COMSOL Client for Windows® allows running

| 33

applications that require a LiveLink™ product for CAD, provided that the
COMSOL Server you connect to has the required licenses. You can open an
application with the COMSOL Client for Windows® in two different ways:

e The COMSOL Server web interface will allow
you to choose between running an application ® %
in a web browser or with the COMSOL
Client for Windows®.

If you try to run an application with the
COMSOL Client in this way, but it is not yet
installed, you will be prompted to download
and install it.

Biosensor Design

Run in browser hd

Run in browser

Run in COMSOL Client

* Ifyou have the COMSOL
Client fOI' Windows® 3 Connect to COMSOL Multiphysics Server X
already installed, a desktop | ™ veer
shortcut will be available.
You can double-click its
desktop icon and before
you can use the COMSOL ————
Client to run applications,
you will be prompted to log into a COMSOL Server with a valid username
and password. After login, the COMSOL Client displays a COMSOL Server
web interface identical to that seen when logging in from a web browser.

Server: | comsol-server-machine Username: | paul

Port: Default e Password: sssssssssss

Remember username and password

Using the COMSOL Client, applications run as native Windows® applications in
separate windows. For example, applications run in the COMSOL Client may
have a Windows® ribbon with tabs. When run in a web browser, ribbons are
represented by a toolbar.

34 |

In the figure below, the COMSOL Server web interface is shown (top) with an

application launched in the COMSOL Client for Windows® (bottom).

& TOMSO Chemt

WCOMSOL

' O

COMSOL Server | A9

Absorptive Musier
Desigrer

r

Tt

Bike Frame

e r—
etk prwnetirs posdog

postpemc
i 54t e o the gty B

T Lo compatatin tems 174

Ly ————

X Fmec Al Seri By Wame T s

@
Beamn Section Caiculator

@

Beamn Section Calcutator
{Using LiveLink™ for

L
Comaant Covis
m et

RUNNING COMSOL SERVER ON MULTIPLE COMPUTERS OR A CLUSTER

COMSOL applications can be run on multiple computers or clusters in two main

ways:

* By installing COMSOL Server with primary and secondary instances.

* By configuring one of the study nodes in the Model Builder for a particular

cluster.

|35

Primary and Secondary Instances

Running COMSOL Server on multiple computers using primary and secondary
instances allows for more concurrent users and applications than a single computer
instance (or installation). The main COMSOL Server instance is called primary
and the other instances are called secondary. The primary server is used for all
incoming connections — for example, to show the web interface or to run
applications in a web browser or with COMSOL Client. The actual computations
are offloaded to the secondary server computers. This type of installation has a
major benefit: Applications do not need to be custom-built for a particular cluster.
Load balancing is managed automatically by the primary server, which distributes
the work load between the secondary servers. A COMSOL Server installation can
consist of multiple primary and secondary server installations without additional
license requirements. You can perform administrative tasks using the COMSOL
Server web interface without checking out license keys for users running
applications. License keys are only checked out when running applications.

Configuring a Study Node for Cluster Sweep or Cluster Computing

If you want to utilize a cluster for applications that require large parametric sweeps
or high-performance computing power, then you can configure the Model
Builder study node(s) of an application using the Cluster Sweep and Cluster
Computing options. Note that for building such applications, you will need a
Floating Network License. You can find more information on configuring a study
node for clusters in the books Introduction to COMSOL Multiphysics and the
COMSOL Multiphysics Reference Manual. For running such cluster-enabled
applications, you can use either COMSOL Server or a Floating Network License
of COMSOL Multiphysics. Cluster system configurations are available from the
COMSOL Server web interface.

For more information on COMSOL Server, see the COMSOL Server Manual
available with a COMSOL Server installation or from
http://www.comsol.com/documentation/COMSOL_ServerManual.pdf.

Compiling and Running Standalone Applications

If you have a license of COMSOL Compiler™, there will be a Compiler button in
the ribbon section Main, as shown below.

"5 Data Access
E'.Record Method
[Compiler

Main

36 |

Clicking this button will add a Compiler node to the application tree, shown in the
figure below.

Application Builder -
-

£l
4[] tuning_fork.mph (root)
[EA Compiler
ﬁ Inputs
% Themes

[D Main Window

The corresponding Settings window is shown below.
Settings RS

= Compile Application

¥ Qutput
Directony: CACOMSOL Browse...

Runtime: Download =
Platforms
Windows

[Linux
[] mac0s

¥ Appearance

lcon for Windows: Default ~| |4
Splash: Default ~| |4
Preview

COMPILING APPLICATIONS

To compile an application, you need to make a few selections in this window.
Specify an output Directory, where the executable files will be saved after
compilation.

The Runtime option can be left at Download for most situations. COMSOL
Runtime contains all the COMSOL Multiphysics software components needed to
run the application as a standalone program. The Runtime setting specifies where
the COMSOL Runtime environment will be stored and affects the behavior when
the compiled application is started for the first time on a computer. If this setting
is Download then the first time a user is starting the compiled application the
COMSOL Runtime environment files will be downloaded (a service provided by
COMSOL). If the COMSOL Runtime environment already exists on the
computer, with a matching version number, then no download will be performed.
The option Enabled will bundle the COMSOL Runtime files in the executable file.

|37

Note that with this option, the file size may be several hundred megabytes even
for smaller applications.

The Platforms settings determine which target-platform executables should be
generated at compilation. The extensions of the executables for the Windows®
and Linux® operating systems will be .exe and . sh, respectively. For macOS, a
.tar archive is created; unpack this archive on macOS to extract the app.

The Icon for Windows lets you specify the desktop icon. The Splash setting lets you
specify a BMP-image file to be displayed at startup.

After compilation, in the Windows® operating system, the executable file will be
available in the output directory, as shown in the figure below.

&« v » ThisPC » Local Disk (C:) » COMSOL

7+ Quick access

¥ Metwork

tuning_fork.exe

As a next step, you can, for example, right-click the EXE-file and create a shortcut
that you then place on the Windows® desktop.

You can also compile an application from the operating system command line. For
more information, see the COMSOL Multiphysics Reference Manual.

RUNNING COMPILED APPLICATIONS

When running a compiled application, for example, by double-clicking the .exe
file in the Windows® operating system, a splash screen is shown and the
application will start. If the application has the Splash option set to Default, then a
neutral-looking built-in splash screen will be shown.

It is recommended that you replace this with your own splash screen.

38 |

If this is the first time you are running an application on a particular computer,
then, in addition, a click-through agreement and an Initializing Installer progress
window will be displayed. The initialization progress window is shown below.

Starting COMSOL Runtime Installer

Unpacking runtime components.

This may take a minute or two.

After a short moment, the COMSOL Runtime Installer window is displayed, as
shown below.

O COMSOL Funtime 3.6 Installer - bt

COMSOL Runtime™ 5.6 Installer W COMSOL

License Options Instal Finish

OMSUL Buntime License Agresment %.& -~

ad-cn

cotained the '.nu-r me an pare of The
erms and con of this COMSOL
8l &pply.

Funtime License Agre

IF ¥OU DO BOT ACCEPT THE APPLICABLE TERMS AND CCHDITICHS, DO HOT USE THE
RUNTIME.

wing words and phrases shall have the d
Sut this CRLA, Tegardl
aes are capitalized:

® [acent the terms of e erse op durderland and

(1 do not scoept the terms of the bosnse soreament

COMSOL Runtime riformason Cancel

The COMSOL Runtime Installer and its click-through agreement are only shown
once, and the next time you start the same application, it will not be shown. The
click-through agreement and initialization progress window will also not be
shown if you run another application on the same computer that was generated
with the same COMSOL Compiler version (having the same version of the
COMSOL Runtime).

| 39

Click Next to select the location of the COMSOL Runtime files and the click
Install, as shown in the figure below.

O COMSOL Funtime 3.6 Installer - bt

COMSOL Runtime™ 5.6 Installer wCOMSOL

License -Sewns Instal Finish

Destrstion folder:
C:'Program Fles\OOMSOLYCOMSOL 56\Runame (S 6 Brewse....

File gystem: G

Space requred durng installation: 2710 M3
Space required after installation: 3710 VB
Free disk space: 65331 M8

COMSOL Runtime informaton < Back Instal Cancel

The installation takes a few minutes and, when finished, the installer will prompt
the user to start the application.

An option for showing the COMSOL About dialog box is always available in a
compiled application. The author of the application controls how this information

40 |

is available from the Settings of the Main Window; see “About Dialog” on page 135.
The figure below shows the About dialog box.

3 About X

COMSOL Multiphysics 3.6
Products used: COMSOL Multiphysics

COMSOL o
MULTIPHYSICS

Acknowledgments = Show Information

g this Application, you agree to be bound by version 5.6 of the COMSOL Application License, see ~
ww.comsol.com/sla.

By u
https

This Application is run by technology supplied by COMSOL under version 5.6 of the COMSOL Software License
Agreement, see https ww.comsol.com/sla. @ 1998-2019 COMSOL AB. Protected by U.S., European (valid in DE,

FR, and UK), Chinese, and Japanese patents listed on https:/ w.comsol.com/patents, Patents pending. Certain
technology components are made available under terms found at http w.comsol.com/legal/about. Portions of

this software are owned by Siemens Product Lifecycle Management Software Inc. @ 1986-2019. All Rights

Reserved. Portions of this software are owned by Spatial Corp. ©® 1989-2019. All Rights Reserved. COMSOL, the
COMSOL logo, COMSOL Server, COMSOL Multiphysics, COMSOL Desktop, and Livelink are either registered
trademarks or trademarks of COMSOL AB. For a list of other trademarks and their owners, see v
https://www.comsol.com/tm.

Preferences

In the About dialog box, the user of a compiled application can access the
Preferences by clicking the corresponding button. The Preferences dialog box for
a compiled application is shown below.

3 Preferences *

Visualization
Rendering: OpenGL =

Optimize for Quality ~

Antialiasing: Medium =
Detail: MNormal =
Mouse

3Dconnexion space mouse
Temporary files

Folder for temporary files (temp:///): C\Users\paul\AppData\Local\Temp Browse...
Recovery

Folder for recovery files: C\Users\paul\.comsol\w36runtime\recoveries Browse...
Multicore

Mumber of cores: [| &
Livelink™ for MATLAB®

MATLAB® installation folder: Browse...
Factory Settings oK Cancel

| 41

Here, the user can change settings for Visualization, Mouse, Temporary files,
Multicore, and LiveLink™ for MATLAB®. These settings represent a subset of the
Preferences available in COMSOL Multiphysics and more information can be
found in the COMSOL Multiphysics Reference Manual.
If the compiled application detects that OpenGL® graphics hardware
acceleration is not supported, then the application will automatically
switch to software rendering and exit. The next time the application starts,
software rendering will be used.

Publishing COMSOL Applications

The COMSOL Software License Agreement (SLA) gives you permission to
publish your COMSOL applications for others to use, including commercially,
with certain restrictions spelled out in the SLA available here:

www.comsol.com /sla. This permission enables you to share your applications with
others and to charge them for using your applications through three different
mechanisms.

First, you can make an application available to others to be run by a COMSOL
Multiphysics installation. For using an application with COMSOL Multiphysics,
the user needs to belong to the same organization that purchased the COMSOL
Multiphysics license.

Second, you can make an application available to others to be run by a COMSOL
Server installation. This approach allows for greater flexibility, as it allows you to
set up a COMSOL Server installation and let users from around the world access
your Application. You just need to provide them with the address, a username, and
password to your COMSOL Server installation. Alternatively, users can purchase
their own COMSOL Server license. If you use COMSOL Server to host and run
applications, the SLA also gives you permission to make time on your COMSOL
Server License (CSL) available to persons outside your organization to host and
run applications that you are publishing to others, subject to certain restrictions.

Third, you can use COMSOL Compiler to compile your application into a
standalone program that contains all of the functionality required to make it run.
This approach gives you the greatest flexibility, as the end user of your application
will not need a license for COMSOL Multiphysics or COMSOL Server to run the
Application. The compiled application can then be run by that user and anyone
else to whom you allow the user to publish the compiled application, around the
world, inside or outside of your organization.

The COMSOL Application License, also available at www.comsol.com/sla,
further lets you modity applications available in the Application Libraries and

42 |

publish those modified applications for others to use, including commercially,
with certain restrictions spelled out in the Application License. This allows you to,
for example, use one of the applications in the Application Libraries as a starting
point for your own applications by adding or removing your own features.

If you wish to apply the Application License to applications that you create, the
Application License contains instructions on how to do so. The Application
License also addresses how you can use terms that you choose for modifications
you make to applications available in the Application Libraries, while the original
portions of those applications remain available under the Application License.

The results from a simulation software such as COMSOL Multiphysics can
shorten design times dramatically by, for example, reducing the number of
experiments or product tests. However, simulation software is not a substitute for
real-world testing. This is especially important if there are risks for physical or
environmental damage.

| 43

Getting Started with the Application Builder

STARTING FROM A COMSOL MULTIPHYSICS MODEL

If you do not have a model already loaded to the COMSOL Desktop
environment, select File>0pen to select an MPH file from your file system or select
a file from the Application Libraries. Note that, in the Application Libraries, the
files in the Applications folders are ready-to-use applications. All other files in the
Application Libraries contain a model and documentation, but not an application
user interface.

Once the model is loaded, click the Application Builder button in the ribbon Home
tab. This will take you to the Application Builder desktop environment.

@ hEER > EDE
File Home Definitions Geometry

A a <

Application Component Add

Builder 1~ Component =
Application Model
Model Builder w1

t L sEtEL S

CREATING A NEW FORM USING TEMPLATES AND THE FORM WIZARD

To start working on the user interface layout, click the New Form button in the
Home tab. This will launch the Form Wizard.

2 IDEER » o o ® &
(. D "5 Data Access
f

=a Record Method IEL] Editor Tools

Model = Mew Mew X
Builder Form - Method ~ @Compller

Main

The Form Wizard assists you with adding the most common user interface
components, so-called form objects, to the first draft of your application.

44 |

In the Form Wizard, the first page is the Select Template page.

b J = B *

B o
Select Template
Blank form

-: B
B Ribbon, sections, and graphacs
W Ribbon, logo, sections, and graphics
B Ribbon, tabs, and graphics
W Toolbar, sectons, and graphics

[l Buttons. sections. and graphics
M Compact layout for tablets

Fll Advanced compact layout for tablets
M Compact layout for smartphones

Ml Advanced compact layout for smartphones

&) content

The different templates listed here will help you quickly create an organized
application with different levels of sophistication and user-interface layouts for
desktop, table, and smartphone use.

For this example, select the Basic layout template and click Content. The Select
Content page has three tabs:

¢ Inputs/outputs

| 45

¢ Graphics
¢ Buttons

Select Content

Formtitlee Form 1 [] Labels on top

Form name: form1

Inputs/outputs Graphics Buttons

Available: Selected:
4 & Model (root) —
4 () Global Definitions
4 Py Parameters 1
2= Length (L)

8.5 Bolt radius (rad_1)

8.5 Thickness (tbb)

8.5 Width (whbhb)

8.5 Maximum element size (mh)
8.5 Heat transfer coefficient (htc)
e Applied voltage (Vtot)

Double-click a node or click the Add Selected = button to move a node from the
Available arca to the Selected arca. The selected nodes will become form objects in
the application, and a preview of the form is shown in the Preview area to the right.
At the top of the wizard window, you can change the name and title of the form.
For details see “The Individual Form Settings Windows” on page 51.

The size as well as other settings for form objects can be edited after exiting the
wizard. You can also choose to exit the wizard at this stage by clicking Done, and
then manually add form objects.

The Inputs/Outputs Tab

The Inputs/outputs tab displays the model tree nodes that can serve as an input
field, data display object, check box, or combo box. Input fields added by the
wizard will be accompanied by a text label and a unit, when applicable. You can
make other parts of the model available for input and output by using Data Access
(see page 104). Check box and combo box objects are, for example, only available
in this way. For example, you can make the Predefined combo box for Element Size
under the Mesh node available in the wizard by enabling it with Data Access.

46 |

In the figure below, three parameters, including Length, Width, and Applied

voltage, have been selected to serve as input fields.

Select Content

Form titler Form 1 [[] Labels on top
Form name: form1

Inputs/outputs Graphics = Buttons

Available: Selected
4 @ Model (root) 4 @ Model (reot)
4 () Global Definitions 4 () Global Definitions
4 Pi Parameters 1 4 P Parameters 1
o5 Bolt radius (rad_1) =5 Length (L)
== Thickness (thh) == Width (whb)
5 Maximum element size (mh) == Applied voltage (Vtot)
&= Heat transfer coefficient (htc)
4 I, Results

4 322 Derived Values
max Violume Maximum 1

4 H Tables
B Maximurm and Minimum Values
B Teble 1

Q) emplate
[2 28 e(an(e\ [pone

Preview
Length: 9
Width: 5

Applied voltage: 20

In the figure below, a Derived Values node has been selected to serve as a data

display object.

Select Content

Formtitle: Form 1 [Labels on top
Form name: form1

Inputs/Gutputs | Graphics Buttons

Available: Selected:
4 %@ Model (root) 4 @ Model (root)
4) Global Definitions 4 @ Global Definitions
4 Pj Parameters 1 4 Pj Parameters 1
a5 Bolt radius (rad_1) a5 Length (L)
== Thickness (thk) =5 Width (whb)
55 Maximum element size (mh) a5 Applied voltage (Viot)
== Heat transfer coefficient (htc) 4 [l Results
4 [@ Results 4 E¥ Derived Values
4 E Tables s Velume Maximunn 1

B Maximum and Minimum Values.
B Table 1

eTemp\atE
(2 a(an(a\ [~ pone

Preview
Length: 9
Width: 5

Applied voltage: 20
Temperature: 0.001235 K

| 47

After exiting the wizard, you can edit the size and font color as well as other
settings for input fields and data display objects.

The Graphics Tab

The Graphics tab displays the model tree nodes that can serve as graphics objects:
Geometry, Selection, Mesh, and Results. In the figure below, two such nodes have
been selected.

Select Content Preview
Fomtite Fomm 1 Labets on top Lengike]
Ferm narne: form1 Widihe 5
Inputi/eotputs Graphics Bubtens Apphed vollage: 20 v
Ayadable Selectes Termpersture: Q001235 K
4 @ Model froot) s 4 8 Mode imct) o a @B L] e
- fi o 4 o8 Rewubs a8 L M
4 W Fectne Potentsal re)

W Temperature (ht)

& Tibolts
Geometry 1
& Mesh 1
4 Fens
@l Bcthermal Contours ()
W Current Densty

e Templata
e @one [Foone

The Buttons Tab

The Buttons tab displays the model and application tree nodes that can be run by
clicking a button in the application user interface. Examples of such tree nodes are
Plot Geometry, Plot Mesh, Compute Study, and each of the different plot groups
under Results. In addition, you can add buttons for GUI Commands, Forms, and
Methods.

48 |

In the figure below, three buttons have been added: Plot Geometry, Plot Mesh, and
Compute.

Select Content Preview

Formitle Form 1 Labels on top [
Fotm name: form1 Widthe

Inputs/outputs | Graphies Buttons Apphed velage 20 Y
Ayalable Temperature: 0001235 K

(o]

A Plot Mesh 1
Compute Seudy 1

W Piot Current Density

Campute

ehmpln‘.-
B € cacd [Done

Using the Form Editor, you can add buttons that run your own custom command
sequences or methods.

EXITING THE WIZARD

Click Done to exit the wizard. This automatically takes you to the Form Editor.

SAVING AN APPLICATION

To save an application, from the File menu, select File>Save As. Browse to a folder
where you have write permissions, and save the file in the MPH file format. The
MPH file contains all of the information about the application, including
information about the embedded model created with the Model Builder.

| 49

Themes

The Settings window for Themes is displayed when you click the Themes node in
the application tree. It lets you change the overall appearance of the user interface
and forms with settings for Application theme, Image export theme, Text color,
Background color, Font, Font size, Bold, Italic, and Underline.

Application Builder &S v RX
- EtEL T
4 E] tubular_reactor.mph (root)
&5 Inputs ¥ Themes
% Themes -
! D Main Windaow Application theme: Default =
4 B Forms Image export theme: Default i
D rmain
[input ¥ Appearance
D description
D information Text color: System =
b [simulationEvents Background color: System -
I D emnailServer
b &= Graphics Font: System =
Events Font size: System > pt
[= Declarations X K
! % Methods Applies to new form objects
b [Libraries [] Bold
[] Italic
[] Underline

The default is that all new forms and new form objects inherit these settings when
applicable.

50 |

The Form Editor

Use the Form Editor for user interface layout to create forms with form objects
such as input fields, graphics, buttons, and more.

The Individual Form Settings Windows

The figure below shows the application tree node and Settings window for a form.

Application Builder ~® | Settings = L8
-— L ErELEE Form
4 E] tubular_reactor.mph (root) N main %
ame: =
ﬁ Inputs &
% Themes Title: Main
l D Main Window lcon: Default ~| |4
4 B Forms
™ main [] Show in Maodel Builder
L7 input ¥ Size
D description
[information Initial size: ~ Automatic -
[D simulationEvents
[D emailServer ¥ Margins
b = Graphics
Events Horizontal: 0
[= Declarations Vertical: 0
I [y Methods
b [Libraries ¥ Dialog Settings
Store changes: On request =
[] Resizable

¥ Section Settings
[] Expandable

Initially collapsed

Grid Layout for Contained Form Objects

¥ Appearance

Text color: Inherit -
Background color: Transparent =
Background image: MNone ~| |4

¥ Events

On load: initializeApplication ~ | |3 |+

On close: MNone hd =

|51

Each form has its own Settings window with settings for:

* Name used to reference the form in other form objects and methods.

» Form Title that is used in applications with several forms.

¢ lcon shown in the upper-left corner of a dialog box.

* Initial size of the form when used as a dialog box or when the Main Window is
set to have its size determined by the form.

* Margins with respect to the upper-left corner (Horizontal and Vertical).

» Choices of when to store changes in dialog boxes (Store changes), see also
“Showing a Form as a Dialog Box” on page 71.

» Choices of whether the form should be Resizable or not when used as a dialog
box.

» Choices of whether to view sections as Expandable and whether they should
be Initially collapsed (Section Settings).

» Table with the formatting of all columns and rows included in the form (Grid
Layout for Contained Form Objects).

 Appearance with settings for Text color, Background color, and Background
image.

 Events that are triggered when a form is loaded or closed. (On load and On
close.)

Double-click a form node to open its window in the Form Editor. Alternatively,
you can right-click a form node and select Edit. Right-click a form window tab to
see its context menu with options for closing, floating, and tiling form windows.

@ Preview D main_X
* Close
L Close all but this
Input ang Bt
< gt
| Activatior 5 Tile vertically T
i Thermal ¢ [l Tile horizontally 7

SKETCH AND GRID LAYOUT MODES

The Application Builder defaults to sketch layout mode, which lets you use fixed
object positions and size. The instructions in the section “The Form Editor”

assume that the Form Editor is in sketch layout mode unless otherwise specified.
For information on grid layout mode, see “Sketch and Grid Layout” on page 110.

52 |

INITIAL SIZE OF A FORM

There are two options for the initial size of a form:

* Manual lets you enter the pixel size for the width and height.

+ Automatic determines the size based on the form objects that the form
contains. If you are using grid layout mode and there are columns or rows
set to Grow, then the size is not defined by the form objects. In this case, the
size is estimated using the Form Editor grid size as a base point. (It will
typically be slightly larger.) You can change the grid size by dragging the
right or bottom border of the grid. For more information on grid layout
mode, see “Grid Layout” on page 113.

Settings = L1
Mame: main =
Title: Main

lcon: Default ~| |4

[] Show in Maodel Builder

¥ Size

Initial size: | Automatic - |
| Automatic

¥ Margin Manual |

Local Forms

Forms can be local to other forms, which enables you to create a better structure
when developing your applications. For instance, a complicated global form made

| 53

up of many different subforms can have the auxiliary forms as local forms,
displayed as children in the application tree.

4[] finned_pipe.mph (root)
ﬁ Inputs
% Themes
b [Main Window
4 B Forms
D rmain
e D geometry

4 2 Forms

E] innerMone
E] innerStraightGrooves
E] outerMone
E] outerDiskStackedBlades
E] outerCircularGrooves
E] outerHelicalBlades
E] outerHelicalGrooves
D operatingConditions
D solverSettings
D information
b= Group 1
Events

You can add a local form by, for example, right-clicking a global form and
selecting Local Form. A global form always appears directly under the Forms node

in the application tree.

54 |

Form Editor Preferences

To access Preferences for the Form Editor, choose Preferences from the File menu
and select the Forms page.

3 Preferences X

Add-in Libraries Layout

Application Builder Default layout mede:
Application Libraries Default margins in 51, Sketch
rid

Client/Server s

Color Themes Horizental: 20

Email Vertical: 20
Files Default margins in grid mode
Lo Horizontal: 0

General

Geometry Vertical: 0

Graphics and Plot Windows Sketch grid

Graphics Interaction [] Show grid lines

Graphics Toolbars Column width: 100

Help

LiveLink Connections Rowheight: 120

Mesh Form wizard

Methods Show COMSOL layout templates
Medel Builder

Multicore and Cluster Computing
Parametric Sweep

Part Libraries

Physics Builder

Quick Access Toolbar

Remote Computing

Results
Security
Show More Options
Updates
Factory Settings
Factory Settings for All Import... Export... oK Cancel

The Forms section includes settings for changing the defaults for layout mode,
margins, sketch grid, and layout templates.

Form Objects

POSITIONING FORM OBJECTS

You can easily change the positioning of form objects such as input fields, graphics
objects, and buttons in one of the following ways:

+ Click an object to select it. A selected object is highlighted with a blue
frame.

| 55

» To select multiple objects, use Ctrl+click. You v
can also click and drag to create a selection

Length: *9 # lcm
box in the form window to select all objects T & L on
within it. Applied voltage: 20 mv

* Hold and drag to move to the new position.
Blue guidelines will aid in the positioning relative to other objects.

 In sketch layout mode, you can also use the keyboard arrow keys to move
objects. Use Ctrl+arrow keys to fine tune the position.

In the figures below, a Plet button is being moved from its original position. Blue
guide lines show its alignment relative to the unit objects and the Compute button.

¥

Length: 9 m @QA@-ErREER G- @@
Width: 5 m D@E
Applied voltage: 20 my

Temperature: 0.,001235 K

Compute

[|

Temperature
(ht)
.

RESIZING FORM OBJECTS
To resize an object:
 Click an object to select it.

* Hold and drag one of the handles, shown as blue dots, of the highlighted
blue frame. If there are no handles, this type of form object cannot be
resized.

COPYING, PASTING, DUPLICATING, AND DELETING AN OBJECT

To delete an object, click to select it and then press Delete on your keyboard. You
can also click the Delete button in the Quick Access Toolbar.

56 |

You can copy-paste an object by pressing Ctrl+C and Ctrl+V. Alternatively, you
can right-click an object to get menu options for Copy, Duplicate, Delete, and more.

@ Preview D forml X
h

L
Length: 9 cm @ a qR Lo Dy lyz ol
Width: #5 u e

To paste an already copied object, right-click an empty area in the form and

Applied voltage: 20

o 9<

il

B E =

Create Local Method

Copy as Code to Clipboard

Cut Ctrl+X

Copy Ctrl+C
Duplicate Ctrl+Shift+D
Delete Del

Settings

Help F1

right-click again. Depending on the copied object, a Paste menu option will be
shown. In the figure below, an Input Field has previously been copied and as a
result, a Paste Input Field option is shown.

©

2 o

5/6‘
E
T
5

Local Form
MNew Method
Scalar
Array 1D
Array 2D
Choice List

Preview Form

Copy as Code to Clipboard

Cut Ctrl+X
Copy Ctrl+C
Paste Input Field Ctrl+V
Duplicate Ctrl+Shift+D
Group Ctrl+G
Delete Del

Rename F2

Settings

Help F1

| 57

ADJUSTING POSITION AND SIZE BY THE NUMBER OF PIXELS

When in sketch layout mode, you can adjust the position and size of an object by
typing the number of pixels in the Position and Size section of its Settings window:

 Click an object to select it. Make sure its Settings window is shown. If not,
double-click the object or click the Settings button in the Form tab.

o Edit the numbers in the Position and Size section.

¥ Position and Size

Horizontal alignment: | Left v
Vertical alignment: Top -
Width: a1
Height: 301
Position x: 257
Position y: 20

The Position and Size section will have different options depending on the type of
form object. For grid layout mode, there are additional settings for the position of
the object with respect to rows and columns. For details, see “Sketch and Grid
Layout” on page 110.

CHANGING THE APPEARANCE OF DISPLAYED TEXT

For form objects that display text, the Appearance section in the Settings window
lets you change properties such as the text displayed, font, font color, and font
size. For some form objects, such as a button, the size of the object will adapt to
the length of the text string.

58 |

In the figure below, the Settings window for a text label object is shown.

@ Preview D main X C a - %
o Settings v
o ext Label
Input and Description Name: Mainlabell =
¥ Input i [] Multiline text
I 1
0 3 Input and Descripti
: Activation energy: 75362 Jfmol 1 flext nput and Heseniprion
! ! .- -
! Thermal conductivity: 0.559 WilmeK) | Position and Size
I
| Heat of reaction: -84666 Jimol 1 ¥ Appearance
i i
1 1
¥ Reactor Description ! Textcolor Inherit =
i
: ot AL B : Background color: Transparent -
H Cut /\ B, C ;
i i Font: Default font =
1 - J & 1
! : Font size: 12 >~ pt
i | [Beld
i [talic
0 0 [] Underline
1
: ! State
|
i g Visible
i
I ! Enabled
| |
1 1
i I
1 i

Inlet-A, B

By using grid layout mode (see “Sketch and Grid Layout” on page 110) you can
gain further control over the size of form objects, such as setting an arbitrary size
for a button.

SELECTING MULTIPLE FORM OBJECTS

If you select more than one form object, for example, by using Ctrl+click, then the
Settings window will contain a set of properties that can be shared between the
selected objects. Shared properties will always originate from the Appearance
section, the Position and Size section, or the Events section.

THE NAME OF A FORM OBJECT

A form object has a Name, which is a text string without spaces. The string can
contain letters, numbers, and underscore. In addition, the reserved names root
and parent are not allowed. The Name string is used in other form objects and
methods to reference the object. The path to the object is shown as a tooltip when
hovering over the Name field in the Settings window.

| 59

INSERTING FORM OBJECTS

You can insert form objects in addition to those created by the Form Wizard. In
the Form ribbon tab, select the Insert Object menu to see a listing of all available
objects.

,'. D . " Data Access E’

Eﬁ Record Method Editor Tools

Model MNew Insert
Builder Form - Method (&3 Compiler Object ~
Input is
1 Input Field [2¥] Button [El Toggle Button
[Check Box @Combo Box
Labels
[T] Text Label [Unit [24] Equation
— Line
Display
Data Display [5] Graphics [5=] Web Page
[#] Image O Video == Progress Bar
[Log [Message Log Results Table
Subforms
E‘Form [Form Collection Card Stack
Compaosite
= File Import Information Card Stack ElArra)r Input
8 Radic Button i Selection Input
Miscellaneous
[T] Text 5 List Box EEE Table
=¥ Slider @ Knob T Hyperlink
i Toolbar Spacer

The remainder of this section, The Form Editor, only describes the types of form
objects that are added by the Form Wizard. The form objects added by using the
wizard may include:

* Button

¢ Graphics

¢ Input Field

* Text Label (associated with Input Field)

* Unit (associated with Input Field)

* Data Display

However, when using Data Access (sce page 104), the additional form objects may
be added, including;:

¢ Check Box

¢ Combo Box

60 |

For more information on the check box, combo box, and other form objects, see
“Appendix A — Form Objects” on page 221.

EVENTS AND ACTIONS ASSOCIATED WITH FORMS AND FORM OBJECTS

You can associate objects such as buttons, menu items, ribbon buttons, forms, and
form objects with actions triggered by an event. An action can be a sequence of
commands including global methods or local methods. Local methods are not
accessible or visible outside of the forms or objects where they are defined. The
events that can be associated with an object depend on the type of object and
include: button click, keyboard shortcut, load of a form (On load), close of a form
(On close), and change of the value of a variable (On data change).

Using Ctrl+Alt+click on a form object opens any associated method in the
Method Editor. If there is no method associated with the form object, a new local
method will be created, associated with the form object, and opened in the
Method Editor. If the form object has an associated command sequence, this
sequence is converted to code and inserted in the local method.

Editor Tools in the Form Editor

The Editor Tools window is an important complement to the Form Wizard and the
Insert Object menu for quickly creating composite form objects. To display the
Editor Tools window, click the corresponding button in the Main group in the Form
tab.

" Data Access
Eﬁ Record Method

[EA Compiler

Main

|61

You can right-click the nodes in the editor tree to add the same set of form objects
available with the Form Wizard.

Editor Tools TAX
= Edit Node =T S

% Themes

D Main Window
b B Forms
I @ GUI Commands
b [Libraries
4 & Model (root)
4 () Global Definitions
4 Py Parameters 1
25 Length (L)
8.5 Bolt radius (rad_1)
25 Thickness (tbb)
55 Wig Input
25 Ma] —
os Hel Output
a5 App S¢ Edit Node
4 Default Model Tnputs
= Materials

4 |§ Component 1 (comp1)
= Definitions
WA Geometry 1
2 Materials
+_ Electric Currents (ec)
Bl Heat Transfer in Solids (ht)
iy Multiphysics
[A Mesh 1
[~ Study 1

b {8 Results

Input Output Graphics Button

When a node is selected, the toolbar below the editor tree shows the available
options for inserting an object. You can also right-click for a list of these options.

Depending on the node, the following options are available:
* Input
An Input Field, Check Box, Combo Box, or File Import object is inserted as follows:

- Inserts an Input Field using the selected node as Source. It is accompanied by
a Text Label and a Unit object, when applicable.

- Inserts a Check Box using the selected node as Source.

- Inserts a Combo Box using the selected node as Source. A choice list is
automatically created, corresponding to the list in the node. This option is
only available when used with Data Access (see page 104) to make the
corresponding node available in the editor tree.

- Inserts a File Import object using the selected node as File Destination.

62 |

¢ Output

- Inserts a Data Display object accompanied by a Text Label when applicable.

- Inserts a Results Table object when the selected node is a Table.
* Button

- Inserts a Button object with a command sequence running the selected node.
¢ Graphics

- Inserts a Graphics object using the selected node as Source for Initial Graphics

Content.

¢ Edit Node

- Brings you to the Settings window for the corresponding model tree node.

The Editor Tools window is also an important tool when working with the
Method Editor. In the Method Editor, it is used to generate code associated with
the nodes of the editor tree. For more information, see “Editor Tools in the
Method Editor” on page 176.

Button

Clicking on a Button is an event that triggers an action defined by its command
sequence. The main section of the Settings window for a button allows you to:

+ Edit the form object Name of the button.

» Edit the Text displayed on the button.

» Use an lcon instead of the default rendering of a button.
e Set the button Size to Large or Small.

e Set the button Style to Flat or Raised.

| 63

* Add a Tooltip with text that is shown when hovering over the button.

+ Add a Keyboard shortcut by clicking the input field and entering a
combination of the modifier keys Shift, Ctrl, and Alt together with another
keyboard key. Alt must be accompanied by at least one additional modifier.

Settings v ax
Button)

MName: button1 =

Text: Compute

lcon: = compute 32 v + =
Size: Large =

Style: Flat -

Tooltip: Run simulation

Keyboard shortcut: CTRL+5S

CHOOSING COMMANDS TO RUN

The section Choose Commands to Run lets you control the action associated with a
button-click event. The figure below shows the Settings window for a button that
triggers a sequence of four commands.

o

» (Choose Commands to Run 5

b B Forms

I @ GUI Commands
4 [Methods

method1

method2
[fifi Libraries
& Model (root)
(1) Global Definitions
I @ Component 1 (compl)
4 o Study 1

[= Stationary

Edit Node Run Plot Set Value Show

Show as Dialog Import File Enable Disable

-

" Command lcon | Arguments
Compute Study 1 =
Plot Electric Potential (ec) form1/graphics1
Plot Temperature (ht) form1/graphics1
method2 B

bz BB -

64 |

A menu, ribbon, or toolbar item will also provide a Choose Commands to Run
section in its Settings window, and the functionality described in this section
applies. For more information on using menu, ribbon, and toolbar items, see
“Graphics Toolbar” on page 82, “The Main Window” on page 133, “Table” on
page 291, and “Toolbar” on page 302.

To define a sequence of commands, in the Choose Commands to Run section, select
anode in the editor tree. Then click one of the highlighted buttons under the tree,
or right-click and select the command. In the figure below, the Geometry node is
selected and the available commands Run and Plet are highlighted. Click Run to

add a geometry-building command to the command sequence. Click Plot to add
a command that first builds and then plots the geometry. The option Edit Node

will take you to the corresponding node in the model tree or the application tree.

» (Choose Commands to Run B

b [Forms
I @ GUI Commands
b Methods
b [Libraries
4 < Model (root)
I () Global Definitions
4 |§ Component 1 (comp1)
[= Definitions
Y Geometry 1
I 5z& Materials
I X Electric Currents (ec)

=¢ EditNode & Run Plot Set Value Show
Show as Dialog Import File Enable Disable

You do not need to precede a Plot Geometry command with a Build
Geometry command (that you get by clicking Run). The Plot Geometry
command will first build and then plot the geometry. In a similar way, the
Plot Mesh command will first build and then plot the mesh.

The command icons highlighted for selection are those applicable to the particular
tree node. This is a list of the command icons that may be available, depending
upon the node:

* Run

* Plot

e Set Value

¢ Show

¢ Show as Dialog
¢ Import File

| 65

¢ Enable
¢ Disable

Some commands, such as the various plot commands, require an argument. The
argument to a plot command, for example, defines which of the different graphics
objects the plot should be rendered in.

The example below shows the Settings window and command sequence for a
Compute button as created by the Form Wizard. This button has a command
sequence with two commands: Compute Study | and Plot Temperature.

-

» (Choose Commands to Run =

b B Forms
I @ GUI Commands
b [Libraries
4 & Model (root)
I () Global Definitions
I @ Component 1 (compl)
4 o Study 1
[= stationary
I [fre Solver Configurations

4 ([Results

I &2 Derived Values

Edit Mode Run Plot Set Value Show

Show as Dialog Import File Enable Disable

L
Command lcon | Arguments
Compute Study 1 =
Plot Temperature (ht) form1/graphics1
M-

The Plot Temperature command has one argument, graphics.

66 |

To add or edit an input argument, click the Edit Argument button below the
command sequence, as shown in the figure below.

" .
Command lcon Arguments 3 Edit Argument X
Compute Study 1 = 4 [Forms
Plot Temperature (ht) form/graphics1 4 [form1
graphics

Edit Argument

E‘ Use as Argument
Selected argument:
[graphicsi
OK Cancel

To reference graphics objects in a specific form, the following syntax is used:
/form1/graphics2, /form3/graphicsi, etc. If'a specific form is not specified, for
example, graphics1, then the form where the button is located is used.

To control the order and contents of the sequence of commands, use the Move Up,
Move Down, and Delete buttons located below the command sequence table.

| 67

CONVERTING A COMMAND SEQUENCE TO A METHOD

A sequence of commands can be automatically converted to a new method, and
further edited in the Method Editor, by clicking Convert to Method.

b

» (Choose Commands to Run i

=
b B Forms
I @ GUI Commands
b [Libraries
4 & Model (root)
I () Global Definitions
I @ Component 1 (compl)
4 o Study 1
[= Stationary
I [fre Solver Configurations
4 ([Results
I &5 Derived Values

Edit Mode Run Plot Set Value Show
Show as Dialog Import File Enable Disable

L

Command lcon| Arguments
Compute Study 1 =
Plot Temperature (ht) form1/graphics1

Plot Electric Potential (ec) form1/graphics1

‘ Convert to Method
‘ Convert to Form Method
‘ Convert to Local Method

mppemrance
Open the new method by clicking Go to Method.

L
Command lcon| Arguments
method1 B

b BE -
[
! oG 15

Position and Size

Appearance

68 |

You can also create a method that is local to a form or form object by
clicking Convert to Form Method or Convert to Local Method, respectively.

The method contains calls to built-in methods corresponding to the
commands in the commend sequence, as shown in the figure below.

methodl X
model.study("=tdl").runi);
useGrophics(model.result("pg2”), "forml
useGrophics(model.result("pgl”), "Fforml/

raphics1");
raphics2");

In this example, the first line:

model.study(“std1”).run()
runs the model tree node corresponding to the first study std1 (the first study
node is called Study | unless changed by the user). The second and third lines:

useGraphics(model.result("pg2"), "formi/graphicsi");
useGraphics(model.result("pg1"), "formi/graphics2");

use the built-in method useGraphics to display plots corresponding to plot
groups pg1 and pg2, respectively. In this example, the plots are displayed in two
different graphics objects, graphics1 and graphics2, respectively.

For more information on methods, see “The Method Editor” on page 170.

SETTING VALUES OF PARAMETERS AND VARIABLES

The Set Value command allows you to set values of parameters and variables that
arc available in the Parameters, Variables, and Declarations nodes. In addition, Set
Value can be used to set the values of properties made accessible by Data Access (see

| 69

page 104). The figure below shows a command sequence used to initialize a set of
parameters and a string variable.

[er

¥ (Choose Commands to Run

4 & Model (root)
4 () Global Definitions
4 Pi Parameters
123 Activation energy (E)
123 Frequency factor (A)
123 Thermal conductivity (ke)
123 Diffusion coefficient (Diff)
123 Overall heat-transfer coefficient (Uk)
123 Heat of reaction (dHr)
123 Inlet temperature (T0)

= Edit Node Run

" Command

Set E of Parameters

Set ke of Parameters

Set dHrx of Parameters
Set results_status of String

Arguments
75362
0.559
-84666
*Mot updated

by |

To learn how to perform the same sequence of operations from a method, select
Convert to Method under the command table.

CHANGING WHICH FORM Is VISIBLE

A button on a form can also be used to display a new form. This can be done in
two ways. The first is to use the Show command, which will replace the original
form with the new form. The second is to use the Show as Dialog command. In this
case, the new form will pop up as a dialog box over the current form, and will
usually request input from the user.

70 |

In the section Choose Commands to Run, you can select the Show command. The
figure below shows the command sequence for a button with a command Show

form3.

+ (Choose Commands to Run 5

4 |l Forms
D form1
D form2
D form3

[u GUI Cormmands
b [Libraries
[» < Model (root)

=y Edit Node Run Plot Set Value

I:lShow [=] Show as Dialeg Import File
Enable Disable

"
Command lcon Arguments
Show form3 I:l
=% .'El -

This command will leave the form associated with the button and make the
specified form visible to the user.

SHOWING A FORM As A DIALOG BoOX

In order to use the Show as Dialog command, begin with the Choose Commands to
Run section and select the form that you would like to show. The figure below

|71

shows an example of the settings for a button with the command Show form2 as
dialog.

[er

+ Choose Commands to Run

4 |l Forms

D form1
D form2

3 u GUI Cormmands
b [Libraries
[» < Model (root)

=y Edit Node Run Plot Set Value

I:lShow [=] Show as Dialeg Import File
Enable Disable

"
Command lcon Arguments
Show form2 as dialeg

==

With these settings, clicking the button in the application will launch the following
dialog box corresponding to form2:

3 Help X

You are running version 2.1
of this application. For help
please call 123-456-72890.

OK

72|

The form2 window in this example contains a text label object and an OK button,
as shown in the figure below.

[a] Preview [form1 [formz X Settings - L X
Y : Button
You are running version 2.1 | MName: button1 =
of this application. For help [
please call 123-456-7290. ! Text: oK
| lcon: MNone ~| |4
oK !
i Size: Small =
Tooltip:

Keyboard shortcut:
Choose Commands to Run B
¥ Dialog Actions

Close dialog
Store changes

In the Settings window, the Dialog Actions section has two check boxes:

¢ Close dialog

e Store changes

In the example above, the Close dialog check box is selected. This ensures that the

form2 window is closed when the OK button is clicked. Since form2 does not have
any user inputs, there is no need to select the Store changes check box.

Typical dialog box buttons and their associated dialog actions are:

BUTTON DIALOG ACTIONS

OK Close dialog and Store changes
Cancel Close dialog

Apply Store changes

A dialog box blocks any other user interaction with the application until it is
closed.

In order to control when data entered in a dialog box is stored, there is a list in
the Dialog Settings section of the Settings window of a form where you can select

| 73

whether to store data On request or Immediately when the change occurs, as shown
in the figure below.

Settings = L1
MName: form E
Title: Form 1

lcon: Default ~| |4

Show in Madel Builder
Size
Margins

¥ Dialog Settings

Store changes: | On request - |
[] Resizable ~ On request |
| Immediately "

¥ Section Settings

When the Store changes option On request is sclected, the variables that have been
changed by the user in the dialog box will not be updated until the OK button (or
similar) in the dialog box has been clicked. This requires that the check box Store
changes is sclected, in the Settings window of the OK button. When the option
Immediately is sclected, variables changed by the user in the dialog box is updated
immediately including while the dialog box is still open.

APPEARANCE

In the Settings window for a button, the Appearance scction contains font settings
as well as settings that control the state of the button object.

¥ Appearance

Text color: Inherit =
Background color: Default =
Font: Default font =
Font size: Default size v pt
[] Bold
[] Italic

State
Visible
Enabled

Changing the Enabled and Visible State of a Form Object

Whether or not the button object should be Visible or Enabled is controlled from
the check boxes under the State subsection. The Appearance section for most form

74 |

objects has similar settings, but some have additional options; for example, input
field objects.

A button, or another form object, with the Visible check box cleared will not be
shown in the user interface of the running application. A form object with the
Enabled check box cleared will be disabled, or “grayed out”, but still visible. The
state of a form object can also be controlled using built-in methods. For example,
assume that a Boolean variable enabled_or_disabled is used to determine the
enabled /disabled state of a button with Name button3. In this case, you can
control the state of the button as follows:

setFormObjectEnabled("button3", enabled_or_disabled);

In a similar way, the call
setFormObjectVisible("button3", visible_or_not);

lets a Boolean variable visible or_not control whether the button is shown to
the user or not.

For more information, see “GUI-Related Methods” on page 337 and the
Application Programming Guide.

Graphics

Each Graphics object gets a default name such as graphics1, graphicsz2, etc.,
when itis created. These names are used to reference graphics objects in command
sequences for buttons, menu items, and in methods. To reference graphics objects
in a specific form, use the syntax: /form1/graphics2, /form3/graphicsi, etc.

SELECTING THE SOURCE FOR INITIAL GRAPHICS CONTENT

In the Settings window for a graphics object, use the section Source for Initial

Graphics Content to sct the plot group or animation to be displayed as default. To
select, click Use as Source or double-click a node in the tree. If a solution exists for
the displayed plot group, the corresponding solution will be visualized when the

| 75

application starts. The figure below shows the Settings window for a graphics
object with a Temperature plot selected as the source.

MName: graphics] E
Zoom to extents on first plot
[] Data picking

¥ Source for Initial Graphics Content

4 & Model (root)
[T Component 1 (compl)

4 ([Results

VB Electric Potential (ec)
iﬁ Temperature (ht)

VB Isothermal Contours (ht)
VB Current Density

Use as Source \ Clear Source Edit Mode
Selected source:

[[] Temperature (ht)

In addition to Results plot nodes, you can also use Animation, Selection, Geometry,
and Mesh nodes as the Selected source.

Selecting the check box Zoom to extents on first plot ensures that the first plot that
appears in the graphics canvas shows the entire model (zoom extents). This action
is triggered once the first time that graphics content is sent to the graphics object.

Selecting the check box Data picking makes the graphics object interactive so that
you can, for example, click on a plot at a particular point and retrieve a numerical
value for the temperature at that coordinate. For more information, see “Data
Picking” on page 91.

APPEARANCE

For a graphics object, the Appearance section of the Settings window has the
following options:

 Include an leon, such as a logo image, in the upper-right corner.

76 |

 Set the background Color for 2D plots.
 Set a flat or graded background color for 3D plots by choosing a Tep color
and Bottom color.

¥ Appearance
lcon: o logo_graphics.png > 4+ B
Background for 2D plots

Color: Use default =

Background for 3D plots

Top color: Use default =

Bottom color: Use default =
State

Visible

Enabled

In addition, the subsection State (not shown in the figure above) contains settings
for the visible and enabled state of the graphics object. For more information, see
“Changing the Enabled and Visible State of a Form Object” on page 74.

| 77

The figure below shows an application where the background Top color is set to
white and the Bottom color to gray. In addition, the standard plot toolbar is not
included.

Length: 9 cm \)‘f‘\‘

e e

/ \ —
Plot

Geometry

Width: 5 cm
Compute
Applied voltage: 20 my

o
Surface: Current density norm (A/m?)

m %108

_ -0.02

0.9
0.1

0.8

0.7

0.6

0.5

0.4

0.1 0.2

0.1

About

78 |

GRAPHICS COMMANDS

In the editor tree used in a command sequence of, for example, a button, the
Graphics Commands folder contains commands to process or modify a graphics
object. The figure below shows a command sequence with one command for
printing the contents of a graphics object.

o

» (Choose Commands to Run 5

b B Forms
4 @ GUI Commands
[File Commands
- [‘u Graphics Commands
Zoom Extents
‘[Zoom to Selection
[@ Reset Current View
= SceneLight
@ Environment Reflections
[8] Show Skybox
[#2 Rotate Environment
[Transparency
B0 Orthographic Projection
|g| Print
I Select All
Clear Selection

.: Show Selection Colors
220 Show Material Color and Texture

Edit Mode P Run Plot Set Value Show

Show as Dialog Import File Enable Disable

L
Command lcon | Arguments
Print El form1/graphics1

The available Graphics Commands include:
¢ Zoom Extents

- Makes the entire model visible.
¢ Reset Current View

- Resets the currently active view to the state it had when the application was
launched; also see “Views” on page 85.

¢ Scene Light
- Toggles the scene light (on or oft).
* Transparency
- Toggles the transparency setting (on or oft).
¢ Orthographic projection
- Enable orthographic projection (as opposed to perspective projection).

| 79

¢ Print
- Drints the contents of the graphics object.
e Select All
- Selects all objects.
¢ Clear Selection
- Clear the selection of all objects.
¢ Show Selection Colors
- Enable visualization of selection colors.
¢ Show Material Color and Texture
- Enable visualization of material color and texture.

Note that the many of these commands have corresponding toolbar buttons in the
standard graphics toolbar. See the next section “Graphics Toolbar”.

Plot While Solving

To let the user monitor convergence, you can plot the results while solving. In this
example, assume that the Plot option is enabled for Results While Solving. This
option is available in the Settings window of a Study node in the model tree, as
shown in the figure below.

= Compute

Label: Time Dependent
Study Settings
¥ Results While Solving

Plot
Plot group: | Velocity (spf) | (3
Update at: Time steps taken by solver -

Probes: All =

Update at: | Time steps taken by solver -

You can include a method that calls the built-in sleep method for briefly
displaying graphics information before switching to displaying other types of

80 |

graphics. Insert it in a command sequence after a plot command, as shown in the
figure below.

" Command lcon Arguments
Plot Mesh 1 {mesh1} graphicsl
sleep_a_bit @

Plot Velocity (spf) {pgl} graphicsl

Compute Study 1 {std1} =

bg i -

In this example, the sleep_a_bit method contains one line of code:
sleep(1000); // sleep for 1000 ms

For more information on the method sleep, see “sleep” on page 342.

In the command sequence above, the Plot Velocity command comes before the
Compute Study command. This ensures that the graphics object displays the
velocity plot while solving.

USING MULTIPLE GRAPHICS OBJECTS

Due to potential graphics hardware limitations on the platforms where your
application will be running, you should strive to minimize the number of graphics
objects used. This is to ensure maximum portability of your applications. In
addition, if you intend to run an application in a web browser, there may be
additional restrictions on how many graphics objects can be used. Different
combinations of hardware, operating systems, and web browsers have different
limitations.

In this context, two graphics objects with the same name but in different forms
count as two different graphics objects. For example, form1/graphics1 and
form2/graphics2 represent two different graphics objects. In addition, if a
graphics object is used in a subform (see “Form” on page 261), then each use of
that subform counts as a different graphics object.

To display many different plots in an application, you can, for example, create
buttons, toggle buttons, or radio buttons that simply plot to the same graphics
object in a form that does not use subforms.

If you need to use methods to change a plot, use the useGraphics method. For
more information on writing methods, see “The Method Editor” on page 170.

| 81

The example code below switches plot groups by reusing the same graphics object,
based on the value of a Boolean variable.
if (my_boolean) {
useGraphics(model.result("pg1"), "formi/graphicsi");
my_boolean=!my_boolean; // logical NOT to change between true and false
} else {
useGraphics(model.result("pg2"), "formi/graphicsi");
my_boolean=!my_boolean;

CLEARING THE CONTENTS OF A GRAPHICS OBJECT

You can clear the contents of a graphics object by a call to the useGraphics
method, such as:

useGraphics(null, "/formi/graphicsi")

which clears the contents of the graphics object graphics1 in the form form1.

GRAPHICS TOOLBAR

The type of tree node used in the Source for Initial Graphics Content determines the
type of toolbar that is shown. The toolbar will be different depending on the space
dimension and whether the referenced source is a Geometry, Mesh, Selection, or
Plot Group node. For example, the Plot Group node displays an additional Show
Legends button.

In the Settings window of a graphics object, in the Toolbar section, you can control
whether or not to include the graphics toolbar, as well as its position (Below,
Above, Left, Right). In addition, you can choose between the options Small or Large
for lcon size, Background color, and whether to Include standard toolbar items or
not.

¥ Toolbar

Position: Above e
lcon size: Small e
Background color: White -

Standard toolbar
Include standard toolbar itermns: Default e
Place standard toolbar before custom items

Custom toolbar items

"
Mame lcon Text Tooltip

82 |

Graphics Toolbar for Geometry and Mesh

The figure below shows the standard graphics toolbar as it appears when the
Geometry or Mesh node, for a 3D model, is used as a Source for Initial Graphics
Content.

Qaaea@~-F Lz cr @B EE @

Graphics Toolbar for Selection

When the Source for Initial Graphics Content is sct to an Explicit selection, the
graphics toolbar will contain three additional items: Zoom to Selection, Select Box,
and Deselect Box. This is shown in the figure below.

Q@ @@ LvymEzn ¢ @E-@-FNEecBERD @3
For more information on selections, see “Selections” on page 88.

Graphics Toolbar for Plot Groups
The figure below shows the standard graphics toolbar as it appears when a 3D Plot
Group node is used as a Source for Initial Graphics Content.

Q@ Lrm=znm ¢ ENEERD &8

Custom Graphics Toolbar Buttons

In the Toolbar section, you can also add custom buttons to the graphics toolbar.
Use the buttons under the table to add or remove custom toolbar buttons (items).
You can also move toolbar buttons up or down, add a Separator, and Edit a button.
The figure below shows a standard graphics toolbar for results with four additional
buttons to the right.

Qaa@~@ LraEEm o ROEEEPO @8 A ==

| 83

The figure below shows the corresponding settings and table of graphics toolbar
items.

¥ Toolbar

Position: Above =
lcon size: Small =
Background color: Default =

Standard toolbar

Include standard toolbar itermns: Custom =
&, Zoom: Mormal =
<L~ Gotoview: Mormal -
" Rotate: Mormal -
= Select box: Hidden -
€ Deselect box: Hidden =
View: MNormal -
& Image: Mormal =

Place standard toolbar before custom items

Custom toolbar items

" MName | lcon | Text Tooltip
geometry | Geometry
inlet =] Inlet
outlet =] Outlet
flow_field = Flow field

BEE

84 |

To edit the command sequence for a toolbar item, click the Edit button to open

the Edit Custom Toolbar Item dialog box.

3 Edit Custem Toolbar ltem

General Choose commands to run

Mame: outlet
Text: Qutlet
Icon: s boundarylevel_3d.png
Tooltip: Outlet
Keyboard shortcut: | CTRL+C
State
Visible
Enabled

0K

Cancel

X

3 Edit Custem Toolbar ltem

General Choose commands to run

B Forms
b @ GUI Commands
b [l Libraries
4 % Model (root)

b @ Global Definitions

4 [Compenent 1 (compl)

4 = Definitions
4

& Selections
& Inlet
& Outlet
b el View 1
Run [Plot 7 Set Value || Show || Show as Dialog | ImportFile () Enable
Disable
"
Command Icon | Arguments
Plot Outlet form1/graphics1
SafE-

0K

Cancel

This dialog box has settings that are similar to those of a button or a toolbar item
with the contents divided into two or three tabs depending on if the item is a
toggle item or not. For details, see “Button” on page 63 and “Toolbar” on page

302.

Views

In the graphics toolbar, the Go to Default View button (for 3D graphics only) will
display a menu with all applicable views. The currently active view is indicated with

a check mark.

Q Q@ - @

Go to View 1

Lo v

Go to View 5

<

Go to View 6

Reset Current View

F R

Go to YX View

Go to ZV View
[GotoZX View

In addition to a list of all views, there is an option Reset Current View that will reset

the currently active view to the state it had when the application was launched.

| 85

ANIMATIONS
You can display animations in an application by using a Results > Animation node

as the Source for Initial Graphics Content.

Settings

Graphics

MName: graphics]

Zoom to extents on first plot

[] Data picking

¥ Source for Initial Graphics Content

4 & Model (root)
[!- Component 1 (compl)
4 ([Results
VB Temperature, 30 (ht)
. |sothermal Contours (ht)

Use as Source \\ Clear Source Edit Node

Selected source:

[# Animation 1

86 |

To run the animation, use the Form Wizard or the Editor Tools window to create
a command from, for example, a button that runs a Results > Animation node.

Settings v RX
Button
MName: button1 =
Text: Play Anirmation
lcon: G animation_32png ~ + =
Size: Large =
Style: Flat =
Tooltip:
Keyboard shortcut:
« (Choose Commands to Run i
b B Forms
I @ GUI Commands
b [Libraries

4 & Model (root)
[» &= Component 1 (compl)
[~ Study 1
Study 2
Results
=L~ Views
£ Derived Values
B Tables
VB Temperature, 30 (ht)
. |sothermal Contours (ht)
o Ternperature, 10
~w Temperature Difference, 10
& Export
[# Animation 1

[
vavvvvv@é

Edit Mode Run Plot Set Value Show
Show as Dialog Import File Enable Disable

L
Command lcon | Arguments
Export Animation 1 [= form1/graphicsl

M-

When using the Form Wizard or Editor Tools, the animation button will have the
following default appearance:

[LT

Play
Animation

| 87

SELECTIONS

Selections in the Model Builder

In the Model Builder, named selections let you group domains, boundaries,
edges, or points when assigning material properties, boundary conditions, and
other model settings. You can create different types of selections by adding
subnodes under the Component > Definitions node. These can be reused
throughout a model component.

As an example of how selections can be used, consider selections for boundary
conditions. When you select which boundaries should be associated with a certain
boundary condition, you can click directly on those boundaries in the graphics
window of the COMSOL Desktop environment. This is the default option called
Manual selection (see below). These boundaries will then be added to a selection
that is local to that boundary condition. Named selections instead let you define
global selections that can be reused for several different kinds of boundary
conditions by just selecting from a drop-down list. The figure below shows an
Explicit selection given the name Inlet Surfaces with two associated boundaries (22
and 88).

Maodel Builder ¥ ®|| Settings
- l =~ EtE =~ Explicit
4 % CFD_Simulation.mph (roof
g _Simulation.mph (roof) Label: Inlet Surfaces E

4 () Global Definitions

P Parameters 1 ~ Input Entities

22 Materials
4 @ Component 1 {comp1) Geometric entity level: | Boundary -
4 = Definitions
2 Eg
i Inlet Surfaces on | gg =
= Outlet Surfaces L!:| ?
1| Boundary System 1 (sys1) Active B §
; View 1
b YA Geometry 1
22 Materials
4= nLamlna.rFlow I'SFt'ﬂ [] All boundaries
e Fluid Properties 1 . N " . .
B nitial Values 1 [] Group by continuous tangen
o
- Walll ¥ Qutput Entities
= Inlet
mw Outlet 1 Selected boundaries =
A5 Mesh 1
I+~ Study 1 ¥ Color
b {8 Results
Color: | Mone 1=

88 |

The figure below shows the Settings window for an Inlet boundary condition
where the Inlet Surfaces selection is used. In this example, there is also an Outlet
Surfaces selection.

Settings M

Label: Inletl

Boundary Selection

Selection: | Inlet Surfaces -

Manual
] é All boundaries
j Inlet Surfaces

Active Outlet Surfaces

For convenience, in addition to the Manual option, there is also a shortcut for All
boundaries.

Selections in the Application Builder

The Explicit sclection type lets you group domains, boundaries, edges, or points
based on entity number, and is the type of selection most readily available for use
with the Application Builder. You can allow the user of an application to
interactively change which entities belong to an Explicit selection with a Selection
Input object or a Graphics object. In the example below, the embedded model has
a boundary condition defined with an Explicit selection. Both a Selection Input

| 89

object and a Graphics object are used to let the user select boundaries to be excited
by an incoming wave.

0.2
0.17

The user can here select boundaries by clicking directly in the graphics window,
corresponding to the Graphics object, or by adding geometric entity numbers in a
list of boundary numbers corresponding to a Selection Input object.

To make it possible to directly select a boundary by clicking on it, you can link a
graphics object to an Explicit selection, as shown in the figure below. Select the
Explicit selection and click Use as Source. In the figure below, there are two Explicit

90 |

selections, Excitation Boundary and Exit Boundary, and the graphics object
graphics2 is linked to the sclection Excitation Boundary.

Settings TAX

Name: graphicsl =
Zoom to extents on first plot
[] Data picking
¥ Source for Initial Graphics Content
4 & Model (root)
4 T Component 1 (comp1)
4 = Definitions
4 g Selections
ﬁ Excitation Boundary

) & Exit Boundary

A Geometry 1

A Mesh 1

b {8 Results

% Clear Source Edit Mode

Use as Source
Selected source:

& Excitation Boundary

When a graphics object is linked directly to a selection in this way, the graphics
object displays the geometry and the user can interact with it by clicking on the
boundaries. The boundaries will then be added (or removed) to the
corresponding selection.

To make it possible to select by number, you can link a Selection Input object to
an explicit selection. For more information, see “Selection Input” on page 282.

The Editor Tools window provides a quick way of adding a Graphics object or a
Selection Input object that is linked to an Explicit selection. To get these options,
right-click an Explicit selection node in the editor tree.

You can let a global Event be triggered by an Explicit selection. This allows a
command sequence or method to be run when the user clicks a geometry object,
domain, face, edge, or point. For more information on using global events, see
“Events” on page 139 and “Source For Data Change Event” on page 141.

DATA PICKING

In the Settings window for a graphics object, select the check box Data picking to
make the graphics object interactive so that you can, for example, click on a plot
at a particular point and retrieve a numerical value for the temperature at that
coordinate. In the figure below, in the section Target for Data Picking, a scalar

91

double variable Tvalue is selected. This variable is declared under the Declarations
node. In the running application, the value of the temperature at the pointer
position will be stored in the variable Tvalue.

Settings
Graphics

MName: graphics] E
Zoom to extents on first plot

Data picking

¥ Source for Initial Graphics Content

4 & Model (root)
[T Component 1 (compl)

4 ([Results

VB Electric Potential (ec)
NG Temperature (ht)

VB |sothermal Contours (ht)
VB Current Density

E‘Use as Source \ Clear Source =g Edit Node
Selected source:

VB Temperature (ht)
~ Target for Data Picking @+ B

4 = Declarations
4 &5 Double
5B Tvalue

E‘ Use as Target =g Edit Node
Selected target:

25 Double=Tvalue

If the Target for Data Picking is a 1D double array, then the stored value will instead
correspond to the x, y (2D) or x, y, and z coordinates at the clicked position.

The Target for Data Picking can be any one of the following:
 Scalar double variable

* 1D double array

¢ Domain Point Probe

* Boundary Point Probe

» Graphics Data declaration

For more information on Graphics Data declaration, see “Graphics Data” on page
166.

92 |

Input Field

An Input Field allows a user to change the value of a parameter or variable. In the
Form Wizard, when a parameter or variable is selected, three form objects are
created:

+ A Text Label object for the parameter or variable description.

* An Input Field object for the value.

* A Unit object (if applicable) that carries the unit of measure.

By selecting a parameter or variable using the Editor Tools window, the same three
form objects are created.

Assuming you do not use the Editor Tools window: To insert an additional input
field, use the Insert Object menu in the ribbon and select Input Field. In the Form
Editor, you link an input field to a certain parameter or variable by selecting it from
the tree in the Source section and click Use as Source. In the Source section of the

|93

Settings window, you can also set an Initial value. The figure below shows the
Settings window for an input field.

Settings

Input Field

Name: inputfield1 =
Editable

Tooltip:

~ Source CEE

= Declarations
& Model (root)
4 () Global Definitions
4 Fi Parameters 1
2 Length (L)
5.5 Bolt radius (rad_1)

¥

Use as Source Edit Node
Selected source:

5.5 Parameters 1=Length (L)

Initial value: From data source -

Value: 9
¥ Data Validation

Unit dimension check: | Append unit to number = +

Unit expression: cm

Murmerical validation

Filter: Double -
Minimum: O o

Maximum: [1000

Error message: Invalid input

In addition to parameters and variables, input fields can use an Information node
as Source.

The default setting for the Initial value is From data source. This means that if the
source is a parameter, then the initial value displayed in the input field is the same
as the value of the parameter as specified in the Parameters node in the Model
Builder. The other Initial value option is Custom value, which allows an initial value
different from that of the source. If the Editable check box is cleared, then the
Initial value will be displayed by the application and cannot be changed.

You can add a Tooltip with text that is shown when hovering the mouse pointer
over the input field.

94 |

The header of the Source section contains buttons for easy access to tools that are
used to make additional properties and variables available as sources to the input
field.

Source 8+ =

4 Create New Declaration and Use It as Source |

4 & Model (root)

Source ':‘E' T “ﬁ

| Switch to Model Builder and Activate Data Access
et

Source @2

n
en

Model (root)

Create New Form Declaration and Use It as Source |
4 % Model (root)

The Create New Declaration and Use It as Source button can be used to add new
variables under the Declarations node. For more information, see “Declarations”
on page 146. The Create New Form Declaration and Use It as Source button can be
used to add new variables under the Declarations nodes local to forms, as shown
below.

D Main Window
4 i Forms

- D form1

4 = Declarations
apc String
Events

The Switch to Model Builder and Activate Data Access button can be used to access
low-level model properties as described in the next section. For more information
on Data Access, see “Data Access in the Form Editor” on page 104.

DATA VALIDATION
The Data Validation section of the Settings window for an input field allows you to
validate user inputs with respect to units and values.

¥ Data Validation

Unit dimension check: | Append unit to number > | |4

Unit expression: my

Mumerical validation

Filter: Double -
Minimum: 0

Maximurn: 1000

Error message: Invalid input

When creating an input field in the Form Wizard, the setting Append unit to
number is used when applicable. This setting assumes that a user enters a number
into the input field, but it can also handle a number followed by a unit using the

| 95

COMSOL square bracket [] unit syntax. If the Unit expression is mm, then 1[mm]
is allowed, as well as any length unit, for example, 0.1[cm]. An incompatible unit
type will display the Error message. A parameter that has the expression 1.23[mm],
and that is used as a source, will get the appended unit mm and the initial value
displayed in the edit field will be 1.23.

The Unit dimension check list has the following options:

* None

e Compatible with physical quantity

¢ Compatible with unit expression

* Append unit to number (default)

¢ Append unit from unit set

A value or expression can be highlighted in orange to provide a warning when the
user of an application enters an incompatible unit, which is any unit of measure
that cannot be converted to the units specified in the Data Validation settings.
Enable this feature by selecting Compatible with physical quantity or Compatible
with unit expression. In addition, the user will see a tooltip explaining the unit
mismatch, as shown in the figure below.

Length: m
Width: 5[cm|] Deduced unit is [kg], expected is [m]

Applied voltage: 20[mV] v

If there is a unit mismatch, and if no further error control is performed by the
application, the numeric value of the entered expression will be converted to the
default unit. In the above figure, 9[kg] will be converted to 9[m].

A button Add Unit Label is available to the right of the Unit dimension check list.
¥ Data Validation

Unit dimension check: Append unit to number ~ | S8

Unit expression: m Add Unit Label

Clicking this button will add a unit label to the right of the input field if there is
not already a unit label placed there.

The None option does not provide unit validation.

9% |

Numerical Validation

The options Append unit to number, Append unit from unit set, and None allow you
to use a filter for numerical validation of the input numbers.

¥ Data Validation

Unit dimension check: None -

MNumerical validation

Filter: Double -
Minimum: None
. Double
Mazxirnum:
Integer
Error message: Regular expression

The Filter list for the option None has the following options:
* None

* Double

* Integer

* Regular expression

The Filter list for the options Append unit to number and Append unit from unit set
only allows for the Double and Integer options.

The Double and Integer options filter the input based on Minimum and Maximum
values. If the input is outside of these values, the Error message is displayed. You
may use global parameters in these fields. If global parameters are used, you can
define such parameters with or without units. If you use global parameters without
a unit, then only the numerical value of these parameters is considered when they
are used as Minimum and Maximum values. For example, consider data validation
of an input field for a length parameter L with unit cm. Further, assume that a
global parameter Lmax is used as the Maximum value. If you would like the
maximum value of L to be 15 c¢m, then the following values for the parameter Lmax
will work: 15 (with no unit), 15[cm], 0.15[m], 150[mm], etc.

For the Append unit from unit set option, the Minimum and Maximum values are
always with respect to the Initial value for the unit set by the unit set. For more
information on unit sets, see “Unit Set” on page 159.

The Regular expression option, available when the Unit dimension check is set to
None, allows you to use a regular expression for matching the input string. For
more information on regular expressions, see the dynamic help. Click the help
icon in the upper-right corner of a window and search for “regular expression”.

For more advanced requirements, note that virtually any kind of validation of the
contents of an input field can be made by calling a method using the Events section
in the Settings window of an input field.

| 97

Error Message

You can customize the text displayed by the Error message. During the
development and debugging of an application, it can sometimes be hard to deduce
from where such errors originate. Therefore, when using Test Application,
additional debugging information is displayed, as shown in the figure below.

€ Error e

Prong length must be 10 to 2500 mm

() Details

- Form object: Input field
- Path: main/inputfieldl
10 £ x = 2500

OK

The debugging information typically consists of the type of form object, the path
to the form object, and the reason for the failure; for example, 10<=x<=2500.

No extra information is added when launching an application by using Run
Application or COMSOL Server.

NUMBER FORMAT

The Number Format section contains a check box Use input display formatting. If

selected, it enables the same type of display formatting as a Data Display object.
¥ MNumber Format

Use input display formatting
Precision: 4
Motation: Automatic -

Exponent: | Powerof 10 v

For more information, see “Data Display” on page 101.

98 |

APPEARANCE

In addition to color and font settings, the Appearance section for an input field
contains a Text alignment sctting that allows the text to be Left, Center, or Right
aligned.

¥ Appearance

Text color: Inherit -
Background color: | White -
Text alignment: Left -
Font: Left
Center

Font size: Right pt
[] Bold
[] Italic

State
Visible
Enabled

Whether the input field should be Visible or Enabled is controlled from the check
boxes under the State subsection. For more information, see “Changing the
Enabled and Visible State of a Form Object” on page 74.

| 99

Unit

In the Settings window for a Unit object, you can set the unit to a fixed string, or
link it to an source, such as an input field. The figure below shows the Settings

window for a unit object.

Settings v ax
MName: unitl E
Label: From reference -

[LaTeX markup

¥ Source for Label

4 i Forms

el D form

inputfield1

[inputfield2

3 inputfield3
& Model (root)

Use as Source Edit Mode
Selected source:

1 inputfieldl

When adding an input field using the Form Wizard, a unit object is automatically
added when applicable. By default, the unit is displayed using Unicode rendering.
As an alternative, you can use LaTeX rendering by selecting the LaTeX markup
check box. Then, the display of units will not depend upon the selected font.

Text Label

A Text Label object simply displays text in a form. When adding an input field using
the Form Wizard, a Text Label object is automatically added for the description
text of the associated parameter or variable. There is a check box allowing for

100 |

Multiline text. If selected, the Wrap text check box is enabled. The figure below

shows the Settings window for a Text Label object.

Settings

Mame: textlabell
[Multiline text

Text: Length:

¥ Position and Size

Harizontal alignment:
Vertical alignment:
Width:

Height:

Position x:

Position y:
¥ Appearance

Text color:
Background color:
Font:

Font size:

[] Bold

[ttalic

[] Underline

Left
Middle
40
15
20
23

Inherit
Transparent
Default font

Default size

-

px

To insert an additional Text Label, usc the Insert Object menu in the ribbon and

select Text Label. The contents of the section Position and Size will change

depending on if you are working in sketch layout mode or grid layout mode.

Data Display

A Data Display object is used to display the numerical values of scalars and arrays.
If there is an associated unit, it will be displayed as part of the Data Display object.

| 101

SOURCE

In the Settings window for a data display object, in the Source section, select a
node in the model tree. Then click the Use as Source button shown below. Valid
parameters, variables, and properties include:

* The output from a Derived Values node, such as a Global Evaluation or a Volume
Maximum node

» Variables declared under the Declarations > Scalar, 1D Array, and 2D Array
nodes

» Properties made available by using the Data Access tool; See “Data Access in
the Form Editor” on page 104

* One of the following Information node variables, which are under the root
node and under each Study node:

- Expected Computation Time

This is a value that you enter in the Expected field in the Settings window of
the root node.

- Last Computation Time (under the root node)

The is the last measured computation time for the last computed study.
- Last Computation Time (under a study node)

This is the last measured computation time for that study.

When you start an application for the first time, the last measured times are
reset, displaying Not available yet.

USING THE FORM WIZARD FOR GENERATING DATA DISPLAY OBJECTS

In the Form Wizard in the Inputs/outputs tab, only the Derived Values nodes will
generate Data Display objects. Variables under Declarations and constants made
available with Data Access will instead generate Input Field objects.

When a Derived Values node is selected, two form objects are created based on the
corresponding Derived Values node variable:

 a Text Label object for the Description of the variable

+ a Data Display object for the value of the variable

The settings for these form objects can subsequently be edited. To insert
additional data display objects, use the Insert Object menu in the ribbon and select
Data Display.

NUMBER FORMAT

The Number Format scction lets you set the Precision, Notation, Exponent, and Unit.

102 |

The figure below shows an example with data display objects for the variables Coil
resistance and Coil inductance. A formatted unit label is automatically

displayed as part of the object if applicable.

[A] Preview [form1 % SE‘tt.FgS
Data Display
MName: datadisplayl E
Coil resistance: 0.001235 [¥] LaTeX markup
Coil inductance: 0.001235 Tooltip:
¥ Source .:_E. + “ﬁ

= Declarations

@ Model (root)

I (1) Information

[~do Study 1

[~do Study 2

4 ([Results

4 £ Derived Values

Global Evaluation 1
l@ Global Evaluation 2

[8

E‘ Use as Source =g Edit Node
Selected source:

l@ Global Evaluation 1

¥ Number Format
Precision: 4
Motation: Automatic

Exponent: | Power of 10

RENDERING METHOD

By default, the unit of a data display object is displayed using Unicode rendering.
As an alternative, you can use LaTeX rendering by selecting the LaTeX markup
check box. Then, the data display does not rely on the selected font.

A formatted display of arrays and matrices is only supported with LaTeX
rendering. The figure below shows a 2D double array (see page 154) displayed
using a Data Display object with LaTeX markup selected.

0 0 08 08 07 1 1 1 1 1 1 1
0 1 05 07 15 08 06 03 02 01 01 01
0 0 08 08 07 1 1 1 1 1 1 1

| 103

You can add a Tooltip with text that is shown when hovering over the data display
object.

Data Access in the Form Editor

The Settings window of many types of form objects has a section that allows you
to select a node in a tree structure that includes the model tree, or parts of the
model tree, and parts of the application tree. Examples include the Source section
of an input field or the Choose Commands to Run section of a button. There are
many properties in the model and application trees that are not made available by
default, because there may be hundreds or even thousands of properties, and the
full list would be unwieldy. However, these “hidden” properties may be made
available to your application by a technique called Data Access.

The remainder of this section gives an introduction to using Data Access, with
examples for input fields and buttons.

DATA ACCESS FOR INPUT FIELDS

By default, you can link input fields to parameters and variables defined in the
model tree under the Parameters or Variables nodes and to variables declared in
the application tree under the Declarations node. To access additional model tree
node properties, click the Switch to Model Builder and Activate Data Access button
in the header of the Source section of the input field Settings window, as shown in
the figure below.

Source ':‘E' T “ﬁ

Switch to Model Builder and Activate Data Access |
et

Model (root)

en

Fi

You can also access it from the Application group of the Developer tab of the Model
Builder.

A " Data Access
» Test Application
Application
Builder

Application

104 |

Then, when you click on a model tree node, check boxes appear next to the
individual settings. In the figure below, the check box for an Electric potential
boundary condition is selected:

Model Builder

—

L= st

4

4 @ Untitled.mph {root)

(1) Global Definitions

Fi Parameters 1
45 Default Model Inputs
2 Materials
Component 1 {comp 1)
= Definitions
WA Geometry 1
2 Materials
+_ Electric Currents {ec)
i Current Conservation 1

ey]

f’ Electric Insulation 1
B Initial Values 1
mw Electric Potential 1
m Ground 1
I» |[E Heat Transfer in Solids (ht)
.{;3. Multiphysics
b Mesh 1

-

[~ Study 1
b {8 Results

-1

Label: Electric Potential 1
¥ Boundary Selection

Selection: Manual

43

Cverricde and Contribution

Equation
¥ Electric Potential

Electric potential:

Va 0.5

[

E=limir

| 105

The figure below shows the Settings window for an input field. The list of possible
sources for this field now contains the Electric potential.

Settings X

nput Field

Mame: inputfield3 =
Editable

Tooltip:

v Source & E
= Declarations

4 & Model (root)
I (3 Global Definitions
4 im Busbar (comp1)
4 +_ Electric Currents (ec)
4 my Electric Potential 1
1 Electric potential (VO]

E‘ Use as Source =g Edit Node
Selected source:

123 Electric Potential 1=Electric potential (V)
Initial value: From data source -

Value: Vot

In addition, as seen in the figure above, Data Access makes it possible to access the
check box Editable and the Tooltip text of the input field form object. In addition
to the settings of the Model Builder, Data Access lets you access certain properties
of the Application Builder.

Data Access can be used for buttons to set the value of a parameter, variable, or a
model property. For example, you can create buttons for predefined mesh element
sizes. The settings shown in the figure below are available when, in the Settings
window of the Mesh node, the Sequence type is set to User-controlled mesh. In this

106 |

example, the Predefined property for Element Size has been made available and then

selected.
Wodel Builder M
- = - t -

4 & busbar.mph (root)

I () Global Definitions
4 im Component 1 {comp 1)

[= Definitions

b YA Geometry 1

I 5z& Materials

[+_ Electric Currents (ec)

I» {[E Heat Transfer in Solids (ht)
I .y Multiphysics

4 S Mesh1

A Size

Free Tetrahedral 1

[~do Study 1

T Results

Settings

Size

& Build Selected [§§ Build All
Label: Size

Element Size

Calibrate for:

General physics

Predefined |+|| MNormal

O Custom

Element Size Parameters

| 107

The figure below shows the Settings window for a button used to create a mesh
with Element Size > Predefined set to Fine.

Settings

Button

MNarme: button1 E

Text: Fine

lcon: mesh_32png v | |+ =

Size: Large -
1 r Style: Flat =

Fine
Tooltip:

Keyboard shortcut:

mé

» (Choose Commands to Run

I U Forms
[u GUI Cormmands
____________ b [Libraries
4 & Model (root)
I (3 Global Definitions
4 im Component 1 (compl)
[= Definitions
b YA Geometry 1
I 5z& Materials
[+_ Electric Currents (ec)
[» {[E Heat Transfer in Solids (ht)
I .y Multiphysics
4 S Mesh1
- .ﬁ%é Size
8.5 Predefined size (hauto)
& Free Tetrahedral 1

Edit Mode Run Plot Set Value
Show Show as Dialog Import File
Enable Disable

"
Command lcon Arguments

Set hauto of Size |4

Plot Mesh 1 form1/graphicsi

In the above example, a Set Value command is used to set the value of the
Predefined mesh size (hauto) property. The property Predefined mesh size (hauto)
corresponds to the following settings in the Size node shown earlier:

PREDEFINED MESH SIZE VALUE
Extremely fine 1
Extra fine - Extra coarse 2-8
Extremely coarse 9

108 |

The value of the hauto property is a double and can take any positive value. For
non-integer values, linear interpolation is used for the custom mesh parameters.

You can, for example, let a slider object adjust the predefined mesh size. For more
information on the slider object, see “Slider” on page 296.

In general, for individual model tree properties, you can quickly learn about their
allowed values by recording code while changing their values and then inspecting
the automatically generated code. For more information, see “Recording Code”
on page 180.

You can also use a combo box object to give direct access to all of the options from
Extremely fine through Extremely coarse. For more information, see “Combo Box”
on page 229.

SUMMARY OF DATA ACCESS

The table below summarizes the availability of Data Access for form objects and
events, as well as menu, toolbar, and ribbon items.

FORM OBJECT, EVENT, OR ITEM SECTION IN SETTINGS WINDOW
Input Field Source
Button Choose Commands to Run

Toggle Button, Menu Toggle ltem, Source and Choose Commands to Run
and Ribbon Toggle Item

Check Box Source
Combo Box Source
Data Display Source
Graphics (Graphics Toolbar Item) Choose Commands to Run
Form Collection Active Pane Selector

Tiled or Tabbed
Card Stack Active Card Selector
Information Card Stack Active Information Card Selector
Radio Button Source
Text Source
List Box Source
Slider Source
Toolbar (Toolbar Item) Choose Commands to Run
Menu Item Choose Commands to Run

| 109

FORM OBJECT, EVENT, OR ITEM SECTION IN SETTINGS WINDOW

Ribbon Item Choose Commands to Run

Event (Global) Choose Commands to Run
Source for Data Change Event

A global event, menu, ribbon, or toolbar item provides a Choose Commands to Run
section in its Settings window, to which the functionality described above in the
section on buttons also applies. Global events and many form objects provide a
Source section in its Settings window, and the functionality described above in the
section on input fields applies. For information on global events, menus, ribbons,
and toolbar items, see “Graphics Toolbar” on page 82, “The Main Window” on
page 133, “Events” on page 139, “Table” on page 291, and “Toolbar” on page
302.

Sketch and Grid Layout

The Form Editor provides two layout modes for positioning form objects: sketch
layout mode and grid layout mode. The default is sketch layout mode, which lets
you use fixed positions and sizes of objects in pixels. Use grid layout mode to
position and size objects based on a background grid with cells. In grid layout
mode, a form is divided into a number of intersecting rows and columns, with
at most one form object at each intersection. This layout mode is recommended
for designing a resizable user interface, such as when designing an application to
be run in a web browser on multiple platforms.

SKETCH LAYOUT

Switch between sketch and grid layout mode by clicking Sketch or Grid in the
Layout group in the ribbon.

@ Grid — [e]a]
11 Sketch = [o]a]
Show Grid Arrange
Lines -
Layout Sketch

110 |

The Sketch group in the Form tab has two options: Show Grid Lines and Arrange.

The Arrange menu allows you to align groups of form objects relative to each
other.

i [#]a]

=] | [sla]
Show Grid [Arrange

Lines -

Skett 7] Align Left
[1] Align Center
[1 Align Right
[T] AlignTop
H Align Middle
] Align Bottom

Sketch Grid

The Show Grid Lines option displays a sketch grid to which objects are snapped.
Note that the grid used in sketch layout mode is different from the grid used in
grid layout mode. The default setting for sketch layout mode is to show no grid
lines. Without grid lines visible, a form object being dragged is snapped relative to
the position of the other form objects.

If the Show Grid Lines option is selected, the upper left corner of a form object
being dragged is snapped to the grid line intersection points.

@Grld —s
T Sketch Lzl [ofa]
Show Grid | Arrange
Lines -

cts Layout Sketch Grid

@ Preview D forml X

¥

Length e o @Qal| LuzEEMDD <0 @

]
Width: 5 cm

Applied voltage: 20 my

Compute

In the Settings window of the form, you can change the settings for the sketch
grid:
¢ Column width
¢ Row height
* Align grid to margin
¢ Snap zone
- Asslider allows you to change the snap zone size from Small to Large
¢ Snap only to grid
- Clear this check box to snap both to the grid and the position of other form
objects
~ Sketch Grid

Column width: 100
Row height: 20
[] Align grid to margin

Snap zone:

Small Large
Snap only to grid

Position and Size

The sketch layout mode is pixel based, and the positioning of form objects is
indicated as the coordinates of the top-left corner of the form object measured
from the top-left corner of the screen. The x-coordinate increases as the object
moves to the right, and the y-coordinate increases as the object moves from the
top of the screen to the bottom. You can set the absolute position of a form object
in the Position and Size scction of its Settings window.

¥ Position and Size

Horizontal alignment: | Left v
Vertical alignment: Top -
Width: a1
Height: 301
Position x: 257
Position y: 20

Form objects are allotted as much space as required or as specified by their Width
and Height values. Form objects are allowed to overlap.

112 |

Button and toggle button form objects have an Automatic and Manual option for
the Width and Height values. The Manual option allows for pixel-based input and
the Automatic option adapts the size of the button to the size of the Text string.

GRID LAYOUT
Switch to grid layout mode by clicking Grid in the Layout group in the ribbon.

EfRows & Columns

15 Sketch

Layout Sketch Grid
The buttons and menus in the ribbon Grid group give you easy access to
commands for:

+ Changing the row and column growth rules between Fit, Grow, and Fixed,
which determine the layout when the user interface is resized (Row Settings
and Column Settings).

 Inserting or removing rows and columns (Insert and Remove).
» Aligning form objects within grid cells (Align).
* Merging and splitting cells (Merge Cells and Split Cells).

» Extracting a rectangular array of cells as a subform and inserting it into a new
form (Extract Subform).

e Defining the number of rows and columns (Rows & Columns).

| 113

The Form Settings Window and the Grid
After switching to grid layout mode, the form window shows blue grid lines.

[G] Preview [maimCompaner %
v

L. . L
¥
1 = - r=
P A @) Ed 5 7] L
EGwmclry Compute Plot Sound Report Reset Help Home
Geometry & Material aa@- [ez ¢« s -BRHEE @8

[Find prong length,

ar BQUENCY 440

&
T <5 0.1 IHz
a4
Prong length: Ly 75 ., mm
Us
Handle length: Ly a0 _ mm
i
Radius: r 25 Cmm
&
Material: Steel Tl
o bh .o Lp 4
o ry S—
r
Sound
bl Play sound when computed
Sound duration: 1 s
Computed frequency:) Hz

To define the number of rows and columns, click the Rows & Columns button in
the ribbon.

3 Rows & Columns *

Rows: 17
Columns: 7

oK Cancel

114 |

The section Grid Layout for Contained Form Objects in the Settings window shows

column widths and row heights.

¥ Grid Layout for Contained Form Objects

"
Column Width

1 Fit
2 Fit
3 Fit
4 Fit
5 Fixed
6 Fit
7 Grow
" Row Height
1 Fit
2 Fit

3 Fit

Size
N/A
N/A
N/A
N/A
96
N/A
N/A

Size
N/A
N/A
N/A

To interactively select a form, as displayed in the Form Editor, click the top-left

corner of the form.

A blue frame is now shown. To interactively change the overall size of a form, you
can drag its right and bottom border. The form does not need to be selected for

this to work.

Note that if you switch from sketch to grid layout mode, all rows and columns will
have the setting Fit and the handles for the frame will not be displayed. If any of
the rows and columns have the Height or Width sctting set to Grow, then the frame
will display handles for resizing in the vertical or horizontal direction, respectively.

| 115

The size of the interactively resized frame will affect the initial size of the form only
if the Initial size setting is set to Automatic. The size of the frame will also affect the
initial size of the Main Window if its Initial size setting is set to Use main form’s size.

Settings ~ax Setffings TAX

Earm

Riap=ly main S| ¥ General
Title: Main -
Title: Tuning Fork
lcon: Default x| [t [] Show filename in title
[] Show in Maodel Builder Icon: P tuning_fork_main_32png v+ =
- e Menu type: Menu bar =
Initial size: [Automatic v| Status bar: MNone =
| Automatic
v Margin oo ‘ ¥ Main Form
Form: main ~| |3
¥ Size
Initial size: [Use main form's size v|

[] Center o| Maximized ||
Use main form's size
* About [ppanual

Rows and Columns

Click the leftmost cell of a row to select it. The leftmost cells are only used for
selecting rows; form objects cannot be inserted there. When a row is selected, the
Row Settings menu as well as the Insert and Remove commands are enabled in the
ribbon tab. The figure below shows the fourth row highlighted.

v

Geometrical Dimensions
Prong length:
Prong radius:

Base radius:

116 |

Similarly, to select a column, click the cell at the top. This cell cannot contain any
form objects. The figure below shows the third column highlighted. In this case,
the Column Settings menu is enabled in the ribbon tab.

v

Geometrical Dimensions
Prong length:| 75 mm
Prong radius:| 2.5 mm

Base radius:| 5.5 mm

The Row Settings and the Column Settings have the same three options:

* Fit sets the row height or column width to the smallest possible value given
the size of the form objects in that row or column.

* Grow sets the row height or column width to grow proportionally to the
overall size of the form.

* Fixed sets a fixed value for the number of pixels for the row height or column
width.

ES Fit Row N {[l} Column Settings ~| —)
% Grow Row H¢ Fit Column
= Fixed Row HE Grow Column

[Fixed Column

You can interactively change the row height and column width by dragging the
grid lines.

@
mm A
F _>;_"'\
mm Show
mm | | Geometry, -

&

In this case, the number of pixels will be displayed and the Row Settings or Column
Settings growth policy will be changed automatically to Fixed.

| 117

As an alternative to changing the Row Settings or Column Settings from the ribbon,
you can right-click in a row or column and select from a menu.

E] Local Form
Mew Methad
Scalar r
Array 1D r
Array 2D r
Choice List

Fit Row
Grow Row

Fixed Row

Insert Above

W0 (I BH &

Insert Below

m
x

Remove Row

Copy as Code to Clipboard 3

-
s

Cut Ctrl+X
Copy Ctrl+C

Duplicate Ctrl+Shift+D
Group Ctrl+G
Delete Del

Rename F2

Settings

Help F1

The menu shown when right-clicking a row or column also gives you options for
inserting, removing, copying, pasting, and duplicating rows or columns.

Cells

Click an individual cell to select it. A selected cell is shown with deeper blue grid
lines.

thi| 8 *cm
th: & cm

You can select Merge Cells and Split Cells to adjust the cell size and layout of your
form objects.

118 |

When in grid layout mode, you can specify the margins that are added between
the form object and the borders of its containing cell.

¥ Position and Size

Horizontal alignment: | Fill v

Vertical alignment: Middle v

Minimum width: Manual v
a0

Height: 20
Row: 1
Column: 2
Row span: 1
Column span: 2
Cell margin

Cell margin: | From parent form v|

MNone
¥ Appearance na
Custom

In the Settings window of a form object, the Position and Size section has the
following options for Cell margin:

* None
- No cell margins
* From parent form (default)
- The margins specified in the Settings window of the form; See “Inherit
Columns and Cell Margins” on page 125
* Custom

- Custom margins applied only to this form object

If the Horizontal alignment or Vertical alignment is set to Fill and the growth policy
of the column or row allows the form object to be resized, then you can specify a
minimum width or height, respectively. The minimum size can be set to Manual
or Automatic. The Manual option lets you specify a pixel value for the minimum
size. The Automatic option allows for a minimum size of zero pixels, unless the
form object contents require a higher value. The minimum size setting is used at
runtime to ensure that scroll bars are shown before the form object shrinks below
its minimum size.

Depending on the type of form object contained in a cell, the Width and Height
values can be set to Automatic or Manual, as described in “Position and Size” on
page 112.

You can click and drag a rubber box to select multiple cells.

| 119

Aligning Form Objects

The Align menu gives you options for aligning form objects within a cell. You can
also let a form object dynamically fill a cell horizontally or vertically.

= &)
FH split Cell
- |5 Extract Subform

Align Left
Align Center
Align Right
Fill Vertically
Align Top
Align Middle

Align Bottom

As an alternative, you can right-click a form object and select from a context menu.

A & | o .

)

Geometry Compute Plot Sound Report Reset
E Create Local Method
Edit Methad
= Fill Horizontally Align »
Align Left Row r
Align Center Column r
Align Right r5l Extract Subform
Fill Vertically Copy as Code to Clipboard 3
Align Top Woocut Ctrl+X
Align Middle B Copy Ctrl+ C
argniBatiom [5] Duplicate Ctrl+ Shift+D
[Delete Del
Settings
Help F1

120 |

Drag and Drop Form Objects

You can drag and drop form objects to move them. Click a form object to select
it, and then drag it to another cell that is not already occupied with another form
object.

Thermal conductivity: 0.559 W/meK)
Heat of reaction: -84666 Jimol
Compute |

If you drop the object in an already occupied cell, then the objects switch places.

Automatic Resizing of Graphics Objects
In order to make the graphics object of an application resizable, follow these steps:

+ Change the layout mode of the form containing the graphics object from
sketch to grid layout mode.

» Change the Height setting for any row covering the graphics object to Grow.
To change this, click the leftmost column of the row you would like to

| 121

access. Then, change the Height setting in the Settings window of the form.
Alternatively, right-click and select Grow Row.

E] Local Form
Mew Methad
Scalar r
Array 1D r
Array 2D r
Choice List

Fit Row
Grow Row

Fixed Row

Insert Above

W00 R ©

Insert Below

mm

« Remowve Row

Copy as Code to Clipboard 3

-
s

Cut Ctrl+X
Copy Ctrl+C
Duplicate Ctrl+Shift+D
Group Ctrl+G
Delete Del

IE]ZI Rename F2

Settings

B &

Help F1

I

Change the Width for any column covering the graphics object to Grow. To
change this, right-click the uppermost row of the column you would like to
access and select Grow Column.

Select the graphics object and change both the Horizontal alignment and
Vertical alignment to Fill. You can do this from the Settings window or by

122 |

right-clicking the graphics object and selecting Align
Align > Fill Vertically.

= Fill Horizontally
[Align Left
Align Center
Align Right

Fill Vertically

i Align Top
Align Middle

Align Bottom

Following the steps above, you may find it easier to make graphics objects

W H

-
s

BEedHm

Align
Row

Column

Split Cell

Extract Subform

Copy as Code to Clipboard

Cut
Copy
Duplicate
Delete

Ctrl+X
Ctrl+C
Ctrl+Shift+D
Del

Settings

Help

Fi

> Fill Horizontally and

resizable by performing grid layout mode operations, such as adding empty rows
and columns as well as merging cells. If you are already in grid layout mode, then
a graphics object will default to Fill in both directions.

Extracting Subforms

You can select a rectangular array of cells in a form and move it to a new form.
First, select the cells by using Ctrl+click or Shift+click.

Computation

Compute
£
Sound
Computed fundamental frequency: |0 Hz)
0)
Sound duration:| 1 s Play Sound|
Bl

Then, click the Extract Subform button in the ribbon.

(=]
(=]

Align

- p5lExtract Subform

Grid

n@jRows & Columns

| 123

This operation creates a new form with the selected cells and replaces the original
cells with a form object of type Form. In the Settings window of the subform, the
Form reference points to the new form containing the original cells.

& Prﬂfw CJmain x [form Settings
Form
>
Geometrical Dimensions € | Neme | subformz
t
Prong length (L) 75 mm Form: | forml
: & A
Prong radius (rp) 25 mm Show [Add border
Base radius (rg) 55 mm Geometr'ya ~ Position and Size
Ly Harizontal alignment: | Fill
e ———— |
P I KR | Vertical alignment: Fill
b S '-L,g Minimurn width: Automatic
T Minimum height: Automatic
Find Row: 14
Column: 1
Find prong length: % Row span: '
Target frequency: 440 Hz Column span: 6
B Cell margin
Frequency tolerance: Hz Cell margin: None
Computation —
Reset t
Defaexj\et\nuput Compute
S Y
Sound
Computed fundamental frequency: 0 Hz 0 !
Sound duration: T s Play Sound
2
[main [forml %
v
>
Sound
Computed fundamental frequency: 0 Hz
"m
jon: 1
Sound duration: s Play Sound
S

124 |

B

Inherit Columns and Cell Margins

By using subforms, you can organize your user interface, for example, by grouping
sets of input forms. The figure below shows part of a running application with two
subforms for Beam dimensions and Reinforcement bars.

Beamn dimensions

Height of the beam: 200[mm] m
Width of the beam: 300[mm] m
Length of the beam: 4[m] m

Reinforcement bars

Diameter of the bar: 10[mm] m
MNumber of bar layers: 2

Layer spacing: 20[mm] m
Distance from surface of first rebars layer: 10[mm] m
Width spacing: 60[mm] m
Minimal lateral distance from rebars to beam

surface: 10[mm] m
MNumber of bars across the width: 5

For more information on adding subforms to a form, see the previous section and
“Form” on page 261.

When aligning subforms vertically, as in the example above, you may want to
ensure that all columns are of equal width. For this purpose, you can use the
Inherit columns option in the Settings window of a subform. The figure below
shows part of the Settings window for the Beam dimensions subform (left) with
Name geometry_beam and for the Reinforcement bars subform (right) with Name

| 125

geometry_rebars. The geometry_rebars subform has its Inherit columns sct to
geometry_beam.

Sett ngs
Mame: geometry_beam MName: geometry_rebars
Title: Beamn dimensions Title: Reinforcement bars
Size I Size
Margins [Margins
Dialog Settings I Dialog Settings
Section Settings I Section Settings
¥ Grid Layout for Contained Form Objects ¥ Grid Layout for Contained Form Objects
" Column Width Size " Row Height Size
1 Fixed | 280 1 Fit || N/A
2 Fixed | 100 2 Fit || N/A
3 Fixed |45 3 Fit || N/A
4 Grow - || N/A 4 Fit || N/A
" 5 Fit v | N/A
Row Height Size
- G Fit - || N/A
1 Fit || N/A
- 7 Fit - || N/A
2 Fit v | N/A
3 Fit - | N/A Inherit columns: geometry_beam | |E
Cell margins
. < [N 2 E
Inherit columns one Horizontal 5
Cell margins
X Vertical: 3
Horizontal: 5
Vertical: 3

In the subsection Cell margins, you can specify the Horizontal and Vertical margins
that are added between form objects and the borders of their containing cells.
These settings will affect all form objects contained in the form, with their
individual Cell margins sct to From parent form; See “Cells” on page 118.

Copying Between Applications

You can copy and paste forms and form objects between multiple COMSOL
Multiphysics sessions running simultaneously. You can also copy and paste within
one session from the current application to a newly loaded application.

In grid layout mode, a cell, multiple cells, entire rows, and entire columns may be
copied between sessions.

126 |

When you copy and paste forms and form objects between applications, the copied
objects may contain references to other forms and form objects. Such references
may or may not be meaningful in the application to which they are copied. For

more information on the set of rules applied when pasting objects, see “Appendix

B — Copying Between Applications” on page 305.

When copying and pasting between applications, a message dialog box will appear
if'a potential compatibility issue is detected. In this case, you can choose to cancel
the paste operation.

Using Forms in the Model Builder

Forms without graphics form objects can be used in the Model Builder. You can
use this functionality to create customized Settings windows for, for example,
common or repetitive tasks.

To use a form, right-click Global Definitions and select the form under Settings
Forms.

Mode

A

Fi

R AAr
GUlu=

T ostE =
4 busbar_toolbar.mph (root)
4 (7)) Global Definitions

Pi Parameters 1

£ Default Model Input| a=

2 Materials
[T Component 1 {comp 1)
[~do Study 1
4 ([Results
Datasets

£ Derived Values

Ef Tables

VB Temperature (ht)

i Isothermal Contours

D my_form

N

55 Reports

[
[
I N Electric Potential (ec
[
[

Parameters
Variables

Functions

Geometry Parts
Mesh Parts

Default Model Inputs
Materials

Load and Constraint Groups

Thermodynamics
Settings Forms

Show More Options...

| 127

You can control whether a form should be visible or not in the Model Builder as
a Settings Form via the check box Show in Model Builder. This check box is available
in the Application Builder in the Settings window of the corresponding form.

Settings

Form

Mame: rmy_form E
Title: Busbar Controls

lcon: | Default ~| |+
Show in Madel Builder

Once added to the model tree, the form is shown as a Settings window, shown in
the figure below.

Model Builder Settings
- = ETELE ~ Busbar Cantrols
4 G bushar_toolbarmph (root) '.'E,"
4 () Global Definitions
Pi Parameters 1
4 Default Model Inputs Length: ° cm
=5 Materials Width: 5 cm
_ "] Busbar Controls 1 Applied voltage: |20 mv
4 || Component1 {compl)
4 = Definitions
4 Uy Selections
& Tibolts —
1=/ Boundary System 1 (sys1) Compute

View 1
A, Geometry 1

To show a Settings Form you can:
* Click the corresponding model tree node.

» Select it from the Settings Form menu button in the Developer tab in the
ribbon.

» Show it as a dialog box by selecting it from the Show Dialog menu button in
the Developer tab in the ribbon.

Developer

O ® @&

Settings Update Show
Form - Forms Dialog -

For reusing a Settings Form between sessions, you can create an Add-in. For more
information, see “Creating Add-Ins” on page 211.

128 |

Inputs

When starting an application from the operating system command line, you can
provide input arguments. In the application tree, you specify such input
arguments under the Inputs node.
4 [Z] my_app_input.mph [root)
4 7 Inputs

freg
| D Main Window

Command-line arguments are automatically written to the declarations you define
as Selected source, in the corresponding Settings window for an Application
Argument. They can be used, for example, to provide input data or configuration
settings.

Settings

Application Argument

MName: freq

¥ Source ®

4 = Declarations

[Boolean

[» 123 Integer

4 122 Double
123 fg
153 targetfq
123 ftol

[» =pc String

Use as Source Edit Mode
Selected source:

123 Double=targetfq

¥ Help Text

The target frequency of the simulation.

Command-line arguments can be used when starting applications with COMSOL
Multiphysics, COMSOL Server, as well as when starting applications that have
been compiled with COMSOL Compiler. In the example below, for a compiled

| 129

application in Windows®

value 400.

, an input argument freq is given that takes a (double)

BEX Administrator: Command Prompt — O »

For COMSOL Multiphysics, the corresponding command would be
comsol.exe -run myapp.mph -appargnames freq -appargvalues 400

When running this command, you need to be positioned in the COMSOL
Multiphysics installation directory where the executable comsol. exe is located, for
example

C:\Program Files\COMSOL\COMSOL56\Multiphysics\bin\win64

130 |

Alternatively, you can copy and paste the COMSOL Multiphysics 5.6 Windows®
Desktop shortcut icon (in order to keep the original shortcut), right-click the
icon, and select Properties; as shown in the figure below.

42 COMSOL Multiphysics 5.6 Prerelease 2 Properties *
Security Details Previous Versions
General Shortcut Compatibility

;3 COMSOL Muttiphysics 5.6

Target type: Application

Target location: winé4

Target: |r'c:-..ngram Flles'-.COMSOL'-.COMSOLSE'-.Multiph|

Start in: | "C:\Program Files\COMSOL\COMSOL56\Multiph |

Shortcut key: | Mone |

Bun: MNormal window i
Comment: | |
Open File Location Change Icon... Advanced...

Cancel Soply

You can, for example, modify the Target text field to be:
"C:\Program Files\COMSOL\COMSOL56\Multiphysics\bin\win64\comsol.exe" -run
myapp.mph -appargnames freq -appargvalues 400

To provide input arguments with special characters, you need to use single quotes.
The following example of a compiled application shows how to provide a file path,
such as for a configuration file, as an input argument:

myapp.exe -appargnames configfile -appargvalues 'C:\\COMSOL\\my_conf.dat'
For COMSOL Server, you can provide the arguments directly in the address field
of your browser (URL); for example:
http://<host:port>/app/myapp_mph?appargnames=freq&appargvalues=400
You can also use a file declaration as an input argument. This is useful, for example,
when you want to let users supply input files. For example:

comsol.exe -run file_arguments.mph -appargnames interpfile -appargvalues
'C:\data\functions\simpleinterp.txt'

| 131

This example uses an application argument interpfile, which is linked to a file
declaration to read the interpolation file simpleinterp.txt when launching the
application. This file is then used in an interpolation function in the application’s
embedded model.

132 |

The Main Window

In the application tree, the Main Window node represents the main window of an
application and is also the top-level node for the user interface. It contains the
window layout, the main menu specification, and an optional ribbon specification.

GENERAL

The Settings window contains a General section with settings for:

Title

Show filename in title
Icon

Menu type

Status bar

Settings

Main Window

~ General

Title: Helical Static Mixer
Show filename in title
lcon: Default

Menu type: | Ribbon

Status bar: Progress
¥ Main Form
Form: main

¥ Size

Initial size: | Maximized

[] Center on screen

¥ About Dialog

Placement: Lower-right corner

Show COMSOL information
Customn text:

The Title is the text at the top of the main window in an application, with the Icon
shown to the far left of this text. By default, the Title is the same as the title of the
model used to create the application. Keep the check box Show filename in title

| 133

selected if you wish to display the file name of the application to the left of the
Title.

In the lcon list, select an image from the library or add an image (*.png) from
the local file system to the library and use it as an icon. If you add a new image,
it will be added to the image library and thereby embedded into the application.
You can also export an icon by clicking the Export button to the right of the
button Add Image to Library and Use Here.

The Main Window node of the application tree has one child node, named Menu
Bar. Using the Menu type setting, you can change this child node from Menu Bar
to Ribbon.

The Status bar list controls what is shown in the status bar. Select Progress to
display a progress bar when applicable (the default), or None. Note that you can
also create custom progress bars by using methods.

MAIN FORM

The Main Form section contains a reference to the form that the main window
displays. This setting is important when using a form collection because it
determines which form is displayed as the main window when the application is
opened for the first time.

SIZE

In the Size section, the Initial size setting determines the size of the main window
when the application is first started. There are three options:

* Maximized results in the window being maximized when the application is
run.

 Use main form's size uses the size of the main form; See “The Individual Form
Settings Windows” on page 51. The main form is defined by the Main Form
section. This option further adds the size required by the main window
itself, including: the window frame and title bar, main menu, main toolbar,
and ribbon. This size is computed automatically and depends on whether
the menu type is Menu bar or Ribbon.

* Manual lets you enter the pixel size for the width and height. In this case,
nothing is added to the width and height. When using this option, you need
to ensure that there is enough room for the window title, ribbon, and
menu bar.

In addition, there is a Center on screen check box that is applicable to any Size
setting that does not correspond to a maximized window.

For more information on the option Use main form’s size, see “The Form Settings
Window and the Grid” on page 114.

134 |

ABOUT DIALOG

The About Dialog scction contains settings for customizing parts of the About This
Application dialog box, which contains legal information. The Placement option
lets you choose between Automatic, File menu, Ribbon, Lower-right corner or
Lower-left corner. The Lower-right corner and Lower-left corner options will place a
hyperlink to the About This Application dialog box in the corresponding corner of
the application user interface. If selected, the Show COMSOL information check box
will display COMSOL software version and product information. Any text entered
in the Custom text ficld will be displayed above the legal text in the dialog box. In
the Custom text ficld, words containing http or www will be interpreted as
hyperlinks, if possible. For example, http://www.comsol.com or www.comsol.com
will be replaced with a hyperlink.

Menu Bar and Toolbar

The Menu Bar node can have Menu child nodes that represent menus at the top
level of the Main Window.

Application Builder M

= -
4 [&] Untitled.mph [root)
E Inputs
% Themes

- D Main Window
- E Menu Bar
4 [Z] File {menu}
El Save {item1}
El Save As {item2}
EI Menu 2 {menu2}
EI Menu 3 {menu3}

b B Forms

| 135

For the Menu Bar option, you can also add a Toolbar. The Toolbar node and the
Menu nodes have the same type of child nodes.

Application Builder M
- Bt EL
4 [&] Untitled.mph [root)

E Inputs

% Themes

- D Main Window
- E Menu Bar
4 [Z] File {menu}
El Save {item1}
El Save As {item2}
EI Menu 2 {menu2}
EI Menu 3 {menu3}
i Toolbar

b B Forms

MENU, ITEM, AND SEPARATOR

The child nodes of the Menu and Teelbar nodes can be of type Menu, Item, Toggle
Item, or Separator, exemplified in the figure below:

Application Builder Ve
- + EtEL
4 [&] Untitled.mph [root)
E Inputs
% Themes

- D Main Window
- E Menu Bar
4 [Z] File {menu}
El Save {item1}
El Save As {item2}

=]

El Report {item3}

[Exit {itemd}
4 EI Menu 2 {menu2}
] ttem 1 fitem1}
Toggle ltem 1 {toggle_item1}
EI Menu 3 {menu3}
4 ¥u Toolbar

] ttem 1 fitem1}

4 EI Menu 1 {menul}
[ttem 1 fitem1}
Toggle ltem 1 {toggle_item1}

b B Forms

136 |

A Menu node has settings for Name and Title.

[Val
(48]

ttings

MName: menul

Title: Menu 1

A Menu node can have child Menu nodes that represent submenus.

A Separator displays a horizontal line between groups of menus and items, and has
no settings.

The Settings window for an Item node is similar to that of a button and contains a
sequence of commands. Just like a button, an item can have associated text, an
icon, and a keyboard shortcut. For more information, see “Button” on page 63.
In a similar way, the Settings window for a Toggle Item node is similar to that of a
toggle button.

The figure below shows the Settings window for an Item associated with a method
for save an application.

Settings = L8
Mame: savels E
Text: Save As

lcon: [4] save_as.png - |4+| B

Keyboard shortcut: CTRL+ALT+5
State

Visible

Enabled

» (Choose Commands to Run B

b B Forms
4 @ GUI Commands
- File Commands
Save Application
[Save Application As
Save Application on Server

Edit Mode P Run Plot Set Value Show
Show as Dialog Import File Enable
Disable
L
Command lcon | Arguments
Save application as =]
oE -

| 137

The figure below shows an example of an application with a File menu.

File
Save Ctrl+5
1 ;"1
[SaveAs Ctrl+AltsS | 2\
(@ About rometry

You can enable and disable ribbon, menu, and main toolbar items from methods.
For more information, see “Appendix E — Built-In Method Library” on page
331.

Ribbon

You can opt to add a Ribbon to the Main Window instead of a Menu Bar. The Ribbon
node contains the specifications of a ribbon with toolbars placed on one or several
tabs. For the Ribbon option, a File menu is made available directly under the Main
Window node.

RIBBON TAB AND RIBBON SECTION

Child nodes to the Ribbon node are of the type Ribbon Tab. Child nodes to a Ribbon
Tab are of the type Ribbon Section. Child nodes to a Ribbon Section can be of the
type Item, Toggle Item, Menu, or Separator.

Item and Menu provide the same functionality as described previously for the Menu
Bar and Toolbar. A Separator added as a child to a Ribbon Section is a vertical line
that separates groups of Items and Menus in the running application. A Separator
is displayed as a horizontal line in the application tree. The figure below shows an
example.

4 E] tubular_reactor.mph (root)

ﬁ Inputs
% Themes
- D Main Window
4 [F] FileMenu
El Save {save} 4:. — @
4 EI%;::EAS fravets Reset Compute Report Help
4 ™ Home {home}
- Input {input}
El Reset {reset}
4 Simulation {simulation}
El Compute {compute!
4 Documentation {documentation}
El Report {report!
[Help {help}

File Home

Input | Simulation | Documentation

b B Forms
138 |

Events

An event is any activity (for example, clicking a button, typing a keyboard
shortcut, loading a form, or changing the value of a variable) that signals a need
for the application to carry out one or more actions. Each action can be a sequence
of commands of the type described earlier, or may also include the execution of
methods. The methods themselves may be local methods associated with
particular forms or form objects, or global methods that can be initiated from
anywhere in the application. The global methods are listed in the Methods node of
the application tree. The form methods are listed under the nodes of the respective
form. The local methods are defined in the Settings windows of the forms or form
objects with which they are associated. When a form object has an associated
method, it may be opened for editing by performing a Ctrl+Alt+click on the
object. If the Ctrl+Alt+click is performed on a form object that has no method,
then a new local method, associated with the object, will be created and opened
for editing.

The events that initiate these actions may also be global or local. The global events
are listed in the Events node of the application tree and include all events that are
triggered by changes to the various data entities, such as global parameters or
string variables. Global events can also be associated with the startup and
shutdown of the application. The local events, like local objects, are defined in the
Settings windows of the forms or form objects with which they are associated.

Event nodes trigger whenever the source data changes, regardless of if it is changed
from a method, form object, or in any other way. Events associated with form
objects only trigger when the user changes the value in the form object.

| 139

Events at Startup and Shutdown

Global or local methods can be associated with the events at startup (On startup)
and shutdown (About to shutdown) of an application. To access these events, click
the Events node in the application tree.

Application Builder =i Settings TAX
4[] tuning_fork.mph (root)
&I Inputs ¥ Events

%Themes
[D Main Window
I % Forms About to shutdown: run_on_shutdown = Ej T
Events

= Declarations
I [y Methods
b [Libraries

- =ty ve

On startup: run_on_startup . Ej +

A shutdown event is triggered when:

* The user of an application closes the application window by clicking the Close
Application icon in the upper-right corner of the application window

o The Exit Application command is issued by a form object

* A method is run using the command exit()

A method run at a shutdown event can, for example, automatically save critical
data or prompt the user to save data. In addition, a method run at a shutdown
event may cancel the shutdown by returning a Boolean true value.

LIMITATIONS WITH ON STARTUP EVENTS

Methods used for an On startup event cannot utilize Application Builder
functionality related to graphics or user interfaces. This is due to the fact that an
On startup cvent is run before the full application user interface is loaded. For
example, a method that is used for initializing graphics, such as Zoom Extents,
needs to be run as an On load event for a form and not as a global On startup cvent.
Another example is showing a dialog box using a built-in method such as confirm.
In this case, no dialog box will be shown and the operation will simply be ignored.

Global Events

Right-click the Events node and choose Event to add an event to an application.
An event listens for a change in a running application. If'a change occurs, it runs

140 |

asequence of commands. In the figure below, when the value of the string variable
SpanWidth is changed, the method setResultsStatus is run.

I U Forms
4 [E Events

event]

event?
O event3
O eventd
O events
O events
O event?
O event?
O events
B eventld
O eventll
O event12
O event13
I = Declarations

Settings

Marne:

Source for Data Change Event @5

event]

Declarations
4 & Model (root)
4 (@) Global Definitions

F]

Pi Parameters 1
1 Width of one span (SpanWidth)
123 Number of spans (Num5pans)
123 Total length of beam (TotLength)
123 Beam height (BeamHeight)
123 Bearn thickness (BeamThickness)
123 Intensity of the pressure load (LoadIntensity)

Use as Source Edit Mode

Selected source:

123 Parameters 1=Width of one span (SpanWidth)

Choose Commands to Run =

b

GUI Commands
Declarations

compute
setResultStatus
reportState
updateDisp2d
updateDispld
updateResult
animate

Edit Node Run Plot Set Value Show
Show as Dialog Impaort File Enable Disable

»
Command lcon Arguments
setResultStatus

Note that since this type of event has global scope and is not associated with a
particular form, the full path: /form1/graphics1 needs to be used when

referencing graphics objects.

The following two sections describe the options available in the Settings window

of an event.

SOURCE FOR DATA CHANGE EVENT

This section presents a filtered view of the tree from the Application Builder
window. The nodes represent some sort of data or have children that do.

| 141

You can extend the list of available data nodes by clicking on the Switch to Model

Builder and Activate Data Access button in the header of the section Source For Data
Change Event.

Source for Data Change Event el -

Switch to Model Builder and Activate Data Access |
Model (root)

en

For more information, see “Data Access in the Method Editor” on page 178.

Note that Explicit selections are also allowed as Source for Data Change Event. This
allows a command sequence or a method to be run when the user clicks a
geometry object, domain, face, edge, or point. The figure below shows a dialog

142 |

box for a global event that opens a form panel as a dialog box when the user
changes the contents of the Explicit selection named Outlet.

X

LA
[4¥]
=
3]
@]
[¥5]

m
m

MName: event2
+ Source for Data Change Event @ "5

[= Declarations
& Model (root)
4 im Component 1 (compl)
4 = Definitions
& Inlet
& Outlet

[8

E‘ Use as Source =g Edit Node
Selected source:

i Outlet

3
i

+ (Choose Commands to Run =

4 |l Forms

D main

D panel
u GUI Cormmands
= Declarations
i Methods
[fifi Libraries
& Model (root)

=# Edit Node Run Plot Set Value I:l Show
[=] Show as Dialeg Import File Enable Disable

"
Command lcon Arguments

Show panel as dialog

=3 iE

CHoose COMMANDS TO RUN

In the Settings window for an Event, the section Choose Commands to Run is similar
to that of a button and allows you to define a sequence of commands. For more
information, see “Button” on page 63.

| 143

Form and Form Object Events

Form and form object events are similar to global events, but are defined for forms
or individual form objects. These events have no associated list of commands, but
refer directly to one global, form, or local method.

EVENTS TRIGGERED BY DATA CHANGE

For certain types of form objects, you can specify a method to run when data is
changed. This setting is available in the Events section of the Settings window of a
form object, as shown in the figure below.

¥ Events

On data change: | method1 - 3 +

The drop-down list On data change contains None (the default), any available
methods under the Methods node of the application tree or under the Methods
node of the corresponding form, and a local method (optional).

The form objects supporting this type of event are:

* Input Field

¢ Check Box

¢ Combo Box

¢ Graphics

* File Import

¢ Array Input

* Radio Button

¢ Text

 List Box

¢ Table

* Slider

Buttons have associated events triggered by a click. Menu, ribbon, and toolbar
items have associated events triggered by selecting them. The corresponding

action is a command sequence defined in the Settings window of a button object
or item. For more information on command sequences, see “Button” on page 63.

Selecting Multiple Form Objects

You can specify an On data change event for multiple form objects simultaneously
by using Ctrl+click and then selecting the method to run. In this way, you can, for
example, quickly specify that a data change event initiated by any of the selected

144 |

form objects should run a method that informs the user that plots and outputs are
invalid. This functionality is not available for all combinations of form objects.

EVENTS TRIGGERED BY LOADING OR CLOSING A FORM

Forms can run methods when they are loaded (On load) or closed (On close).

¥ Events
On load: method1 -| 3 4+
Onclose: | method2 -| 3 4+

This type of event is available in the Settings window of a form and is typically used
when a form is shown as a dialog box, or to activate forms used as panes in a form
collection. Note that a method that is used for initializing graphics, such as Zoom
Extents, nceds to be run as an On lead event for a form and not as a global On
startup cvent.

Using Local Methods

Events can call local methods that are not displayed in the application tree. For
more information on local methods, see “Local Methods” on page 193.

| 145

Declarations

The Declarations node in the application tree is used to declare global variables and
objects, which are used in addition to the global parameters and variables already
defined in the model. Variables defined under the Declarations node are used in
form objects and methods. In form objects, they store values to be used by other
form objects or methods. Variables that are not passed between form objects and
methods, but that are internal to methods, do not need to be declared in the
Declarations node. In methods, variables defined under the Declarations node have
global scope and can be used directly with their name. For information on how to
access global parameters defined in the model tree, see “Accessing a Global
Parameter” on page 202.

You can create a Declarations node that is local to a form. Such Declarations for a
form can only be used in that particular form, including form objects and methods
that are local to the form.

These are the different types of global Declarations:
¢ Scalar

e Array ID

¢ Array 2D

¢ Choice List

* File

¢ Unit Set

 Shortcuts

¢ Graphics Data

Form Declarations can only be of the types:
¢ Scalar

e Array ID

¢ Array 2D

¢ Choice List

146 |

Right-click a Declarations node to access the declaration types or use the ribbon.

® Forms
Events
= Declarations
abe String Scalar 3
= Boolean Array 1D 3
123 Integer Array 2D 3
=5 Double <> Choice List

3 File

Unit Set

=] Graphics Data

= MNode Group

E Hep Fi

Note that Shortcuts are not created from this menu but by clicking the Create
Shortcut button next to the Name in the Settings window of a form object or by
using Ctrl+K for a selected form object.

To create Declarations that are local to a form, right-click the corresponding form

and select the variable type, as shown below.

E Main Window
4 | Forms

Dform‘l
[formz Edit

[form3 New Method

Events

4 = Declaration Scalar b | =°c String
123 |nteger Array 1D 3 Boolean
1.23
w22 Array 11 Array 2D ¥ | 123 Integer
122 Double
255 Array 10 <& Choice List #* Double

b 18 Methods [¥] Preview Form

b [Libraries

Copy as Code to Clipboard L4

Variables that are local to a form are organized under a Declarations node that is a
child node to the form, as shown below.

4 i Forms

- D form1

4 = Declarations
122 Double

D form2
D form3

Events
The first three types of declarations, Scalar, Array 1D, and Array 2D, can be of the
following data types:
¢ String
¢ Boolean

| 147

* Integer
* Double

In addition to right-clicking the Declarations node, you can click the Create New
Declaration and Use It as Source button in the Source section of many types of form
objects.

Settings X
nput Field
Mame: pronglengthinput =h
Editable

Tooltip: 10-2500 mm

Source 8+ =

J Create New Declaration and Use It as Source |

| E—oecmramoTs

& Model (root)

This will open a dialog box that lets you quickly declare scalar variables.

3 Create and Use Declaration *
MName: war
Data type: String -
Initial value:

oK Cancel

USING DECLARATIONS AS INPUT ARGUMENTS TO COMMANDS

Certain commands used in the commands sequence of, for example, a button can
take an input argument. For more information, see “Button” on page 63.

148 |

The figure below shows a command sequence that includes a Plot Temperature
command with an input argument formi/graphics.

" Command lcon Arguments 3 Edit Argument X
Compute Study 1 =
form/sraphics + g Foms
4 D form1
graphics1

Edit Argument

E‘ Use as Argument
Selected argument:
[graphicsl
OK Cancel

You can use declarations as input arguments to commands.

To use a scalar variable, 1D array, or 2D array as input arguments, you use the
corresponding variable name. To access a single element of an array, or a row or
column of a 2D array, use indexes. For example, to access the first component in
a 1D array my_variable, you use my_variable(1). A 2D array element can be
retrieved as a scalar by using two indexes, for example, my_matrix(2,3). The
indexes can themselves be other declared variables, for example, my_variable(n).

For commands requiring a graphics object as an input argument, only string type
declarations are allowed with appropriate indexes, if necessary. If there is a
graphics object named graphics1 and also a string declaration named graphics1,
then the contents of the string declaration will be used. An exception is if single
quotes are used, such as 'graphics1', in which case the graphics object
graphics1 is used. This rule is also applied to other combinations of commands
and input arguments.

THE NAME OF A VARIABLE

The Name of a variable is a text string without spaces. The string can contain
letters, numbers, and underscores. The reserved names root and parent are not
allowed and Java® programming language keywords cannot be used.

| 149

Scalar

Scalar declarations are used to define variables to be used as strings, Booleans,
integers, or doubles.

STRING

A scalar string variable is similar to a global parameter or variable in a model, but
there is a difference. A parameter or variable in a model has the restriction that its
value has to be a valid model expression, while a scalar string variable has no such
restrictions. You can use a string variable to represent a double, integer, or
Boolean by using conversion functions in a method. For more information, see
“Conversion Methods” on page 344. You can also use a string variable as a source
in many form objects, such as input fields, combo boxes, card stacks, and list
boxes.

The figure below shows the Settings window for the string variables
graphics_pane, email to, and solution_state.

Settings

String

List of Variables

] L. _—
MName Initial value Description
solutionState nosclution Solution statu:
meshSize normal The current m

String declarations, as well as other declarations, can be loaded and saved from or
to a file by using the Load from File and Save to File buttons below the List of
Variables table.

The Load from File and Save to File buttons are used to load and save from /to the
following file formats:

o Text File (.txt)

150 |

« Microsoft® Excel Workbook (.x1sx)
- Requires LiveLink™ for Excel®

* CSV File (.csv)
+ Data File (.dat)

The drop-down list where these file formats can be selected is shown in the figure
below.

Text File (*.txt) ~

Microsoft Excel Workbook (*.dsx)
C5V File (*.csv)

Data File (*.dat)

All Files (*%)

To illustrate the use of declared strings, the figure below shows the Settings
window of a card stack object where the string variable viewCard is used as the
source (Active Card Selector).

Settings X
MName: cardstack] E
v Active Card Selector @+ 5

4 = Declarations
4 =oc String

18 viewCard
123 viewText
123 viewText2DRad
123 solution_state
123 geom_state
123 report_format
123 target_state
123 inXpolRatio
123 gutXpolRatio

Use as Source Edit Mode
Selected source:

123 String=viewCard

For more information on using card stacks, see “Card Stack” on page 265.

| 151

BOOLEAN

You can use a Boolean variable as a source in check boxes, other form objects, and
methods. A Boolean variable can have two states: true or false. The default value
is false. The figure below shows the declaration of two Boolean variables.

Settings
Boolean

List of Variables

"
MName Initial value Description
wvalidinput true Boolean
geominitialization |false Boolean
H#

Example Code

In the example code below, the Boolean variable bvar has its value controlled by
a check box. If bvar is true, then Plot Group 4 (pg4) is plotted in graphicsi.
Otherwise, Plot Group 1 (pgl) is plotted.
if (bvar) {
useGraphics(model.result("pg4"),"graphicsi1");

} else {
useGraphics(model.result("pgl1"),"graphicsi1");

}

INTEGER AND DOUBLE

Integer and double variables are similar to strings, with the additional requirement
that the value is an integer or double, respectively.

Settings Settings
Integer Double

List of Variables List of Variables
" "

MName Initial value Description MName Initial value Description
n_of_digits 3 MNumber of significant digits element_size_low 0.5 Value for coarse mesh
n_steps [1] Number of iterations element_size_medium 038 Value for normal mesh

element_size_high 0.250.0 Value for fine mesh
Hi# H#

152 |

Array ID

The Array ID node declares one or more named arrays of strings, Booleans,
integers, or doubles that you can access from form objects and methods. The
number of elements in a 1D array is not restricted in any way, and you can, for
example, use a 1D array to store a column in a table with a variable number of
rows. The Settings window contains a single table, where you specify one variable
array per row. In the figure below, two double arrays are declared, xcoords and
ycoords.

Settings

Array 10 Double

List of Variables

" MName Initial values MNew element val Description

xcoords 10.2,-0.2,03,0... 00 x-coordinates

ycoords 10,0,1.000,-1.... 0.0 y-coordinates
H#

The values in the column New element value are assigned to new elements of the
array when a row is added to a table form object. Arrays for strings, Booleans, and
integers are similar in function to arrays of doubles.

INITIAL VALUES

The Initial values can be a 1D array of arbitrary length. To edit the initial values,
click the Edit Initial Values button below the List of Variables. This opens a dialog
box where the value of each component can be entered. See the figure below for
an example of'a 1D array of doubles.

3 Edit Initial Values *

Enter 1D array of strings:

0.2
-0.2
0.3
0.1
0.96
-0.01

oK Cancel

| 153

ARRAY SYNTAX

An array definition must start and end with curly braces ({ and }) and each
element must be separated with a comma. When you need special characters inside
an array element (spaces and commas, for example), surround the element with
single quotes ('). The table below shows a few examples of 1D arrays:

ARRAY SYNTAX

RESULTING ARRAY

{1, 2, 3}
{}
{'one, two', 'three by four'}

A 3-element array with the elements |, 2,
and 3

An empty array

A 2-element array with elements containing
special characters

{{1, 2, 3},{'one, two', 'three by A 2-element array containing a 3-element
four'}} array and a 2-element array
Array 2D

The Array 2D node declares one or more 2D arrays that you can access using form
objects and methods. In the figure below, the 2D double array xycoords is

declared.

List of Variables

"
MName

MNumber of columns Initial values
xycoords 2 | {{03,02}{-0204.. 00
2 -
H#

INITIAL VALUES

MNew element value

Description

xy-coordinates

The default (or initial) value can be a 2D array of arbitrary size. To edit the initial
values, click the Edit Initial Values button below the List of Variables. This opens a

154 |

dialog box where the value of each component can be entered. See the figure
below for an example of a 2D array of doubles.

3 Edit Initial Values *
Enter 2D array of strings:
0.3 0.2
-0.2 0.4
0.1 0.01
0.4 -0.1
0.004 0.3
-0.55 0.314

+

oK Cancel

ARRAY SYNTAX

The table below shows a few examples of 2D arrays:

ARRAY SYNTAX RESULTING ARRAY

{{}} An empty 3D array
{{'5",'6"},{'7",'8"}} A 2-by-2 matrix of strings
{{1, 2, 3}, {4, 5, 6}} A 2-by-3 matrix of doubles

For 2D arrays, rows correspond to the first index so that {{1,2,3},{4,5,6}} is
equivalent to the matrix:

123
456

Assuming that the above 2-by-3 matrix is stored in the 2D array variable arr, then
the element arr[1][0] equals 4.

To interactively define the Initial values of a 2D array, select the Undefined option
for the Number of columns. The Edit Initial Values button opens a dialog box where

| 155

the number of rows and columns can be interactively changed, as shown in the

figure below.

L33
1

0.0
0.0
0.0
0.0
0.0

3 Edit Initial Values

2

0.0
0.0
0.0
0.0
0.0

=ty

Enter 2D array of doubles:

0.0
0.0
0.0
0.0
0.0

=

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

oK Cancel

Choice List

The Choice List node contains lists that can be used by combo boxes, radio
buttons, or list boxes. The Settings window for a choice list contains a Label, a
Name, and a table with a Value column and a Display name column. Enter the
property value (Value) in the first column and the corresponding text to display to
the user (for example, in a combo box list) in the second column (Display name).

156 |

The Value is always interpreted as a string. In the example below, mat1 will become
the string "mat1" when returned from the combo box.

ettings

[

Label: Aluminum Alloys

MName: choicelist]

List Content

"
Value Display name
matl Aluminum 3003
mat2 Aluminum 6063
mat3 Aluminum, generic
tishvmd

As an alternative to creating a choice list by right-clicking the Declarations node,
you can click the Add New Choice List button in the Settings window for form
objects that use such a list, as shown in the figure below.

Choice List @ +
Available: Selected: Add New Choice List
<> Simulation Type List {simulal <2 Material {materialList}

<> Choice List 1 {choicelist1}

[] Allow other values

In addition you can click the adjacent Add New Form Choice List to create a choice
list local to the form.

ACTIVATION CONDITION

You can right-click the Choice List node to add an Activation Condition subnode.
Use an activation condition to switch between two or more choice lists contingent
on the value of a variable. For an example of using choice lists with activation
conditions, see “Using a Combo Box to Change Material” on page 237.

| 157

File

File declarations are primarily used for file import in method code when using the
built-in method importFile. For more information on the method importFile
and other methods for file handling, see “File Methods” on page 332. However,
an entry under the File declaration node can also be used by a File Import object.
The figure below shows the Settings window of a file declaration.

Settings MRS
Label: File1
MName: filel

File Location
Target directory: | Temporary -
Access using: upload:///filel

The file chosen by the user can be referenced in a form object or method using
the syntax upload:///filel, upload:///file2, etc. The file name handle
(file1, file2, etc.) can then be used to reference an actual file name picked by
the user at run time.

For more information on file declarations and file handling, see “Appendix C —
File Handling and File Scheme Syntax” on page 307.

158 |

Unit Set

The Unit Set node contains lists that can be used by combo boxes, radio buttons,
or list boxes for the purpose of changing units. The Settings window for a unit set
contains two sections: Unit Groups and Unit Lists.

Label: Unit System

MName: unitset]

Unit Groups

" Value Display name

sl sl

imperial Imperial
Initial value: | Sl -
Unit Lists

" Name sl Imperial
length cm in

potential my my

Each row in the Unit Groups table is a unit group that represents a collection of
units with a particular meaning in the context of the application user interface.
Each column represents a group of units labeled by a Value and a Display name.

Each row in the Unit Lists table is a unit list with columns containing units with
the same dimension, for example, mm, cm, dm, m, and km. The headings of the
Unit Lists table are Name and the Display names are defined in the Unit Groups
section. A unit list specifies the possible units that a form object that references the
Unit Set can switch between when running the application.

The figure above demonstrates the use of a Unit Set for an application that allows
for switching between metric and imperial units. In this example, two unit groups
are defined: SI and Imperial. The Label of the Unit Set has been changed to Unit
System.

The Value column contains string values that represent the current choice of unit
group. These string values can be manipulated from methods. The Display name

| 159

column is the string displayed in the user interface. The Initial value list contains
the default unit group (SI in the example above).

In the example above, the Unit Lists table has three columns: Name, SI, and
Imperial. The Sl and Imperial columns are created dynamically based on the groups
in the Unit Groups section. Each row in the table corresponds to a physical quantity
such as, in this example, length and potential. Each column in the table
corresponds to the allowed units of 1length and units of potential, respectively.

The figure below shows an example application where a combo box form object
is used to choose between the SI and Imperial unit groups.

Length: 9 cm Length: 3543 in
Width: 5 cm Width: 1.969 in
Applied voltage: 20 my Applied voltage: 20 my
Compute Compute
Unit system: |ﬁ Unit system: Imperial -
Imperial

160 |

The figure below shows the Settings window of a combo box using the Unit Set of
the above example as the Source.

- X
MName: combobox! E
v Source & E
4 = Declarations
Unit Set 1 {unitset1}
E‘ Use as Source =g Edit Node
Selected source:
[™] Unit Set 1 {unitset1}
Initial value: | From data source -
+ Choice List ® +

Available: Selected:
[M] Unit Set 1 {unitset1}

[] Allow other values

In this way, a Unit Set can be used instead of a Choice List to create a combo box
for unit selection. Instead of a combo box, you can use a list box or a radio button
object in a similar way.

| 161

The two figures below show the corresponding Settings windows for the two input

fields for Length and Applied voltage.

Tax Settings
Input Field
Mame inputfield] E Mame inputfield3 E
Editable Editable
Tooltip: Tooltip:
¥ Source @+ 5 ~ Source @+ B
= Declarations = Declarations
4 < Model (root) 4 <® Model [root)
4 '33' Global Definitions 4 ':-f,' Global Definitions
4 Fi Parameters 4 P Parameters
12 Length (1) 123 Length (L)
123 Bolt radius (rad_1) 123 Bolt radius (rad_1)
123 Thickness (thb) 123 Thickness (thb)
123 Width (whbh) 123 Width (whhb)
123 Maximum element size (mh) 123 Maximum element size (mh)
123 Heat transfer coefficient (htc) 123 Heat transfer coefficient (htc)
123 Applied voltage (Vtot) EEl Applied voltage (Vtot)
Use as Sourc Edit Node Use as Source Edit Node
Selected source: Selected source:
123 Parameters=Length (L) 123 Parameters=Applied voltage (Vtot)
Initial value: | From data source - Initial value: | From data source -
Walue: 9 Value: 20
* Data Validation ¥ Data Validation
Unit dimension check: Append unit from unit set - + Unit dimension check: Append unit from unit set ~| 4+
Unit set: Unit Systemn {unitset]} ~| |34 Unit set: Unit Systern {unitset} | |
Unit list: length (cm,in) - Unit list: potential (mV,mV) -
MNumerical validation MNumerical validation
Filter: Double - Filter: Double -
Minimum: 5 Minimum: 0
Maximurm: 15 Maximum: 100
Error message: Invalid input Error message: Invalid input

The Unit dimension check is sct to Append unit from unit set. The Unit set is sct to
Unit System {unitsetl} (the user-defined label for the Unit Set declaration used in
this example). The Unit list is set to length and potential, respectively. When using
Append unit from unit set, the Numerical validation section (under Data Validation)
refers to the Initial value of a Unit Set; in this case, em and mV, respectively. The
Minimum and Maximum values are scaled automatically when the application is run
and the unit is changed by the user of the application. For more information on
the settings for an input field object, see “Input Field” on page 93.

162 |

The figures below illustrate the use of two Unit Set declarations for separately
setting the unit for length and potential, respectively.

- Declarations

Length: 9 cm [M] Length Units {unitset1}
. 5 [m] Potential Units {unitset2}
With: em T Methods
Applied voltage: 20 my b [Libraries
Compute
Length unit: cm -
Potential unit: | mV -

The figures below show the corresponding Settings window for the Unit Set
declarations.

X vax
Label: Length Units Label: Potential Units
MName: unitset] Mame: unitset2
Unit Groups Unit Groups
" Value Display name " Value Display name
cm cm W W
m m my my
inch inch
Initial value: cm = Initial value: my -
¥ Unit Lists ¥ Unit Lists
" "
MName cm m inch MName W my
length cm m in potential W my

Note that, in this example, by using three Unit Set declarations, you can have
individual length unit settings for the Length and Width input fields. The figure

| 163

below shows such an example, where three combo boxes have been used to
replace the unit labels and each combo box uses a separate Unit Set declaration as
its source.

Length: 9 an -

Width: 1.9685 inch

Applied voltage: 20 my -
Compute

When more flexibility is required, you can combine the use of a Choice List and a
Unit Set. For example, for a combo box, you can use the Unit Set as the Selected
source (string) and select a Choice List that is not a Unit Set.

Shortcuts

Form objects and other user interface components are referenced in methods by
using a certain syntax. For example, using the default naming scheme
form3/button5 refers to a button with the name button5 in form3 and
form2/graphics3 refers to a graphics object with the name graphics3 in form2.
You can also change the default names of forms and form objects. For example, if
form1 is your main form, then you can change its name to main.

To simplify referencing form objects as well as menu, ribbon, and toolbar items by
name, you can create shortcuts with a custom name. In the Settings window of an
object or item, click the button to the right of the Name field and type a name of
your choice.

- R X 3 Create Shortcut *

Name: reportButton

Name: reportButton = [[] Update methods

Text: Report ’m OK Cancel
lcon: ¥ results_report_32.png - |4+| B

Size: Large =

Style: Flat =

Tooltip: Create a simulation report.

To create or edit a shortcut, you can also use the keyboard shortcut Ctrl+K.

164 |

All shortcuts that you create are made available in a Shortcuts node under
Declarations in the application tree.

Events

4 = Declarations
= Boolean
123 Integer
25 Double
abe String
<> Material {materiallist}
<> Simulation Type List {simulationTypelis
=] Shortcuts

I [y Methods

b [Libraries

In the Settings window for Shortcuts below, two shortcuts, plot_temp and
temp_vis, have been created for a button and a graphics object, respectively.

Setting

Shortcuts

[

List of Shortcuts

" MName Target

targetFrequencyText rmainComputer/targetFrequencyTe
targetFrequencylnput rainComputer/targetFrequencyln
frequencyToleranceText rainComputer/frequencyToleranc
frequencyTolerancelnput rainComputer/frequencyToleranc

The shortcuts can be referenced in other form objects or in code in the Method
Editor. The example below shows a shortcut, temp_vis, used as an input
argument to a temperature plot.

L
Command lcon | Arguments
Plot Temperature (ht) templis

M-

Shortcuts are automatically updated when objects are renamed, moved, copied,
and duplicated. They are available in methods as read-only Java® variables, just like
string, int, double, and Boolean declarations.

Using shortcuts is recommended because it avoids the need to adjust Method
Editor code when the structure of the application user interface changes.

| 165

Shortcuts are also available in the Model Builder, for use with the Application
Builder. In the Settings window of a model tree node, click the button to the right
of the Label field and type a name of your choice.

Settings ~ 4| Graphics
Black Q Q A~ "
[Build Selected ~ [E8 Build All Objects =}
Label: Elock1 =

. Create Shortcut (Ctrl+K)
v Object Type Used in Application Builder
Type: | Solid =

The custom name of a shortcut becomes available as a global variable in methods
and will be used, for example, when recording code or new methods.

Graphics Data

A Graphics Data declaration node is used to pick data at a specific coordinate from
a graphics object based on mouse clicks by the user. The figure below shows the

corresponding Settings window.

Settinas - L X

Label: Graphics Data 1 =

MName: graphicsdatal

¥ Initial Values

Coordinate: 0,00

Results evaluation: 0|

¥ Initial Values for 3D Geometry Source

Geometric entity level: | Domain -
Domain settings

Line entry method: Point and surface norm: ~

Depth along line: 0

Point being modified: First point -

The Initial Values section contains default values for the extracted data properties
Coordinate and Results evaluation. The section Initial Values for 3D Geometry Source
contains settings for the selection methods available when the Source for Initial
Graphics Content of a graphics object is set to a geometry node.

166 |

The different properties of a graphics data declaration are available from the Editor
Tools window as shown in the figure below.

Editor Tools TAX
=y Edit Node

D Main Window
I U Forms
3 u GUI Cormmands
4 = Declarations
4[] Graphics Data 1{graphicsdatal}
22 Coordinate (Coord)
8.5 Results Evaluation (Eval)
anc Geometric Entity Level (Edim)
avc Line Entry Method (Method)
5.5 Depth Along Line (Depth)
=5c Point Being Modified (Twopoint)
b B2 Array 1D Double
[» 123 Integer
[» =0c String
I By Methods
b [Libraries
[» < Model (root)

| 167

To use a Graphics Data declaration node for data picking, select the Data picking
check box in the Settings window of a graphics object and select the Graphics Data
node as the Target for Data Picking, as shown in the figure below.

Settings
Graphics

MName: graphicsl =

Zoom to extents on first plot
Data picking

¥ Source for Initial Graphics Content

I = Declarations

@ Model (root)

4 Il Component1 (compl)
Y2 Geometry 1
£ Mesh 1

h

Use as Source \ Clear Source Edit Mode
Selected source:

Y Geometry 1
+ Target for Data Picking & E

4 = Declarations
Graphics Data 1 {graphicsdatal }

Use as Target Edit Node
Selected target:
[=] Graphics Data 1 {graphicsdatal}

GRAPHICS DATA FROM RESULTS

When the Source for Initial Graphics Content of a graphics object is set to a plot

group node, then the Results Evaluation value corresponds to the field value at the
position determined by the mouse pointer. The Coordinate value corresponds to
the coordinate at that position. Note that in the Model Builder, this corresponds

to the data displayed in the Evaluation 2D or Evaluation 3D tables.

168 |

The figure below shows a data display object where the Coordinate property is used
as Source.

Cattinmc - X

Mame: datadisplayl =

LaTeX markup
Tooltip:

v Source + "5

4 = Declarations
4[] Graphics Data 1 {graphicsdatal }
153 Coordinate (coord)
123 Results evaluation (eval)
123 Geometric entity level (edim)
123 Line entry method (method)
123 Depth along line (depth)
123 Point being modified (twopoint)
122 Array 1D Double
123 |nteger
awc String

E‘ Use as Source =g Edit Node
Selected source:

123 Graphics Data 1 {graphicsdatal }=Coordinate (coord)

You can also use the Coordinate property as the Source for an array input object.
The Results Evaluation property can be used as the Source for several form objects
including data display and input field objects.

GRAPHICS DATA FROM GEOMETRY

The settings Geometry Entity Level, Line Entry Method, Depth Along Line, and Point
Being Modified only apply when the Source for Initial Graphics Content of a graphics
object is set to a 3D geometry node. These settings provide the same point
selection methods as a Domain Point Probe, when Geometry Entity Level is set to
Domain; and Boundary Point Probe, when Geometry Entity Level is sct to Boundary.
The settings Line Entry Method, Depth Along Line, and Point Being Modified arc only
applicable when Geometry Entity Level is sct to Domain.

| 169

The Method Editor

Use the Method Editor to write code for actions not included among the standard
run commands of the model tree nodes in the Model Builder. The methods may,
for example, execute loops, process inputs and outputs, and send messages and
alerts to the user of the application.

The Java® programming language is used to write COMSOL methods, which
means that all]ava® syntax and Java® libraries can be used. In addition to the
Java® libraries, the Application Builder has its own built-in library for building
applications and modifying the model object. The model object is the data
structure that stores the state of the underlying COMSOL Multiphysics model
that is embedded in the application. More information about these built-in
methods can be found in “Appendix E — Built-In Method Library” on page 331
and in the Application Programming Guide.

The contents of the application tree in the Application Builder are accessed
through the application object, which is an important part of the model object.
You can record and write code using the Method Editor that directly accesses and
changes user interface aspects of the running application, such as button texts,
icons, colors, and fonts.

There are global methods, form methods, and local methods. Global methods are
displayed in the application tree and are accessible from all methods and form
objects. Form methods are displayed in the application tree as child nodes to the
form it belongs to. A local method is associated with a form object or event and
can be opened from the corresponding Settings window. For more information
about local methods, see “Local Methods” on page 193.

A number of tools and resources are available to help you create code for
methods. These are covered in the following sections and will make you
more productive by allowing you to copy-paste or autogenerate blocks of
code, for example.

Converting a Command Sequence to a Method

In the Form Editor, select Convert to Method from the menu button displayed in
the Settings window below an existing command sequence. The command
sequence is automatically replaced by an equivalent method. In the same way you
can select Convert to Form Method and Convert to Local Method.

170 |

Consider a case where you have created a compute button and you want to be
alerted by a sound when the computation has finished. Now, we will see how this
could be done using the Method Editor.

You will also learn how to do this without using the Method Editor later in this
section. The figure below shows the Settings window of the Compute button.

Settings

Button

MName: button1 =
Text: Compute

lcon: compute_32.png -+ =
Style: Large -
Tooltip: Plot Termperature

Keyboard shortcut: CTRL+T

mé

» (Choose Commands to Run

I U Forms
3 u GUI Cormmands
b [Libraries
4 & Model (root)

I (3 Global Definitions

[T Component 1 (compl)

4 ~db Study 1

E Stationary
b [Pre Solver Configurations

4 ([Results

I &2 Derived Values

Edit Mode Run Plot Set Value Show

Show as Dialog Import File Enable Disable
" Command lcon Arguments
Compute Study 1 =
Plot Temperature (ht) form/graphics1
Plot Current Density form/graphics2

| 171

Click the Convert to Method button below the command sequence.

' Command lcon Arguments
Compute Study 1 =
Plot Terperature (...
Plot Current Density

form1/graphicsl

form1/graphics2

LR =]
The command sequence in this example is replaced by a method, methods3.

Click the Go to Method button. The Method Editor opens with the tab for
method3 active.

' Command lcon Arguments
method3 B
1t 1 = b3 +

Go to Method

In the Method Editor, add a call to the built-in method playSound to play the
sound file success.wav, available in the COMSOL sound library, by using the
syntax shown in the figure below.

@ Preview method3 X

model.study("stdl”).run();

useGrophics(model.result("pg2”), "forml

useGrophics{model.result("pgd”), "forml/
I ploySound("success.wav");

raphics1l™);
raphics2");

mom

The newly added line is indicated by the green bar shown to the left.

172 |

Note that in the example above, you do not have to use the Method Editor. In
the command sequence, select the file success.wav under Libraries > Sounds and
click the Run command button under the tree, as shown in the figure below.

X

Marne: button =
Text: Compute

lcon: compute_32.png -+ =
Style: Large bt
Tooltip:

Keyboard shortcut:

+ Choose Commands to Run i

I @) Forms

[u GUI Cormmands

4 m]] Libraries

4 =) Sounds

123 success.wav
123 fail.wav
123 neutral.wav

I <% Model (root)

=# Edit Node P Run Plot Set Value Show

Show as Dialog Import File Enable Disable

L3
Command lcon Arguments

Compute Study 1
Plot Temperature (ht)
Plot Current Density
Play 'success.wav'

form1/graphicsl
form1/graphics2

v [&l|@

ba -

However, there are many built-in methods that do not have corresponding
command sequence nodes. For more information, see “Appendix E — Built-In
Method Library” on page 331.

| 173

FORM OBJECT WITH ASSOCIATED METHOD

A form object that has an associated method is indicated with a special icon in the
Form Editor, as shown in the figure below. In this example, both the check box
called Find prong length and the Compute button have associated methods.

Find prong length: I%‘

=

Target frequency: 440 Hz te

_ =

Compute

!

Performing Ctrl+Alt+Click on the form object opens the method in the Method
Editor. If there is no method associated with the form object, a new local method
associated with the form object will be created and opened in the Method Editor.

If the associated method has a compile error, then this is shown with a different
icon, as shown in the figure below.

Compute

174 |

Language Elements Window

The Language Elements window in the Method Editor shows a list of some
language constructs. Double-click or right-click one of the items in the list to
insert template code into the selected method.

Language Elements = L1

Type filter text

4 |language constructs

[> Array operations (for double, int, boolean, string)

4 Block statements
Do-while
For-M
For-each
If
If-else

[E, Insert Template
= p

Instanceof expression
Multiline comment
Switch

Try-catch

While

With

[Conversions

[» Server file handling utilities
[» External and utility libraries
[* Userinterface

[» Utility functions

[» Variables

See also “Language Element Examples” on page 199.

| 175

Editor Tools in the Method Editor

To display the Editor Tools window, click the corresponding button in the Main
group in the Method tab.

" Data Access
Eﬁ Record Method

[EA Compiler

Main

When using the Editor Tools window in the Method Editor, you can right-click a
node in the editor tree to generate code associated with that node. Depending on
the node, up to eight different options are available:

* Get

o Set

e Set All

e Create

* Run

* Enable

* Disable

» Edit Node

Selecting one of the first seven options will add the corresponding code to the

currently selected method. The Edit Node option brings you to the Settings
window for the model tree node.

176 |

The figure below shows an example of a node with six options.

Editor Tools TAX
= Edit Node =

% Themes

D Main Window
b B Forms
4 @ GUI Commands
- File Commands
Save Application
[Save Application As
Save Application on Server
[Save Application on Server As
Open File
L SaveFile As
Exit Application
- [‘u Graphics Commands
Zoom Extents
‘[Zoom to Selection
[2 Reset Current View
= SceneLight
@ Environment Reflections
[8] Show Skybox
[#2 Rotate Environment

[Transparency

B0 Orthographic Projection
5 Print

Select All

Clear Selection

% Show Selection Colors
£ Show Material Color and Texture
4 & Model Commands
\ E Clear All Solutions
\ E Clear All Meshes
I [y Methods
b [Libraries
4 & Model (root)
I () Global Definitions
I @ Component 1 (compl)
4 o Study 1
E Stationar
3 |'|'|-|. Solver Co
b {8 Results

Get

Set All

(o8
rl

0@ s

Create
Get v Set [Set
(®) Enable () Disable

Enable
Disable

Edit Mode

o
\II

When a node is selected, the toolbar below the editor tree shows the available
options for generating code.

The Editor Tools window is also an important tool when working with the Form
Editor. For more information, see “Editor Tools in the Form Editor” on page 61.

| 177

KEYBOARD SHORTCUTS
Consider a method with a line of code that refers to a model object in the
following way:
model.result("pg3").feature("surf1").create("hght1", "Height");
If you position the mouse pointer in "surf1" and press F11 on the keyboard,

right-click and select Go to Node, or click Go to Node in the ribbon, then the
corresponding Surface plot note is highlighted in the Editor Tools window.

Click Edit Node to open its Settings window. For more information on keyboard
shortcuts, see “Appendix D — Keyboard Shortcuts” on page 328.

Data Access in the Method Editor

To access individual properties of a model tree node, click the Data Access button
in the Application section of the Developer tab in the Model Builder ribbon.

A " Data Access

» Test Application
Application
Builder

Application

Alternatively, for certain form objects, you can click the Data Access button in the
header of the Source section of the Settings window. See also “Data Access in the
Form Editor” on page 104.

Data Access needs to be enabled this way because a model typically contains
hundreds or even thousands of properties that could be accessed, and the list
would be too long to be practical.

When you click a model tree node, such as the Heat Flux node in the figure below,
check boxes appear next to the individual properties. This example is based on the
busbar tutorial model described in Introduction to COMSOL Multiphysics.

178 |

In the figure below, the check boxes for Heat transfer coefficient and External
temperature are sclected:

[+_ Electric Currents (ec) Ll

4 |[@ Heat Transfer in Solids (ht)
i Solid 1

T Initial Values 1

) General inward heat flux
® Convective heat flux

S Thermal Insulation 1 go=h-(Tee-T)

mw Heat Flux 1

I -ﬁ} Multiphysics Heat transfer coefficient:

b A Mesh 1 User defined -
[~do Study 1

b {8 Results

Heat transfer coefficient:
h | htc W/ (mK)
External temperature:
Tex User defined =

/] 293.15[K] K
) Heat rate

P
do =TU
If you switch to the Editor Tools window, you will see additional nodes appear
under the Heat Flux node. Right-click and use Get or Set to generate code in an
active method window, as shown in the figure below.

Editor Tools TAX
=y Edit Node =

D Main Window

I U Forms

[u GUI Cormmands

b [Libraries

4 & Model (root)

() Global Definitions

i@ Component 1 {compl)
= Definitions

[
b YA Geometry 1
I 5z& Materials
[+_ Electric Currents (ec)
4 |[E Heat Transfer in Solids (ht)
= Solid1
& Initial Values 1
m Thermal Insulation 1
4 my Heat Flux 1
=vc External Temperature (Text)
anc Heat Transfer Coefficient (H)

I .y Multiphysics =l Input

b A Mesh1 [Output
[+~ Study 1 _ :
b {8 Results ¢ Edit Node

In the example above, Get and Set for the Heat transfer coefficient and the External
temperature properties will generate the following code:

| 179

model.physics("ht").feature("hf1").getString("h");
model.physics("ht").feature("hf1").getString("Text");

model.physics("ht").feature("hf1").set("h", "htc");
model.physics("ht").feature("hf1").set("Text", "293.15[K]");

Recording Code

Click the Record Code button in the Code section of the Method Editor ribbon to
record a sequence of operations that you perform using the model tree, as shown
in the figure below.

Language Elements = a=
[Languag [ABC] Ej ® ;§+[Ty

Ea'gl\dodel Expressions
Check Goto Record Use Create Local
Syntax Mode Code Shortcut Variable

Certain operations in the application tree can also be recorded, including methods
used to modify the user interface while the application is running such as changing
the color of a text label.

To record a new method, click the Record Method button in the Main section of
the Form Editor or Method Editor ribbon.
" Data Access
Eﬁ Record Method EditorTooIs
Mew X
Method - (G4 Compiler

Main

You can also click the Record Method button in the Developer tab of the Model
Builder ribbon.

180 |

While recording code, the COMSOL Desktop windows are surrounded by a red

frame:
R - o x
.
9 o\ o
B 2| e g g g e
TR e Skt We SemsRE aR BcOEE TS c-an
a
Py o
manne
LR = - C W m usbatmph - COMSOU Mutiphysier - o x
a
=] =, | Stop Recerding T5r] WRemove AN » TestApplication
B Er 1] Model Expressions u‘;'k -s;:l [rTr— o Disable 41 o
L Syrem Node ©y Creste Locsl Varistie Tog () Testin Web Browser - V6
Code Debug Brestpoinn: Tt
Application Builder = »| Elemiew [mahodt x Settings =1x

%
jm|
B

.7y
B]

I TnP

4 [=] buskar.mph (rcé)
1 Inputs)

Themes
Masin Window £2
Feurens
Events
Declarations
Methods

® method|

Libsasies L0

mocel. sol{

).fenture("s1
Feature{ s1°
~Feature(":1"
). fenture("s1
Feature{ s1°
-Feature("s1

 “Hultigrid®)z
}.set(“prefun-,
B ETI
boset{“gmgl
“}ofenturel
“). Featurel
. feature
1) fenture(eyl ©) . fenture]

). fenture("s1
Feature(s1”
)-feature("s1
-feature("s1°
~Feature(":1°
-fenture("s1
Feature{ s1°

-} Feature(a1}

J.feature("s1"). feature("12"). . feature(“sgl").feature(cs"). feature(dl")
BT, 1.86-13);

J.feature("s17). feature(). remove(feDes)

-BtEaEh("stal");

model sal{ 50117). rundl 1)

model.result(“ogl*).run(};

Inguts
" Mame Tpe Defauht
i
Output: Mone -

| 18]

To stop recording code, click one of the Stop Recording buttons in the ribbon of
either the Model Builder or the Application Builder.

A “& Data Access Model Method [ABE] E_j - B+C nd=
- = - v = n T
» Test Application ﬁ Stop Recording
Application Check Goteo Stop Use Create Local
Builder Syntax MNode |Recording |Shortcut Variable

The previous section on Data Access explained how to set the values of the Heat
transfer coefficient and the External temperature properties of the busbar tutorial
model. To generate similar code using Record Code, follow these steps:

* Create a simple application based on the busbar model (MPH file).

* In the Model Builder window, click Record Method, or with the Method
Editor open, click Record Code.

» Change the value of the Heat transfer coefficient to 5.
* Change the value of the External temperature to 300[K].
» Click Stop Recording.

 Ifit is not already open, open the method with the recorded code.

The resulting code is listed below:
with(model.physics("ht").feature("hf1"));
set("h", "5%);
set("Text", "300[K]");
endwith();
In this case, the automatic recording contains a with () statement in order to make
the code more compact. For more information on the use of with(), see “The
With Statement” on page 201.

To generate code corresponding to changes to the application object, use Record
Code or Record Method, then go to the Form Editor and, for example, change the
appearance of a form object. The following code corresponds to changing the
color of a text label from the default Inherit to Blue:

with(app.form("formi1").formObject("textlabell"));
set("foreground", "blue");
endwith();
For more information on modifying the model object and the application object,
sce the Application Programming Guide.

Use the tools for recording code to quickly learn how to interact with the model
object or the application object. The autogenerated code shows you the names of
properties, parameters, and variables. Use strings and string-number conversions
to assign new parameter values in model properties. By using Data Access while
recording, you can, for example, extract a parameter value using get, process its

182 |

value in a method, and set it back into the model object using set. For more
information on Data Access, see “Data Access in the Method Editor” on page 178.

Checking Syntax

Click Check Syntax in the ribbon to see messages in the Errors and Warnings

window related to syntax errors or unused variables.

[Language Elements jupe) = B+C »a=
EM

S
Ea'gl\dodel Expressions
Check Goto Record Use Create Local
Syntax Mode Code Shortcut Variable

In addition to messages in the Errors and Warnings window, syntax errors are

indicated with a wavy red underline, as shown in the figure below.

methodl X

model.study("stdl”).run(); -
useGrophics(model.result("pg2”), "forml icsl
useGrophics{model.result("pg3"), "forml/
I ploySound(":

mom

vl

Errors and Warnings Z e
€ 1Emor fh 0Wamings

Method Line Message
£ method! 4 String literal is not properly closed by a double-quote

| 183

Find and Replace

Click Find in the Quick Access Toolbar to open a dialog box used to find and
replace strings in methods, as shown in the figure below.

.ﬁ] E‘a - E& Find X
. o All | Metheds | Advanced
Find (Ctrl+F) :
Find: method1()

Replace with: mymethod()

Find in methods Direction
® Current ® Forward
O an O Backward

[] Case sensitive

Find Mext Replace
Find All Replace All
Close

The Quick Access Toolbar is located above the ribbon to the left, in the
COMSOL Desktop user interface.

The All tab is used to find strings and variables in both the Model Builder and the
Application Builder.

184 |

Model Expressions Window

The Model Expressions window in the Method Editor shows a list of predefined
expressions used as input and output arguments. Double-click or right-click one
of the items in the list to insert an expression:

Wodel Expressions =Ly Es
Type filter text

Geometry
Global Definitions
Materials
Mesh
4 Component] (compl)
Definitions
4 Geometry
Mormal
Tangent1
Tangent 2
4 Coordinate
¥ - x-coordinate
y - y-coordinate Ei.‘ Insert Expression
z - z-coordinate

Global

Electric Currents

Heat Transfer in Solids
4 BuiltIn

Mathematical constants

Mathematical functions

Operators

Physical constants

Use Shortcut

If you look at the example below, you will notice that the two last lines of code
begins with model.result(”pg1”).

Utility Class ﬁ' [Language Elements uqc) E_j ° B+C 8=
= \r
Jzva External Java Library = Ea'g Model Expressions - n
X Revert to Check Goto Record Usze Create Local
C External C Library Saved Syntax MNode Code Shortcut Variable

@ Preview rethod] X

-l with(model.result().dataset("cptl”));
set("pointx"”, pointx);
set("pointy"”, pointv);
endwith();
model.result("pgl”).feature("pttrajl”).set("expr", new String[]{xexpr, vexprl}l;
model.result(“pzl”).runi) ;|

| 185

The Use Shortcut button simplifies code by replacing these instances with a variable
name.

In the example above, the mouse pointer has been positioned at the first
occurrence of model.result(”pg1”). Click the Use Shortcut button to transform
the source code into what is shown in the figure below.

@ Preview rethod] X

-l with(model.result().dataset("cptl”));
set("pointx"”, pointx);
set("pointy"”, pointy);
endwith();
I pointplot.feature(pttrajl”).set("expr", new String[]{xexpr, vexprl}l;

pointolot.runi);
The code starting with the prefix model.result(”pg1”) has been replaced with
the variable pointplot. When you click the Use Shortcut button, a Use Shortcut
dialog box opens where you can enter a suitable variable name in the Name field,
in this case pointplot.

3 Use Shortcut *

MName: pointplot
[] Update all methods
OK Cancel

This variable is stored as a shortcut in the Declarations node, as shown in the figure
below together with the corresponding Settings window.

I Forms =]
Events Sett Pgs

4 = Declarations Shortcuts

anc String

= shortcuts List of Shortcuts
I By Methods "

MName Target Description
pointplot Results/result/pgl Shortcut to 20 plot group

186 |

Syntax Highlighting, Code Folding, and Indentation

Different language elements in the code are displayed using different styles. Refer
to the figure below for an example:

with{model.result("pgl™));

set("looplevel”™, new String[]{"7"}); // 7th fregquency
endwith();
useGrophics(model.result("pgl”), "graphicsl");
zoomExtents("graphics1");

if (customProgress) {
setProgressBor("/progressform/progress1", 188);
¥
else {
setProgress(188);
¥
play_sound();

if (customProgress) {
closeDiolog("progress
¥
else {
closeProgress();

H

This example includes five styles:

» Keywords, such as if, else, for, while, double, and int are displayed in
bold blue font

* Built-in methods are displayed in italic blue font

« Strings are displayed in red font

» Comments are displayed in green font

¢ The remainder of the code is displayed in black font

You can customize the syntax highlighting theme in the Preferences dialog box.
See the next section Method Editor Preferences.

You can expand and collapse parts of the code corresponding to code blocks that
are part of for, while, if, and else statements. This feature can be disabled, as
described in the next section “Method Editor Preferences”.

When writing code, use the Tab key on your keyboard to automatically indent a
line of code and insert white spaces where needed. As an alternative, you can

| 187

right-click in the Method Editor and select Indent and Format, as shown in the
figure below.

= while (k < MAXITERATIONS && Math.abs(f1) > fgtol) {

f_
I =7 GotoMNode F11
=7 Goto Method Ctrl+Alt+Double-click
4 Undo Ctri+Z
(og
M Cut Ctrl+X
|_—'|§| Copy Ctrl+C
E:'|:'| Paste Ctrl+V gt more
0 Delete Del
= | select Al Ctrl+A
Lng (Max
= Indent and Format Tab
'Y Create Local Variable Ctrl+1 -
-l g red in
5] Toggle Comment Ctrl+7

SETPTOUTESSTZSTS

Indentation and whitespace formatting also happen automatically when the
keyboard focus leaves the Method Editor. You can disable this behavior in
Preferences in the Method section by clearing the check box Indent and format
automatically.

Using the context menu shown above, when right-clicking, you can toggle
comments on and off for an entire block of code that you have selected. This is
available by selecting Toggle Comment from the menu or the keyboard shortcut
Ctrl+7.

THE NAME OF A METHOD

The Name of a method is a text string without spaces. The string can contain
letters, numbers, and underscores. The reserved names root and parent are not
allowed and Java® programming language keywords cannot be used.

188 |

Method Editor Preferences

To access the Preferences for the methods, choose File > Preferences and select the
Methods section.

3 Preferences x
Add-in Libraries Method editor

Application Builder [View all code

Application Libraries Close brackets automatically

Client/Server [] Generate compact code using 'with' statements

Color Themes Enable code folding

Email Indent and format autematically

Files
Code generation
Use component syntax

Syntax highlighting

Forms
General

Geometry
Graphics and Plot Windows Theme:
Graphics Interaction

.

Comment:
Graphics Toolbars

Help Identifier -
LiveLink Connections Plain text: =
Mesh

Methods Keyword: b
Meodel Builder Primitive data type:

Multicore and Cluster Computing

]

Parametric Sweep Number:

.

Part Libraries Operator:
Physics Builder
Quick Access Toolbar

]

String:

Remote Computing Language elements: -
Results Model Builder
Security Ask for confirmation before running methods in Model Builder

Show More Options
Updates

Factory Settings

Factory Settings for All Import... Export... oK Cancel

By default, the Method Editor only shows the most relevant code. To see all code
in a method, select the View all code check box.

The check box Close brackets automatically controls whether the Method Editor
should automatically add closing brackets, such as curly brackets {}, brackets [],
and parentheses ().

The check box Generate compact code using ‘with’ statements controls the
utilization of with statements in automatically generated code. For more
information, see “The With Statement” on page 201.

If the check box Enable code folding is sclected, you can expand and collapse parts
of the code corresponding to code blocks associated with for,while, if,and else
statements.

Selecting the check box Indent and format automatically will ensure that code is
consistently indented and formated.

The Use component syntax option will generate method syntax that also includes
the model component scope.

| 189

Under Syntax highlighting, the Theme list contains two predefined themes, Modern
(the default) and Classic. Choose User defined to define a syntax highlighting mode
where the colors can be assigned to individual language elements.

Clear the option Ask for confirmation before running methods in the Model Builder
if you do not want to confirm when running methods in this way.

Ctrl+Space and Tab for Code Completion

While typing code in the Method Editor, the Application Builder can provide
suggestions for code completions. The list of possible completions are shown in a
separate completion list that opens while typing. In some situations, detailed
information appears in a separate window when an entry is selected in the list.
Code completion can always be requested with the keyboard shortcut Ctrl+Space.
When accessing parts of the model object, you will get a list of possible
completions, as shown in the figure below:

@ Preview rmethod] X
I model.m|
massProp() Returns all mass properties.
massProp(String tag)
material() Returns: ProbeFeaturelist
material(String tag) List of mass properties
mesh()
rnesh(String tag)
methodCall()
methodCall{String tag)
model(])
maodel{String compTag)

eeeaeaaaeeee

Select a completion by using the arrow keys to choose an entry in the list and press
the Tab or Enter key to confirm the selection.

If the list is long, you can filter by typing the first few characters of the completion
you are looking for.

For example, if you enter he first few characters of a variable or method name and
press Ctrl+Space, the possible completions are shown:

@ Preview method] X
int ival, iva2, iva3;
iv

ival

ival

e

iva3

190 |

In the example above, only variables that match the string iv are shown. This
example shows that variables local to the method also appear in the completion
suggestions.

You can also use Ctrl+Space to learn about the syntax for the built-in methods that
are not directly related to the model object. Type the name of the command and
use Ctrl+Space to open a window with information on the various calling
signatures available.

@ Preview Dform‘l methodl X

I p1aysound
@ playSound(String name)

@ playSound(double hz, int milliseconds) Plays a signal with given frequency and duration.

Parameters:
hz Frequency in Hz.
milliseconds Duration in milliseconds.

For a list of available built-in methods, you can use the Language Elements window
described on page 175 or see “Appendix E — Built-In Method Library” on page
331.

Similar information is displayed in a tooltip when hovering over the different parts
of a method call, property name, declaration, or shortcut.

model.result("pgl”).feature(" ptt|'a:' 1"y set("expr", new String[]{xexpr, vexprl});

model.result("pgl").run(); Create a point trajectories plot to visualize trajectories

of geometric points.

| 191

The keyboard shortcut Ctrl+Space can also be used in the Model Builder. For
example, when typing in an Expression field in Results, use Ctrl+Space to see
matching variables, as shown in the figure below.

Settings ~ 4| Grap
Surface Q
Plot

Label: Surface]l

¥ Data
Data set: | From parent | |E
w Expression v B~
Expression:

di

4 Componentl
4 Solid Mechanics
4 Displacement
solid.disp - Total displacement
4 BuiltIn
4 QOperators
4 [Integral, average, and sum
diskavgl(r, expr] - Average on the disk with radius r
diskint(r, expr) - Integral on the disk with radius r

Creating Local Variables

You can automatically set the type of a local variable. For example, you can type
X = model.geom()

and click the Create Local Variable button in the Code group of the Method tab in
the ribbon.

[aBC] = B+C na=
v E] e Cr

Check Goto Record Use Create Local
Syntax Mode Code Shortcut Variable

The code is then changed to

GeomList x = model.geom()

where GeomList is the data type of model.geom().

192 |

Local Methods

You can add local methods to buttons, menu items, and events. Local methods do
not have nodes displayed under the Methods node in the application tree. In the
method window for a local method, its tab displays the path to its associated user
interface component, as shown in the figure below for the case of a check box

object.

main: checkbox1: onDataChange X

setFormObjectEditable("main/inputfieldl™,

Ifindlength);

setFormObjectEditable("main/inputfields”, findlength);
setFormObjectEnobled("main/inputfields"”, findlength);

In the Form Editor, you can right-click a form object and select Create Local
Method from a menu, as shown in the figure below.

Lennth: =9
Create Local Method
Copy as Code to Clipboard
M cut Ctrl+X
55| Copy Ctrl+C
[5 Duplicate Ctrl+Shift+D
I Delete Del
Settings
H Hep F1

cm

my

| 193

LocAL METHODS FOR BUTTONS, MENU ITEMS, AND GLOBAL EVENTS

For buttons, ribbons, menus, toolbar items, and global events, you can add a local
method by selecting Convert to Local Method from the toolbar menu button under
the sequence of commands, as shown in the figure below.

= Choose Commands to Run

I U Forms

: u GUI Commands
I+ [ifil Libraries

4 & Model (root)

I 3 Glebal Definitions

[Component 1 (comp1)
4 o Study 1
E Stationary
I "= Solver Configurations

4 @. Results

I Nl Electric Potential (ec)

Edit Node Run

Plot Set Value

Show Show as Dialog Import File

Enahble Disable

" Cormmand
Compute Study 1
Plot Temperature (ht)
Plot Temperature (ht)

145

4 Convert to Method
4 Convertto Form Method
4 Convertto Local Method

lcon Arguments
form1/graphics1
form1/graphics2

»

it
=

The function of this button is similar to the Convert to Method and Convert to Form
Method buttons, described in the section “Creating a New Method” on page 18.
The only difference is that it creates a local method not visible in the global
method list in the application tree. It also opens the new method in the Method
Editor after creating it. Ctrl+Alt+Click can be used as a shortcut for creating the
local method. Clicking the button Go to Method will open the local method. The
figure below shows a call to a local method associated with a button.

"
Command lcon Arguments

onClick B

5

Go to Method

194 |

To avoid any risk of corrupting code in a local method, you are unable to use
Convert to Method when there is a local method present in the command sequence.

LOCAL METHODS FOR FORM AND FORM OBJECT EVENTS

To add a local method for a form or form object event, click the Create Local
Method button in the Events section of the Settings window. The selected On data
change method changes from None to Local method, as shown in the figure below,
and the Method Editor is opened.

¥ Events

On data change: | Local method = | |Z9] | %

To open an existing local method in the Method Editor, click the Go to Source
button. Click the Remove Local Method button to delete the local method.

As an alternative to Ctrl+Alt+Click, you can right-click a form object and select
Edit Local Method or Edit Method from its context menu.

Applied voltage: 20 | mv
Edit Local Method &
Align N
Row o
Column o

r5l Extract Subform

Copy as Code to Clipboard 3
M Cut Ctrl+X
|_—'|§| Copy Ctrl+C
[5 Duplicate Ctrl+Shift+D
I Delete Del
Settings

Help F1

For more information, see “Events” on page 139.

Methods with Input and Output Arguments

A method is allowed to have several input arguments and one output argument.
You define input and output arguments in the Settings window of an active

method window. If the Settings window is not visible, click Settings in the Method
tab of the ribbon. The figure below shows a method with two input arguments,
var and coords; and one output, coordsout. The method adds random values to

| 195

the array, coords. The degree of randomness is controlled by the input variable
var. The new values are stored in the array coordsout.

method] X

int len = coords.length;
coordsout = new double[len];
= for (int k = @; k < len; k++) {
double dx = Math.random{)-@.5;

coordsout[k] = coords[k]+var®dx;

H

1t

[¥al
i

nas

Mame: methodl

~ Inputs and Qutput

Inputs
"
Mame Type Default
var Double - |20
coords Array 10 dout ~ |09, 08,1.1,1.2}
+

Output: | Array 1D double

Mame: coordsout

Description
Variation

Coordinates

When you call another method from a method, Ctrl+Alt+double-click opens the
window for that method. A method is allowed to call itself for the purpose of

recursion.

196 |

Debugging

For debugging purposes, click in the gray column to the left of the code line
numbers to set breakpoints, as shown in the figure below.

- \ B o0

> L= = § 5
4 Luz m EH| i oF
Continue Step Step Stop Debug Remove Disable
Into Log All All

Debug Breakpoints

[@] Preview computeAndUpdateResults X

[X

In the ribbon, the Debug group contains the tools available for debugging

Fi *k

* Computes the frequency or finds the prong length for a selected freguency.

* Updates the solutionsState variable, plots the solution, and enables posproc
* Uses the secant method to find the prong length.

* 7

long t® = timeStamp(); // Initialize record of computation time

solutionState = "nosolution™; // To make the information card "execute™ the co

showProgress();

if (isFindLength) { // isFindLength is declared boolean variable linked to che
setProgress(®, "Computing prong length.™);
/f Secant method to find prong length:
int MAXITERATIONS = 28; // We won't need more iterations for frequencies 28
double L1 = 85; // A good enough starting point for frequencies 28 Hz<fg<1@,!
double L2 = 6@; // A good enough starting point for frequencies 28 Hz<fg<1@,!
double carry = L1;

double ¥2 = runFrequencyStudy(L2)-targetFrequency; // = Secant method "F" in
setProgress(108/MAXITERATIONS); // % of progress bar; we have convergence wi-
computedFrequency = runFrequencyStudy(L1l); // g is used to display computed
setProgress(28);

double f1 = computedFrequency-targetFrequency;

L1 = LI-F1*{(L1-L2)/(F1-F¥2)); // The Secant method

L2 = carry;

L1l = Math.max(Ll, le-3);

int k = 2;

while (k < MAXITERATIONS && Math.abs(fl) > toleranceFrequency) {

methods. When you run the application, the method will stop at the breakpoints.
Click the Step button to go to the next line in the method. The figure above shows
a method currently stopped at the line highlighted in yellow.
Click Continue to run the method up until the next breakpoint. Click Stop to stop

running the method. Click Step Into to step into the next method, if possible. Use
Remove All to remove all break points. Instead of removing, you can disable all

| 197

break points by clicking Disable All. Click the Debug Log to display debugging
messages in a separate Debug Log window, as shown in the figure below.

@Preview computeAndUpdateResults X

=g

145

oo

[*p N

089

oo

[*p N

130

o

o o
B

.125

setProgress (20) ;
double f1 = computedFrequency-targetFrequency;
L1 = L1-f1*((L1-L2)/(F1-¥2)); // The Secant method
debuglog("LLl:");
debuglog(Ll);
L2 = carry;
L1l = Math.max(Ll, le-3);
int k = 2;
= while (k < MAXITERATIONS && Math.abs(F1l) > toleranceFreguency) {
debuglog("k:");
debuglog(k);
f2 = f1;
computedFrequency = runFrequencyStudy(Ll);
1 = computedFrequency-targetFrequency;
carry = L1;
L1 = L1-F1*((L1-L2)/(F1-F2));
debuglog("Ll:");
debuglog(L1);
L2 = carry;
L1l = Math.max(L1l, le-3);
k = k+1;
setProgress (k*188/MAXITERATIONS) ;

Debug Log

=

20446132314

62614347057

86822907024

67276841492

Use the debugLog command to display the value of variables in the Debug Log
window. The code below illustrates using the debugLog command to display the

values

int
if (
fo

198 |

of strings and components of a 1D double array.

len=xcoords.length;

selected==0) {

r (int i = 0; i < len; i++) {

double divid=double(i)/len;

xcoords[i] = Math.cos(2.0*Math.PI*divid);
ycoords[i] = Math.sin(2.0*Math.PI*divid);
debugLog("x:");

debugLog(xcoords[i]);

debugLog("y:");

debugLog(ycoords[i]);

debugLog("selected is 0");

For more information on built-in methods for debugging, see “Debug Methods”
on page 340 and the Application Programming Guide.

Stopping a Method

You can stop the execution of a method while testing an application by using the
keyboard shortcut Ctrl+Pause. A dialog box appears, as shown below.

€ Error e

Method stopped.

OK

The Model Object

The model object provides a large number of methods, including methods for
setting up and running sequences of operations. The Convert to Method, Record
Code, Editor Tools, and Language Elements utilitics of the Method Editor produce
statements using such model object methods. For more information and example
code related to the model object and its methods, see “Appendix C—Language
Elements and Reserved Names” in the book Introduction to COMSOL
Multiphysics, the Application Programming Guide, as well as the Programming
Reference Manual.

Language Element Examples

The Java® programming language is used to write COMSOL methods, which
means that Java® statements and syntax in general can be used. This section
contains simple examples of some of the most common language elements. For
more information and examples, see the Application Programming Guide and
the Programming Reference Manual.

| 199

UNARY AND BINARY OPERATORS IN THE MODEL OBJECT

The table below describes the unary and binary operators that can be used when
accessing a model object, such as when defining material properties and boundary
conditions, and in results, expressions used for postprocessing and visualization.

PRECEDENCE LEVEL SYMBOL DESCRIPTION

I () {3 grouping, lists, scope

2 ~ power

3 ! -+ unary: logical not, minus, plus

4 [] unit

5 * |/ binary: multiplication, division

6 + - binary: addition, subtraction

7 < <= > >= comparisons: less-than, less-than or equal,
greater-than, greater-than or equal

8 == I= comparisons: equal, not equal

9 && logical and

10 || logical or

element separator in lists

UNARY AND BINARY OPERATORS IN METHODS (JAVA® SYNTAX)

The table below describes the most important unary and binary operators used in

]ava® code in methods.

PRECEDENCE LEVEL SYMBOL DESCRIPTION

| ++ -- unary: postfix addition and subtraction

2 ++ -- + - unary: addition, subtraction, positive sign,
negative sign, logical not

3 * | % binary: multiplication, division, modulus

4 + - binary: addition, subtraction

5 ! Logical NOT

6 < <= > >= comparisons: less than, less than or equal,
greater than, greater than or equal

7 == l= comparisons: equal, not equal

8 && binary: logical AND

9 || binary: logical OR

10 ? conditional ternary

PRECEDENCE LEVEL SYMBOL DESCRIPTION
Il

+= -= *= [= assignments

12 , element separator in lists

ACCESSING A VARIABLE IN THE DECLARATIONS NODE

Variables defined in the Declarations node are available as global variables in a
method and need no further declarations.

BUILT-IN ELEMENTARY MATH FUNCTIONS

Elementary math functions used in methods rely on the Java® math library. Some
examples:

Math.sin(double)
Math.cos (double)
Math.random()
Math.PI

THE IF STATEMENT
if(a<b) {
alert(toString(a));
} else {
alert(toString(b));
}

THE FOR STATEMENT

// Iterate i from 1 to N:

int N=10;

for (int i = 1; i <= N; i++) {
// Do something

}

THE WHILE STATEMENT

double t=0,h=0.1,tend=10;
while(t<tend) {
//do something with t
t=t+h;
}

THE WITH STATEMENT

// Set the global parameter L to a fixed value
with(model.param());
set("L", "10[cm]");

| 201

endwith();

The code above is equivalent to:
model.param().set("L", "10[cm]");

ACCESSING A GLOBAL PARAMETER
You would typically use the Editor Tools window for generating code for setting
the value of a global parameter. While in the Method Editor, right-click the
parameter and select Set.
To set the value of the global parameter L to 10 cm:

model.param().set("L", "10[cm]");

To get the global parameter L and store it in a double variable Length:

double Length=model.param().evaluate("L");
The evaluation is in this case with respect to the base Unit System defined in the
model tree root node.
To return the unit of the parameter L, if any, use:

String Lunit=model.param().evaluateUnit("L");
To write the value of a double to a global parameter, you need to convert it to a
string. The reason is that global parameters are model expressions and may contain
units.
Multiply the value of the variable Length with 2 and write the result to the
parameter L including the unit of cm.

Length=2*Length;

model.param().set("L", toString(Length)+"[cm]");
To return the value of a parameter in a different unit than the base Unit System,
use:

double Length_real = model.param().evaluate("L","cm");
If the parameter is complex valued, the real and imaginary part can be returned as
a double vector of length 2:

double[] realImag = model.param().evaluateComplex("Ex","V/m");

COMPARING STRINGS

Comparing string values in Java® has to be done with .equals () and not with the
== operator. This is due to the fact that the == operator compares whether the
strings are the same objects and does not consider their values. The below code
demonstrates string comparisons:

boolean streg=false;
String a="string A";
String b="string B";

202 |

streq=a.equals(b);
// In this case streg==false

stregq=(a==b);
// In this case streq==false

b="string A";
streq=a.equals(b);
// In this case streg==true

ALERTS AND MESSAGES

The methods alert, confirm, and request display a dialog box with a text string
and optional user input. The following example uses confirm to ask the user if a
direct or an iterative solver should be used in an application. Based on the answer,
the alert function is then used to show the estimated memory requirement for
the selected solver type in a message dialog box:
String answer = confirm("Which solver do you want to use?",
"Solver Selection","Direct", "Iterative");
if (answer.equals("Direct")) {
alert("Using the direct solver will require about 4GB of memory when
solving.");
} else {
alert("Using the iterative solver will require about 2GB of memory when
solving.");
}

Running Methods in the Model Builder

Running methods in the Model Builder is similar to calling methods from
applications with the most important difference being that from the Model
Builder methods can directly modify the model object in the current session.
Running methods from the Model Builder can be used to automate modeling
tasks that consist of several manual steps. For example, in a model with multiple
studies, you can record code for the process of first computing Study 1; then
computing Study 2, which may be based on the solution from Study 1; and so on.
From the Model Builder you can call methods directly through Method Calls or the
Developer tab in the ribbon, described later in this section. You can call methods
indirectly through Settings Forms, for example, by calling a method at the click of
a button. For more information on Settings Forms, see “Using Forms in the Model
Builder” on page 127.

In contrast to methods that are called from applications, methods called from the
Model Builder cannot use built-in graphics methods such as printGraphics,
useGraphics, and zoomExtents. This restriction is due to the fact that a Settings

| 203

Form cannot include a graphics object (this restriction will be lifted in future
versions).

Methods called in the Model Builder may have input and output arguments. Input
arguments to such methods that are called directly, and not indirectly from a
Settings Form, are given by adding a Method Call node under Global Definitions, sce
“Method Calls” on page 208.

CONTROLLING WHICH MODEL TREE NODE SHOULD BE ACTIVE

To control which model tree node should be active after running a method in the
Model Builder you can use the built-in method selectNode. For example, a
method modifying the geometry can have as its last line of code:

selectNode (model.component("compi1").geom("geomi"));

which will display the geometry and select the Geometry node.

The method selectNode has no function when used in an application.

GENERATING A REPORT AUTOMATICALLY AFTER COMPUTING

As an example of using a method from the Model Builder, consider the process of
first computing the solution and then generating a report. This can be automated
by first recoding the corresponding operations in the Model Builder and then
running a method.

204 |

Let’s start from the busbar example described in the book Introduction to
COMSOL Multiphysics. You can load this example MPH file from the Application
Libraries, as shown in the figure below.

Application Libraries

C* Refresh] Update COMSOL Application Libraries

[fifi Applications
[fifi Acoustics
[fifi Chemical Engineering
[fifi Diffusion
[fifi Electromagnetics
[fifi Equation Based
[fifi Fluid Dynamics
[fifi Geophysics
[fifi Heat Transfer
[fifi Meshing Tutorials
[fifi Multiphysics
® busbar_box
O bushar_geom
® busbar

free convection

4 [3@ COMSOL Multiphysics
I
I
I
I
I
I
I
I
I
I
4

¢ Open the model.
e In the model tree, right-click the Report node under Results.
* Seclect Brief Report.

+ Change the Output format to Microsoft® Word (this example would also
work with the default HTML format).

 Click the Browse button and select a file name in a location on your system
that you have write permissions to, for example:
C:\COMSOL\BusbarReport.docx

 Click Write to generate and save the report to file.

A
E Generate E Preview Selected Preview All | # Write
Label: Report1 E
Template
¥ Format
Output format: Microsoft Word =
Filename: CACOMSOL\BusharReport.docx Browse...

[] Always ask for filename

| 205

« Close the Microsoft® Word document that was automatically opened.

* Click the Developer tab in the ribbon (of the Model Builder) and click the
Record Method button.

Home Definitions Geometry Materials Physics Mesh Study Results Developer Report 1

o
A 5 Data Access Mew Method (‘:)
» Test Application @Racord Method
Application Update
Builder Forms

* In the model tree, right-click the Study | node and select Compute (or use the
ribbon option for Compute).

« Inthe model tree, right-click the Report | node and select Write (if prompted
to overwrite, answer Yes).

* Click the Developer tab in the ribbon and click on the Stop Recording button.

Home Definitions Geometry Materials Physics

" Data Access New Method
A B | E
» Test Application E Stop Recording
Application Method

Builder Call -

« Close the Microsoft® Word document.

* You can now switch over to the Application Builder, by clicking on the
Application Builder button in the ribbon, and see the recorded method in the
application tree and in the Method Editor.

Home Method
(. D "B Data Access
N

EC," [#]Language Elements (uac) = ° B+C
- v éj n

[Record Method | [Editor Tools | 1ev= External Java Library [E::Model Expressions

Model Mew ew Revert te Check Goto Recerd Use Cre
Builder Form Methed - [Compiler C Bxtemnal C Library Saved Syntax Nede Code Shortcut V.
Application B ilder [Q] Preview [E] method x
n P WUUE L L SULL SUTE e TEELUTEL SIJeiEALUFEL SEr o JeUlEALEL LIl 5 CONSTCINIT g
S = with(model.sol(soll").feature("s1").feature(sel").feature("111"));
4 busbar.mph {root) set("lowerlimit"”, "compl.T @");
A5 Inputs enawith();
[Main Window model.sol("soll”).feature(“s1").create(i2", “Iterative”);
% Forms = with(model.sol("soll").feature("s1").feature("i2"));
Events
= Declarations set("rhob", 40);
4 [Methods endwith();
method1 model.sol("soll"). feature("s1").Feature(i2"). (ht)™);
b [Libraries moedel.sol("s0ll").feature("s1"). feature("i2").create("mzl”, "
= with(model.sol("s0ll").feature(=1").feature(i2").feature(mz1"));

Y.

For more information on code generated from the Study node, see the
Application Programming Guide.

206 |

* Here you can inspect and edit the generated code and also change the name
of the method to, for example, compute_and_report.

nas X

MName: compute_and_report

Show in Madel Builder

* Go back to the Model Builder by clicking on the Model Builder button in the
ribbon.

* In Global Definitions > Parameters, change the Length to 15[cm].

i Isothermal Contours (ht)
W& Current Density

Export

4 [# Reports

I EF Report 1

Model Builder =4 L
- ® ST E S
4 & busbar.mph (root)
4 (@) Global Definitions Label: Parameters 1 =
Fi Parameters 1
{q’ Default Model Inputs - PEIEEEE
i Materials [
b @ Component 1 (comp1) Mame Expression Value Description
b~ Study 1 L 0.15m Length
4 ([Results rad_1 6[mm] 0.006 m Bolt radius
[» 3 Datasets thb 3[mm] 0.005 m Thickness
I &2 Derived Values whb 3lem] 0.05m Width
I E Tables mh 3[mm] 0.003 m Maximum element size
I N Electric Potential (ec) htc S[W/m*2/K] 5 W/ (m*K) Heat transfer coefficient
I il Temperature (ht) Vot 20[mV] 0.02V Applied voltage
|
|

* In the ribbon, click on the Developer tab and sclect compute_and_report from
the Run Method menu (if prompted to confirm, answer Yes).

Geormetry Materials Physics Mesh Study Results
New Method b
E Record Method
Method Run
Call - Methed ~
compute_and_report [

Depending on your security settings, you may get an error message. 1o avoid this
error, open File>Preferences, go to the Security page, and change File system access
to All files. You can change this back to its default setting after running this
example.

Note that you can create multiple methods and call them from the Model Builder.

| 207

METHOD CALLS

A call, in the Model Builder, to a method for a specific set of input argument
values can be made by adding a Method Call node under Global Definitions. To add
a Method Call node, right-click Global Definitions and select one of the methods that
you have created. The figure below shows a Method Call to a method for creating
a geometric array.

Model Bu ~ ®|| Settings
A =EEE - Method Call
4 G heat_transfer_model.mph (root) @ EI
4 () Global Definitions
Pi Parameters 1 Label: Create Array E
=i Materials Tag: rethodcalll

“F Create Arra
b Method: create_array

4 im Component 1 {comp 1)
[+ = Definitions ~ Inputs
b YA Geometry 1
I 5z& Materials X position: 1
I» {[E Heat Transfer in Solids (ht) ¥ position: 25
A5 Mesh 1)
b~ Study 1 X displacement: 175
b {E Results Y displacement: 0
Rotation angle: 15
Scaling: 1

Number of objects: 13

The user interface layout of a Metheod Call cannot be customized. Instead, for
customizing use a Settings Form, see “Using Forms in the Model Builder” on page

127.

You can run, stop, or edit a Method Call by clicking the corresponding toolbar
button in the Settings window, as shown in the figure below.

- *| Settings
Method Call

@

Create Array

Method: create_array
¥ Inputs

X position: 1

208 |

This functionality is also available from the Developer tab in the ribbon of the
Model Builder, as shown in the figure below.

rials Physics Mesh Study Results Developer

Ly
5] @
Method Run Update
Call - Method Call - Forms

" Create Array

The figure below show the corresponding method’s Settings window in the
Application Builder with the definitions of the input arguments.

Settings
Method

MName: create_array

Show in Madel Builder

¥ Inputs and Output

Inputs
" MName Type Default Description Unit
xb Double |1 X position
yb Double > |25 ¥ position
dx Double | 175 X displacement
dy Double > |0 ¥ displacement
ang Double |15 Rotation angle
scl Double > |1 Scaling
nobjects Integer |13 Mumber of obje...

+

Output: | None -

You can add multiple Method Call nodes for the same method where each call can
contain a different set of input argument values.

There is no direct way of using output arguments from a method in the Model
Builder. However, you can use calls to the built-in method message to display
variables used in a method in the Messages window in the COMSOL Desktop
environment. The following example shows how to display the value of two
double variables width and depth in the Messages window:

message ("Width: "+toString(width));
message ("Depth: "+toString(depth));

For debugging purposes you can instead use the debugLog method described in
the section “Debugging” on page 197.

| 209

For reusing a Settings Form between sessions, you can create an Add-in. For more
information, see “Creating Add-Ins” on page 211.

210 |

Creating Add-Ins

To customize the workflow in the Model Builder, you can use a Method Call or a
Settings Form. However, these are associated with a specific MPH file, and you
may want to reuse them between sessions or share them with colleagues. To make
this possible, you can create an add-in based on a Method Call or Settings Form.
Such add-ins can then be stored in a user-defined add-in library. In addition,
COMSOL Multiphysics comes with built-in add-in libraries. For the add-ins in the
built-in library, you can review their Application Builder settings, including forms
and methods, to quickly learn how to build your own add-ins. Creating an add-in
is similar to creating an application, with a few differences. Add-ins do not have
their own graphics window, but instead use the main Graphics window in the
Model Builder. An add-in should work, or give controlled error messages, for any
type of model.

To create an add-in, start from a form that you have created in the Application
Builder and click Add-in Definitions in the ribbon, as shown below.

£z Add-in Definition

[ELy Editor Tools L
Application
Argument

Add-in Inputs

Right-click the Add-in Definitions node in the application tree and select Form
Definition.

Application d

—

4 [&] Untitled.mph [root)
2= Add-in Definition

ﬁ Inputs 2%, Create Add-in F8

% Themes I

D Main Windaw D Form Definition

B Forms Method Definition

Events W Ternplate Definition

= Declarations -

% Methods o Mode Group

b [Libraries [Delete Del

Settings
Properties
H Hep Fi

The figure below shows the Settings window for the Form Definition. Here, you can
type a Label for the add-in form as well as select which form to use for the add-in.
The Label will be displayed in the user-defined add-in library. You can select

whether the form should be displayed as a Settings form in the model tree or as a

| 211

Dialog box. The Allow multiple settings forms check box is used to allow for more
than one instance of the Settings form in the model tree. The Description is

displayed in the add-in library and as a tooltip when choosing among add-ins in
the ribbon.

Settings X

Label: Image to Curve
Form: main

Show as: Settings form

[] Allow multiple settings forms

¥ Description

Use the contour plot of an imported image to create an
interpolation curve, which can be included as part of a 2D
model or 30 work plane.

212 |

Click the Add-in Definition node to sce its Settings window, as shown below.

- 1 X
£k, Create Add-in
¥ Add-in
Filename: image_to_curve.mph Browse...
Label: Image to Curve

Unique identifier: |image_to_curve
~ Protection
Editing password:

¥ Presentation

Description

This add-in lets you use an image as a starting point for an analysis. An
interpolation curve is created from a contour plot of an imported image. This
interpolation curve can then be used as part of a 2D model or 30 work plane.

Preview image: | image_to_curve.png - |+ =

Preview (recommended size 440 = 215 px)

The Filename is the location of the add-in MPH file in the user-defined add-in
library. This location can be on a shared network drive if you wish to share the
add-in with your colleagues. The Label will be displayed in the Add-in Libraries
window. The Unique identifier is what identifies the add-in and is intended to be
unique for any COMSOL Multiphysics session. The unique identifier is
recommended to be in a format similar to <company name>.<Add-in name> ;for
example, my_company.my_add-in. The Editing password will be applied to the
created add-in and is different from the editing password that you can specify in
the root node Settings window of the MPH file used to create the add-in.

| 213

To create the add-in, which is a special type of MPH file, click the Create Add-in
button.

Settings

£k, Create Add-in

Create Add-in (F8)
It

Add-In Libraries

To use an add-in from the Add-in Libraries, you first need to enable it. In the
Developer tab in the Model Builder, click Add-in Libraries.

Developer

— \\
O & & % C %
Settings Update Show Add-in Refresh Clear
Form - Forms Dialog - Libraries Add-ins Add-ins

In the list of add-ins, select the check boxes of those add-ins that you want to
enable.

e fhEEHE >

Home Definitions Geometry
Add-in Libraries

* Refresh

4 [@ COMSOL Multiphysics
4 ESY image_to_curve
D Image to Curve
4[] ESY pid_controller
D PID Controller
4 ESY planar_cut
D Planar Cut
3 :ﬁ' RF Module

214

Once enabled, the corresponding add-ins will be displayed when clicking the
Add-ins button in the Developer tab.

Materials Physics Mesh Study Results Developer

- EEOREN I BCEAN

Settings Update Show Add-ins| Add-in Refresh Clear
Form -~ Forms Dialog ~ = Libraries Add-ins Add-ins

Image to Curve
Dlmageto Curve

Cattinmeoe

q Image to Curve v by e b= me

1 Use the contour plot of an imported image to
create an interpolation curve, which can be
included as part of a 2D model or 3D work plane.

Press F1 for more help.

The figure below shows the Settings Form for one of the built-in add-ins.

Model Builder - -
— = =t L e
y -
“ ‘: I;;tlélleodb.;%;:'xgns 47 Reset 4 Plot ¢ Filter S Contour ;\ Curve
Fi Parameters 1 ~ Image
% Image (i2m_im)
(@' Default Model Inputs eSS [552) px
=) Materials y: size 750 px
[Imageto Curve 1 Image width: 0.23 m
4 @ Component1 (compT)
- = Definitions Filename: beam_cross_section.png Browse...
’ ;\ Geometry 1 Filter: Gaussian blur -
I EgE Materials
I *_ Electric Currents (ec) Contour
[{IE Heat Transfer in Solids (ht) .
b _{;} Multiphysics Automatic contour threshold
b Mesh 1 Contour threshold:
[+~ Study 1 (000 !
D@Results e e e e e e

If you want to review and edit the Application Builder settings for a built-in
add-in, you can open the corresponding MPH file. In a typical Windows®
installation, the built-in add-in library is located at:

C:\Program Files\COMSOL\COMSOL56\Multiphysics\addins
You can browse to a user-defined add-in library by clicking the Add User Add-in
Library button at the bottom of the Add-in Libraries window.

i

i
Add User Add-in Library

| 215

The user-defined add-in library will be displayed alongside the built-in add-in
libraries, as shown below.

e heHEHBE >

Home Definitions Geormetry Materials
Add-in Libraries

* Refresh

4 [fiff My Add-ins
4 #% busbar_cantrols
D Busbar Controls
b @ COMSOL Multiphysics
I £ RF Module

Workflow when Creating and Editing Add-Ins

When creating and editing add-ins, you will find it useful to have two sessions of
COMSOL Multiphysics open at the same time: one session for the original add-in
MPH file where you work mostly in the Application Builder, and one session for
testing the add-in in the Model Builder. When testing an add-in using the Model
Builder, make sure to test for a great variety of models, including models of
different spatial dimensions as well as models with more than one model
component. Use the Refresh Add-ins button to make sure you always use an
updated version of the add-in you are editing.

& C)

= A
Add-ins Add-in Refresh Clear
- Libraries Add-ins Add-ins

216 |

Libraries

In the application tree, the Libraries node contains images, sounds, and files to be
embedded in an MPH file so that you do not have to distribute them along with
the application. In addition, the Libraries node may contain Java® utility class
nodes and nodes for external Java® and C libraries. For more information on
using utility classes and external libraries, see the Application Builder
Reference Manual.

Application B

“— =t

4 [&] Untitled.mph [root)
ﬁ Inputs
% Themes
D Main Window
® Forms
Events
= Declarations
) Methods
4 [ffff Libraries
[#] Images
=] Sounds
fE3 Files
(Z) util
util2
util3
External Java Library 1
C External C Library 1 {nativel}

Embedded files can, for example, be referenced in form objects or in methods by
using the syntax embedded:///file1, embedded:///file2, and so on. For
example, to reference the image file compute.png, use the syntax
embedded:///compute.png.

Note that you are not required to have the file extension as part of the file name;
instead, arbitrary names can be used. To minimize the size of your MPH file,
delete unused images, sounds, or other files.

To manage files loaded by the user of an application at run time, you have
several options, including using File declarations and File Import form
objects. For more information on files to be loaded at run time, see “File”
on page 158, “File Import” on page 270, and “Appendix C — File
Handling and File Scheme Syntax” on page 307.

| 217

Images

The Images library contains a number of preloaded sample images in the PNG file
format. If you wish to embed other image files, click the Add File to Library button
below the List of Images. A large selection of images is available in the COMSOL
installation folder in the location data/images. Images are used as icons and can
be referenced in image form objects or in methods. For images used as icons, two
sizes are available: 16-by-16 pixels (small) and 32-by-32 pixels (large).

Settings TAX

List of Images

MName Description

COMSOL sample image

about_information... | COMSOL sample image
compute_32.png COMSOL sample image

compute.png COMSOL sample image
cube_32.png COMSOL sample image
cube_large.png COMSOL sample image
cube.png COMSOL sample image
error_32.png COMSOL sample image
error.png COMSOL sample image
exit.png COMSOL sample image
geometry_32.png COMSOL sample image
geometry.png COMSOL sample image
S+ B
Preview

Supported image formats are JPG, GIF, BMP, and PNG.

To preview an image, click the name of the image in the List of Images. The image
is displayed in the Preview section

To export a selected image, click the Export Selected Image File button to the right
of the Preview button.

Sounds

The Sounds library contains a few preloaded sounds in the WAV-file format. If you
wish to embed other sound files, click the Add File to Library button below the List

218 |

of Sounds. A larger selection of sounds is available in the COMSOL installation

folder in the location data/sounds.

Settings =3
nds

LA
[s]
o

List of Sounds

MName Description
fail.wav COMSOL sample sound
neutral.wav COMSOL sample sound
SUCCESS.Wav COMSOL sample sound
l’

To play a sound, click the name of the sound and then click the Preview button

below the List of Sounds.

Click the Export Selected Sound File button to the right of the Preview button to

export a selected sound.

To play a sound in an application, add a command in the Settings window of a
button, ribbon, menu, or toolbar item. In the Choose Commands to Run section,

select the sound and click the Run button below the tree. This adds a Play

command to the command sequence, as shown in the figure below.

» (Choose Commands to Run B

b B Forms
I @ GUI Commands
4 [fffj Libraries
4 i) Sounds
123 sUCCEssWav
123 failwav
123 peutralwav

= Edit Node & Run Plot Set Value

Show Show as Dialog Import File
Enable Disable

Command lcon | Arguments
Play 'success.wav' >
=% . -

In methods, you can play sounds using the built-in method, playSound, such as:

playSound("success.wav");

1219

Files

The Files library is empty by default. Click the Add File to Library button to embed
files of any type in your application.

Settings v EX
List of Files
L] . _—
MName Copied from Description
datal.txt CACOMSOL\datal.txt Data set 1
data2.txt CACOMSOL\data2 txt Data set 2
data3.txt CACOMSOL\data3.txt Data set 3

mydata.csv | CANCOMSOL\mydata.csv User data

+

Use embedded:///filename to refer to a file with the name
filename in the application.

Click the Export Selected File button to the right of the Add File to Library button
to export a selected file.

ti s+ BE

| Export Selected File :i:nneto refer to a file with the name

The embedded files can be referenced in a method by using the syntax
embedded:///datal.txt, embedded:///data2.txt, and so on. For more
information, see “File” on page 158, “Appendix C — File Handling and File
Scheme Syntax” on page 307, and “File Methods” on page 332.

220 |

Appendix A— Form Objects

This appendix provides information about forms and form objects and expands
upon the section “The Form Editor” on page 51. The items followed by a * in the
following list have already been described in detail in that section. The remaining
items are discussed in this appendix.

List of All Form Objects

e Input
- Input Field*
- Button*
- Toggle Button
- Check Box
- Combo Box
» Labels
- Text Label*
- Unit*
- Equation
- Line
» Display
- Data Display*
- Graphics*
- Web Page
- Image
- Video
- Progress Bar
- Log
- Message Log
- Results Table

| 221

* Subforms
- Form
- Form Collection
- Card Stack
» Composite
- File Import
- Information Card Stack
- Array Input
- Radio Button
- Selection Input
* Miscellaneous
- Text
- List Box
- Table
- Slider
- Knob
- Hyperlink
- Toolbar

- Spacer

Toggle Button

A Toggle Button object is a button with two states: selected and deselected, as
shown in the figure below.

Heat Source

The information in this section is also applicable to Menu Toggle Item and Ribbon
Toggle Item.

USING A TOGGLE BUTTON TO ENABLE AND DISABLE A HEAT SOURCE

The two states of a toggle button are stored by linking it to a Boolean variable.
The figure below shows the Settings window of a button that enables and disables

222 |

a heat source depending on its state. The Boolean variable heat_source is selected
in the Source section.

- 1 X

MName: togglebutton =
Text: Heat Source
lcon: B heat_transfer 32png v + =
Selected icon: B heat_transfer 32png = -+ [=
Size: Large =
Style: Flat =
Tooltip:
Keyboard shortcut:
-+ Source FAF
4 = Declarations

4 @ Boolean

heat_source

Use as Source Edit Mode
Selected source:

E Boolean=heat_source
Initial value: From data source =

Value for selected: on

Value for cleared: off

Enabled corresponds to the Boolean variable heat_source being equal to true,
which in turn corresponds to the toggle button being selected. Disabled
corresponds to the Boolean variable heat_source being equal to false, which in
turn corresponds to the toggle button being deselected. The leon is displayed
when the toggle button is not selected. When the toggle button is selected, the
Selected icon is displayed.

| 223

Below the Source section is the Choose Commands to Run section, with a choice for
Action that represents two different commands for Select and Deselect. The figure
below shows the Settings window for Deselect with a command Disable Heat Source

v Choose Commands to Run i
[u GUI Cormmands
[= Declarations
b [Libraries
4 & Model (root)
4 im Component 1 (compl)
[= Definitions
|
|
4 |[@ Heat Transfer in Solids (ht)
|&= Heat Source 1
= Termnperature 1

%, Geometry 1
2 Materials

= Edit Mode Run Plot Set Value Show
Show as Dialeg Import File (&) Enable @) Disable

Action: | Deselect

-

"
Command lcon Arguments

Disable Heat Source 1 @

=% i

224 |

The next figure shows the command sequence for Select with a command Enable
Heat Source.

+ (Choose Commands to Run b

b [Libraries
4 & Model (root)
I () Global Definitions
4 im Component 1 (compl)
[= Definitions
A\ Geometry 1
I 5z& Materials
4 |[@ Heat Transfer in Solids (ht)
|&= Heat Source 1
= Temperature 1
mw Heat Flux 1

=# Edit Node Run Plot Set Value Show
Show as Dialeg Import File (&) Enable @ Disable

Action: | Deselect -

» Select
Com

Deselect
Enable HearsooreeT ™

==

A toggle button is similar to a check box in that it is linked to a Boolean variable.
For a toggle button, you define the action by using a command sequence, whereas

for a check box, you define the action by using an event. This is described in the
next section.

Check Box

A Check Box has two values: on for selected and off for cleared. The state of a
check box is stored in a Boolean variable in the Declarations node.

| 225

USING A CHECK BOX TO CONTROL VISUALIZATION

The figure below is from an application where a deformation plot is disabled or
enabled, depending on whether the check box is selected.

Deformation DEfDrmatiDE‘L

Compute Compute

&

The screenshot on the left shows the running application. The screenshot on the
right shows the corresponding form objects in grid layout mode.

In the example below, the state of the check box is stored in a Boolean variable
deformation, whose Settings window is shown in the figure below.

List of Variables

"

MName Initial value Description
deformation |true Deformation
tisesEH#

226 |

The figure below shows the Settings window for the check box.

- X
Mame: checkboxl =
Text: Deformation
Tooltip:
-+ Source & E
4 = Declarations

[» =0c String

4 @ Boolean

15 defarmation

[» < Model (root)

Use as Source Edit Mode
Selected source:

123 Boolean=deformation
Initial value: Custom value -
Initial state: Selected -

Value for selected: on

Value for cleared: off
Position and Size

Appearance

¥ Events

On data change: Local method -| 3 X

You associate a check box with a declared Boolean variable by selecting it from the
tree in the Source section and clicking Use as Source.

The text label for a check box gets its name, by default, from the Description field
of the Boolean variable with which it is associated.

The Initial value of the variable deformation is overwritten by the Value for
selected (on) or the Value for cleared (off) and does not need to be edited. When
used in methods, the values on and of f are aliases for true and false, respectively.
These values can be used as Booleans in if statements, for example.

The code statements below come from a local method that is run for an On data
change event when the value of the Boolean variable deformation changes.

model.result("pg1").feature("surfi1").feature("def").active(deformation);
useGraphics(model.result("pg1"), "graphicsi1");

| 227

USING A CHECK BOX TO ENABLE AND DISABLE FORM OBJECTS

The figure below shows a part of an application where certain input fields are
disabled or enabled, depending on if the check box is selected.

Find
Find prong length: [
Target frequency: 440 Hz

The figure below shows the Settings window for a check box associated with a
Boolean variable findlength used to store the state of the check box.

- X
MName: checkboxl E
Text:
Tooltip:
v Source ® + e
4 = Declarations
4 Boolean
1 findlength
& Model (root)
E‘ Use as Source =g Edit Node
Selected source:
123 Boolean=findlength
Initial value: Custom value -
Initial state: Cleared -

Value for selected: on

Value for cleared: off

The code statements below come from a local method that is run for an On data
change event when the value of the Boolean variable findlength changes.

setFormObjectEditable("main/inputfield1", !findlength);
setFormObjectEditable("main/inputfield5", findlength);
setFormObjectEnabled("main/inputfield5", findlength);
setFormObjectEditable("main/inputfield6", findlength);
setFormObjectEnabled("main/inputfield6", findlength);
solution_state = "inputchanged";

228 |

Combo Box

A Combo Box can serve as either a combination of a drop-down list box and an
editable text field or as a drop-down list box without the capability of editing.

USING A CoMBO Box To CHANGE PARAMETERS IN RESULTS

To illustrate the use of a combo box, consider an application where the user selects
one of six different mode shapes to be visualized in a structural vibration analysis.
This example uses a Solid Mechanics physics interface with an Eigenfrequency
study and is applicable to any such analysis.

These six mode shapes correspond to six different eigenfrequencies that the user
selects from a combo box:

Frequency: | Fundamentaltone =

Fundamental tone
Overtone 1
Overtone 2
Overtone 3
Overtone 4
Overtone 5

In this example, the combo box is used to control the value of a string variable
mode. The figure below shows the Settings window for this variable.

Settings
5tring
List of Variables

L - A
MName Initial value Description

mode 7 Mode number

| 229

Selecting the Source
The figure below shows the Settings window for this combo box.

- X
Mame: combobox] E
¥ Source & E
4 = Declarations
4 =wc String
=2 mode
Use as Source Edit Mode
Selected source:
asc String=mode
Initial value: | From data source -
+ Choice List ® +

Available: Selected:
<%» Choice List 1 {choicelist1}

[] Allow other values

In the Source section, you select a scalar variable that should have its value
controlled by the combo box and click Use as Source. In the Initial values list of the
Settings window of the combo box, choose a method to define a default value for
the combo box. The options are First allowed value (the default) and Custom
default. For the Custom default option, enter a default value in the associated field.
The default value that you enter must exist among the allowed values.

Choice List

The vibrational modes 1-6 correspond to trivial rigid body modes and are not of
interest in this application, hence the first mode of interest is 7. A choice list allows
you to hide the actual mode values in the model from the user by only displaying
the strings in the Display name column; the first nonrigid body modes are named
Fundamental tone, Overtone 1, Overtone 2, etc.

230 |

In the section for Cheice List, you can add choice lists that contribute allowed
values to the combo box. The Choice List declaration associated with this example
is shown in the figure below.

[Events e
4 = Declarations ett gs
<Z» Choice List 1 {choicelist1} = List
anc String
| Methods Label: Choice List1

MName: choicelist]

List Content

" Value Display name

7 Fundamental tone
8 Overtone 1

9 Overtone 2

10 Overtone 3

11 Overtone 4

12 Overtone 5
tisyeH

The string variable mode is allowed to have one of these six values: 7, 8,9, 10, 11,
or 12. The text strings in the Display name column are shown in the combo box.
In the Settings window of the combo box, you can select the Allow other values
check box to get a combo box where you can type arbitrary values. Such combo
boxes can accept any value and are not restricted to the values defined by the
choice lists. In this example, however, only six predefined values are allowed.

For more information on choice lists, see “Choice List” on page 156.

Events

In the Events section, specify a method to run when the value of the combo box,
and thereby the string variable used as the source, is changed by the user. In the
present case, the value of the variable mode is changed, and a local method is run,
as shown below.

¥ Events

On data change: | Local method | 3 X

The code for the local method is listed below.

with(model.result("pgl1"));
set("looplevel”, new String[]{mode});

endwith();

model.result("pg1").run();

| 231

This code links the value of the string mode to the Eigenfrequency setting in the

Plot Group pg1. In this case, the string svar takes the values "7", *8", "9", "10",
II11 II’ Or II12II'

The code above can be generated automatically by using the recording facilities of
the Method Editor:

* Go to the Model Builder and, in the Developer tab, click Record Method.

* By default, when using an Eigenfrequency study for a structural mechanical
analysis, a Mode Shape plot group is created. In this plot group, change the
Eigenfrequency from mode 7 to mode 8. In the figure below, this corresponds
to changing from 440 Hz to 632.89 Hz in the Settings window for the Mode
Shape plot group.

Settings ~r
3D Plot Group

@ Plot K= 4= = =

Label: Mode Shape (solid) =
¥ Data
Dataset: Study 1/Solution 1+ | |34
Eigenfrequency (Hz): | 632.89 -
. 0.013365i
Selection 0015751
Title 0.056785i
Plot Setti 0.0054629
hd
ot Setlings 0012175
View: | Automatic | 0057117
X | 440
[] Show hidden entiti TR

[Propagate hiding t{ o,
Plot dataset edges 11575
Color: Black 2756.1

Frame: Material (: 30828 .

» Click Stop Recording.

The resulting code is shown below.

with(model.result("pg1"));
set("looplevel", new String[]{"8"});
endwith();
model.result("pg1").run();
Now change the string "8" with the variable mode to end up with the code listing
above. This will be stored in a method, say, method1. To create the local method

232 |

associated with the combo box, copy the code from method1. Then, delete
method1.

Using Data Access

A quicker, but less general way, of using a combo box is to use Data Access in
combination with Editor Tools. For the example used in this section, you start by
enabling Data Access and, in the Settings window of the Mode Shape plot group,
select the Eigenfrequency, as shown in the figure below.

tings bl)

3D Plot Group

Plot

Label: Mode Shape (solid)

¥ Data
Data set: Study 1/Solution 1 (soll) 2]
Eigenfrequency: ||| 632.89 v

In the Editor Tools window, the Eigenfrequency parameter is visible as Loop Level.
To create a combo box, right-click Loop Level and select Input.

Editor Tools LA 28
Sy EditNode =t El

D Main Window
I U Forms

[u GUI Cormmands

[Declarations

I By Methods

b [Libraries

4 % Model (root)

() Global Definitions

[T Component 1 (compl)
[~do Study 1
4 ([Results
I #: Datasets
|
|
|
a

L~ Views

£ Derived Values
B Tables
VB Mode Shape (beam)
=uc Eigenfrequency (Hz) (looplevel, i=1)
b ™ Surface 1
Export
55 Reports

Input

Output

! B

» Edit Node

The generic name Loop Level is used for a solution parameter. If a solution has two
or more parameters, then there are two or more loop levels to choose from.

| 233

The figure below shows the Settings window of the corresponding combo box.

Settings
Combo Box
MName: comboboxd E
* Source ,:_E, 4 |:|

[= Declarations
@ Model (root)

I () Global Definitions

[T Component 1 (compl)

4 ([Results

4 @ Mode Shape (beam)
afd Eigenfrequency (Hz) (looplevel, i=1)
b ™ Surface 1

[8

Use as Source Edit Mode
Selected source:

asc Mode Shape (beam)=Eigenfrequency (Hz) (looplevel, i=1)

Initial value: | First allowed value -
¥ Choice List @ +
Available: Selected:

aoc Eigenfrequency (Hz) (looplevel, i=1)

[] Allow other values

The choice list Loop Level is automatically generated when inserting a combo box
using Editor Tools. Note that a choice list generated in this way is not displayed
under the Declarations node and cannot be modified by the user. For greater
flexibility, such as giving names to cach parameter or cigenfrequency value, you
need to declare the choice list manually, as described in the previous section.

USING A CoMBO Box To CHANGE TIMES

The time parameter list specified in a Time Dependent study step can be used in
many places under the Results node. In an application, the individual time
parameters can be accessed in a similar way to what was described in the last
section for parameters, by using Data Access in combination with Editor Tools.

234 |

In the Settings window in the figure below, Data Access has been used to access the
Time parameter list in a temperature plot.

-1

Label: Temperature, 3D (ht)

~ Data

Data set: Revolution 2D 1 E

Time (s): v | 70

In Editor Tools, a handle to the Time list is now available, as shown in the figure
below.

Editor Tools TAX
=y Edit Node =T

D Main Window
I U Forms
3 u GUI Cormmands
I By Methods
b [Libraries
4 & Model (root)
I () Global Definitions
3 !- Component 1 (compl)
[+~ Study 1
4 ([Results
3 Datasets
=L Views

£ Derived Values
B Tables
VB Temperature, 30 (ht)
aoc Time (s) (looplevel, i=1)

[

™ Surface = Input
I [l sothermal Contours (ht) Output
Export
3 Reports =s Edit Node

| 235

By selecting Input, you can create a combo box using it as Source, as shown in the
figure below.

Settings X

Mame: comboboxl E
* Source R

= Declarations
@ Model (root)
4 @, Results
4 @ Temperature, 3D (ht)
18 Time (5) (looplevel, i=1)

h

Use as Source Edit Mode
Selected source:

123 Temperature, 3D (ht)=Time (s) (looplevel, i=1)

Initial value: | From data source -
¥ Choice List
Available: Selected:

123 Time (s) (looplevel, i=1)

The combo box can be used for multiple purposes, for example, to update a plot
corresponding to a different time parameter. In order for a plot to automatically
update when a user uses the combo box to select a new time parameter, add an
event to the combo box at the bottom of its Settings window. In the figure below,
a method plot_T is called for updating a temperature plot.

¥ Events

On data change: | plot.T - 3 +

The line of code below shows the contents of the method plot_T:
model.result("pg1").run();

236 |

The end result is a combo box in the application user interface, shown in the figure
below, which automatically updates a temperature plot when the user selects a new

value for the Time list.

Time (s): 70 -

o]

120
130

Interpolation

USING A CoMBO Box To CHANGE MATERIAL

Consider an application where combo boxes are used to select the material. In this
case, an activation condition (see “Activation Condition” on page 157) can also
be used for greater flexibility in the user interface design.

The figure below shows screenshots from an application where the user can choose
between two materials, Aluminum or Steel, using a combo box named Material. A
second combo box called Alloy shows a list of Aluminum alloys or Steel alloys,

according to the choice made in the Material list.

Material:
Alloy:
Material: Aluminum -
Alloy: Aluminum 3003 =
Aluminum 3003
Aluminum 6063

Aluminum, generic

Aluminum -

Aluminum
Steel

Aluminum 3003 =

Material:

Alloy:

Steel -

Steel AISI 4340 -

Steel AlSI 4340

Structural steel, generic

| 237

The material choice is implemented in the embedded model using global materials

and a material link, as shown below.

Model Builder

- = v =t

—
4

4 & Steel_rod.mph (root)

4 () Global Definitions

Pi Parameters 1
4 iE Materials

[» 5g= Aluminum 3003-H18 (mat1)
[» 2g= Aluminum 6063-T83 (mat2)
[2g= Aluminum (mat3)
[» 5g= Steel AlSI 4340 (matd)
[» Eg= Structural steel (mat3)
Component 1 {comp 1)
= Definitions
A\ Geometry 1
2 Materials

==& Material Link 1 (matink1)
+_ Electric Currents (ec)
[El Heat Transfer in Solids (ht)
iry Multiphysics
A5 Mesh 1
[~do Study 1
b {8 Results

[8
N |

- v v

Label: Material Link 1

Geometric Entity Selection

Geometric entity level: | Domain
Selection: All domains
|
Active

Override

¥ Link Settings

Material: | Aluminum 8063-T23 (mat2) -

MNone

Aluminum 3003-H18 (mat1)
Aluminum 6063-T83 (mat2)
Aluminum (mat3)

Blec] Steel AlSI 4340 (mat4)

Structural steel (mat53)

¥ Mate

EYEEiEY

Density rtho
Thermal conductivity k_iso ..
Relative permeability mur_i...

Coefficient of thermal expansi... |alpha_...
Young's modulus E
Poisson's ratio nu

Bt

2700[kg...
201[W/(...
-
23.4e-6[...
69e9[Pa]
033

Each material is indexed with a string: mat1, mat2, ..., mat5. An event listens for
changes to the value of the global variable alloy, where the value is controlled by
a combo box. When the value is changed, the method listed below is run.

with(model.material("matlnk1"));

set("link", alloy);
endwith();

238 |

The figure below shows the declaration of two string variables, material and
alloy, which are controlled by the Material and Alloy combo boxes, respectively.

Settings
5tring

List of Variables

"

MName Initial value Description
material aluminum Material
alloy mat1 Alloy

The application utilizes three choice lists: Aluminum Alloys, Steel Alloys, and
Material.

Activation Condition
An activation condition is used for the Aluminum Alloys and Steel Alloys choice lists,
as shown in the figure below.

4 = Declarations
4 &> Aluminum Alloys {choicelist 1}
<Z» Activation Condition {actcond 1}
4 &> Steel Alloys {choicelist2}
<z» Activation Condition {actcond 1}
<Z» Material {choicelist3)
anc String

| 239

The Settings window for the Material combo box is shown below.

Settings
Combo Box
MName: combobox] E
- Source & E

4 = Declarations
4 =oc String
18 material
123 alloy
@ Model (root)

Use as Source Edit Mode
Selected source:

123 String=rnaterial

Initial value: | First allowed value

¥ Choice List ® +
Available: Selected:
<> Aluminum Alloys {choicelist]} <> Material {choicelist3}

<> Steel Alloys {choicelist2}

[] Allow other values

Note that the Material combo box uses the material string variable as its source.
The Material choice list is used to define a discrete set of allowed values for the

240 |

material string variable. The Settings window for the Material choice list is shown

below.

Label: Material

MName: choicelist3

List Content

"
Value Display name
aluminum Aluminum
steel Steel
LY
Tt 1=5h H

| 241

The Settings window for the Alloy combo box is shown in the figure below.

- X
MName: combobox2 E
-+ Source & E

4 = Declarations
4 =vc String
123 material
13 alloy
[» < Model (root)
E‘ Use as Source =g Edit Node
Selected source:
123 String=alloy

Initial value: | First allowed value -
= Choice List ® +

Available: Selected:

<> Material {choicelist3} <> Aluminum Alloys {choicelist]}

<> Steel Alloys {choicelist2}

[] Allow other values

242 |

Note that the Alloy combo box uses both the Aluminum Alloys and the Steel Alloys
choice lists. The choice list for Aluminum Alloys is shown in the figure below.

Label: Aluminum Alloys

MName: choicelist]

List Content

"
Value Display name
matl Aluminum 3003
mat2 Aluminum 6063
mat3 Aluminum, generic
tishvmd

| 243

The activation condition for the Aluminum Alloys choice list is shown in the figure
below.

- X
Label: Activation Condition
MName: actcondl
+ Source & E

4 = Declarations
4 =oc String
15 material
123 alloy
& Model (root)

E‘ Use as Source =g Edit Node
Selected source:

123 String=mnaterial
¥ Condition

»
Activating values

aluminum

==

[1 Invert condition on input values

USING A CoMBO Box To CHANGE ELEMENT SIzE

When creating a combo box, you can use the Data Access functionality to
reproduce the features of a combo box that exists within the Model Builder. For

244 |

example, consider an application where a combo box is used to change the
element size in a mesh, as in the figure below.

Element size: | MNormal -

Extremely fine
Extra fine
Finer

Fine

MNormal

Coarse

Coarser
Extra coarse

Extremely coarse

Switch to the Model Builder and select the Mesh node (we assume here that the
model has just a single mesh). In the Settings window of the Mesh node, select
User-controlled mesh (if not already selected). In the Size node, directly under the
Mesh node, select the option Predefined. Click Data Access in the ribbon. This gives
access to the combo box for a predefined element size, as shown in the figure
below.

Settings v

% Build Selected [§§ Build All
Label: Size E

Element Size

Calibrate for:

General physics -
® predefined /]| Normal =
) Custom

Select the green check box to the left of the list to make it available as a source for
a combo box in the Application Builder. Then, when you return to the Application
Builder, you will find that the choice list for mesh size is now revealed as a
potential Source in the Settings for a new combo box.

| 245

To insert the combo box object, you have two alternatives:

+ Sclect Combo Box from the Insert Object menu in the ribbon. In the Settings
window for the combo box, select the node Predefined size (hauto) in the
Source section and then click the Use as Source button.

 In the Editor Tools window, select the node Predefined size (hauto) under the
Mesh > Size node. Then right-click and select Input, as shown in the figure
below.

Settings Editor Tools X v
=g Edit Node =T

D Main Window
[Forms
[u GUI Cormmands
b [Libraries
4 & Model (root)
I () Global Definitions
4 im Component 1 (compl)
= Definitions

A\ Geometry 1

22 Materials
+_ Electric Currents (ec)

B Heat Transfer in Solids (ht)
iry Multiphysics

4 S Mesh1
- .ﬁ%é Size
8.5 Predefined Size (Hauto)
&, Free Tetrahedral 1 = Input
[~do Study 1 = Output
4 ([Results
Data Sets S¢ EditNode

246 |

The corresponding Settings window for the combo box is shown in the figure
below.

- X
Mame: combobox] E
~ Source @+ B
= Declarations
4 & Model (root)
I () Global Definitions
4 im Component 1 (compl)
4 S Mesh1
f Size
s[5 Predefined size (hauto)
E‘ Use as Source =g Edit Node
Selected source:
8.5 Size=Predefined size (hauto)
Initial value: | From data source -
+ Choice List ® +

Available: Selected:
8.5 Predefined Size (Hauto)

[] Allow other values

Changing the Initial value to From data source ensures that the element size setting
of the model, in this case Normal, is used as the default element size in the
application. The choice list, Predefined size (hauto), from the Model Builder is now
selected as the choice list for your combo box in the Application Builder. This
choice list does not appear as a choice list under the Declarations node of the
application tree because it is being referenced from the Model Builder. Therefore,
if you want a list with a more limited set of choices, you cannot edit it. Instead,
you have to remove the predefined list as the Source of your combo box and create
a new choice list of your own by declaring it under the Declarations node. For

| 247

example, you can create a choice list with three entries, as shown in the figure
below.

ettings

[

Label: Choice List1

MName: choicelist]

List Content

"
Value Display name
4 Fine
5 Mormal
6 Coarse
tisvyeH

To learn which values are used by the Element size list in the model, use Record a
New Method and change the value from Normal to Fine, then to Coarse, and then
back to Normal. Click Stop Recording and read the values in the autogenerated
code. The Element size property name is hauto and the values for Fine, Normal, and
Coarse arc 4, 5, and 6, respectively, as implied by the automatically generated code
shown in the lines below.

with(model.mesh("mesh1").feature("size"));
set("hauto", "4");
set("hauto", "6");
set("hauto", "5");
endwith();
The hauto property can also take non-integer values. For more information on
Element size, see “Data Access for Input Fields” on page 104.

USING A UNIT SET INSTEAD OF A CHOICE LIST

If the combo box will be used for the purpose of changing units, then a Unit Set
can be used instead of a Choice List (you still select it in the Choice List section of
the Settings window of the combo box).

248 |

Equation

An Equation object can display a LaTeX equation by entering the expression in the

Enter equation in LaTeX syntax ficld.

MName: equationl

* Equation

Enter equation in LaTeX syntax:

-\nabla \cdot (k \nabla u)
Equation preview

-V (kVu)

¥ Position and Size

Width: 67

Height: 20

Positionx: 644

Position y: 368

¥ Appearance

Text color: | Inherit

Fontsize: | Default size
State

Visible

Enabled

=h~

X

pt

A preview is shown of the rendered LaTeX syntax after leaving the text field.

| 249

Line

Use the Line form object to add a horizontal or vertical line to a form, which can
be used, for example, to separate groups of form objects. For the horizontal line
option, you can also add text that appears within the line.

Settings = L1
MName: linel E
¥ Settings
Orientation:

Horizontal -
[Include divider text

Text:

¥ Position and Size

Width: 200
Height: 1

Positionx 622
Positiony: 579

¥ Appearance

Text color: Inherit -

Font: Default font -

Font size: Default size v opt

[] Bold

[] Italic

Line thickness: 1

Line color: Default -
State

Visible

Enabled

250 |

Web Page

A Web Page object can display the contents of a web page as part of the user
interface.

Settings TAX

Mame: webpagel =
¥ Source
. URL vi
Page URL:

https:/fwww.comsol.com/products

Browser preview

W COMSsOoL Q ME A

The

AN ACTD &

¥ Position and Size

Width: 240
Height: 100
Positionx 633
Position y: 437
¥ Appearance

Visible

You can specify the page source in four different ways from the Source list:

» Use the default option Page to enter HTML code in a text arca below the
list, enclosed by the <html> and </html> start and end tags.

» Use the URL option to link to a web page on the Internet.

» Use the File option to point to a local file resource containing HTML code.
Type the name of the file in the File ficld or click Browse to locate the file on
the local file system.

» Use the Report option to embed an HTML report. The Browser preview is
not active for this option.

| 251

Image

Use an Image form object to add an image to a form. An image object is different
from a graphics object in that an image object is not interactive. Choose an image
file from one of the library images, accessible from a drop-down list, or by clicking
the Add Image to Library and Use Here button to select a file from the local file
system. The figure below shows the Settings window for an image object
referencing the image cube_large.png, defined in the Libraries node.

Settings TAX

Name: imagel =
Image: 2 cube_large.png - |4+| B

¥ Position and Size

Harizontal alignment: Left =
Vertical alignment: Top =
Width: 256
Height: 256
Rowe: 2
Column: 2
Row span: 1
1

Column span:

Cell margin

Cell margin: From parent form =

¥ Appearance

Visible
Enabled

If you select an image file from your file system, this file will be embedded in the
application and added to the list of Images under the Libraries node.

While you can change the x- and y-position of the image, the width and height
settings are determined by the image file.

You can paste images from the clipboard to a form window by using
Ctrl+V. For example, you can copy and paste images from the
PowerPoint® slide presentation software. Such images will be added
automatically to the Images library and embedded in the application. The
names for pasted images are automatically set to: pasted_image_1.png,
pasted_image_2.png, etc.

252 |

Video

A Video object embeds a video file in a form. The supported video file formats are
MP4 (.mp4), OGV (.ogv), and WebM (.webm). However, not all video file
formats are supported on all platforms. When running an application by
connecting to COMSOL Server from a web browser, which formats are supported
depend on the web browser and may vary with different versions of the same web
browser. When running an application with the COMSOL Client and with
COMSOL Multiphysics, the Internet Explorer version installed on your computer
is used as a software component for displaying the video object.

After added to a form, the Video object is represented, in the Form Editor by an
image, as shown in the figure below.

The figure below shows the Settings window for the Video object.

Settings v RX
Name: videol =
Video: | instructions.mpd |+ =

Show video controls
[] Start automatically

[] Repeat
[Initially muted

¥ Position and Size

Width: 412
Height: 300
Positionx: 104
Position y: 430

¥ Appearance

Visible

The available settings are:

¢ Show video controls

| 253

e Start automatically
* Repeat

¢ Initially muted

The option Show video controls enables the video controls such as Play and Stop.

The option Initially muted is intended for the case where you want to play a video
with the sound initially turned off. For example, if the video is set to start
automatically, it can be useful to let the user choose whether the sound should be
on. The user can enable the sound ecither from the video controls, if the check box
Show video controls is selected, or by right-clicking in the video player.

Progress Bar

A Progress Bar object displays a customized progress bar, or set of progress bars,
based on a value that is updated by a method. Use a progress bar to provide
feedback on the remaining run time for an application. The figure below shows
the Settings window of a progress bar object with one progress level.

Settings

Progress Bar

MName: progressharl =
Include model progress

Progress levels: | One -

Cancel button
Close dialog when canceled

¥ Position and Size
Width: 375
Height: 100
Positionx: 20

Positiony: 20
¥ Appearance

Visible
Enabled

Note that the built-in progress bar that is visible in the status bar of an application
is controlled by the Settings window of the Main Window node. By default, the
built-in progress bar shows the progress of the built-in COMSOL Multiphysics
core algorithms, such as geometry operations, meshing, and solving. By using the
setProgress method, you can customize the information shown in the built-in

254 |

progress bar. For more information, see “Progress Methods” on page 342 and the
Application Programming Guide.

The figure below shows the Settings window of a progress bar object with two
progress levels.

Settings
Progress Bar
MName: progressharl =

Include model progress
Progress levels: | Two -

Cancel button
Close dialog when canceled

In this example, the progress bar object is part of a form progressform used to
present a two-level progress bar and a message log.

The figure below shows the corresponding progress dialog box in the running
application.

3 Progress
Computing frequency.

Compute

Cancel

MNumber of degrees of freedom solved for: 24012,

| 255

The figure below shows the form progressform.

D progressform X

h 4

Progress message

Progress message .

Cancel

The code segments below show typical built-in methods used to update the
progress bar and the message log.

// show progress dialog box:
dialog("progressform");
setProgressBar (" /progressform/progressi", 0, "Computing prong length.");

/| code for iterations goes here:
lastProgress = 20;
/1

// update message log:

message("Iteration Number: " + k);

message ("Frequency: " + Math.round(fgq*100)/100.00);
message("Length: " + Math.round(L1*100)/100.00);

// update progress bar:

setProgressInterval("Computing frequency", lastProgress,
k*100/MAXITERATIONS) ;

// more code goes here:

/1

// finished iterating:
setProgressBar (" /progressform/progressi”, 100);
closeDialog("progressform");
In the example above, the central functionality for updating the two levels of
progress bars lies in the call

setProgressInterval("Computing frequency", lastProgress,
k*100/MAXITERATIONS).

256 |

For detailed information on the built-in methods and their syntax, see “Progress
Methods” on page 342 and the Application Programming Guide.

Log

The Log form object adds a log window that displays messages from the built-in
COMSOL Multiphysics core algorithms, such as geometry operations, meshing,
and solving.

The Include standard log toolbar check box is selected by default. When selected,
the toolbar in the Log window that you see in the COMSOL Desktop is included
in the application.

Settings
Log
Name: logl E

[] Include standard log toolbar

¥ Position and Size

Horizontal alignment: | Fill -
Vertical alignment: Fill -
Minimum width: Automatic -
Minimum height: Autornatic -
Row: 6
Column: 6
Row span: 1
Column span: 1
Cell margin
Cell margin: From parentform =

The figure below shows a part of an application user interface containing a log
window.

@Y =

Scluticn errcr estimates for segregated groups

2.3e-016, 0.0008&

Residual error estimates for segregated groups

9.4e-009, 38

Staticnary Sclver 1 in Socluticn 1: Seluticn time: 1 3
Physical memory: 1.9% GB
Virtual memory: 2.12 GB

| 257

Message Log

The Message Log object adds a window where you can display messages to inform
the user about operations that the application carries out. Implement this feature
using the built-in message method with syntax: message (String message). See
also “GUI-Related Methods” on page 337.

Mame: messages] =

Include standard message log toolbar
Show COMSOL messages
[] Add timestamps to messages.

¥ Position and Size

Horizontal alignment: | Fill -

Vertical alignment: Fill -

Minimum width: Manual -
350

Minimum height: Manual =
150

Rowe: 3

Column: 1

Row span: 1
1

Column span:
Cell margin

Cell margin: From parentform =

You can also display the value of a variable, for example: message (double
xcoordinate).

The Include standard message log toolbar check box is selected by default. When
selected, the toolbar in the Messages window that you see in the COMSOL
Desktop is included in the application. The Show COMSOL messages check box is
selected by default to enable messages from the built-in COMSOL Multiphysics
core algorithms, such as geometry operations, meshing, and solving. Clear the
check box to only allow messages from the application itself. You can include time
stamps to message by selecting the check box Add timestamps to messages.

258 |

The figure below shows a customized message window with convergence
information from a method (left) and the corresponding Message Log form object

(right).

Iteration Mumber: 1
Frequency: 406.04
Length: 82.6
Iteration Mumber: 2
Frequency: 427.82
Length: 81.26
Iteration Mumber: 3
Frequency: 440.78
Length: 81.35
Iteration Mumber: 4
Frequency: 439.98
Length: 81.34

Results Table

Messages

The Results Table object is used to display numerical results in a table.

8.85
13

0 0.0000003365779548403225
10 0.0071499008730029345
20 0.10522781133681747
30 0.8747185765842573

40 3.407663238058911

50 8.385166250608506

60 15.835540221745532

70 2536691 2864333813

80 36.42264267649

90 48.73368219163317

100 61.88239814841544

110 75.47835598614932

120 89.37132906334898

130 103.40292660608316
140 117.41553076867922
150 131.41380951262022
160 145.32287441615495

85 850)
el e3 9085 @ o

Time (s} Temperature (degC), Point: (0.1, 0.3)

The source of the results table data is taken from Results and can be a child node
of Derived Values, a Table, or an Evaluation Group. In the figure below, a Table node

| 259

is used as the source (by selecting this option in the tree and then clicking Use as
Source.)

X

MName: resultstablel =

Include standard results table toolbar
Show headers

¥ Source

4 & Model (root)

4 ([Results
4 £ Derived Values
£ Point Evaluation 1
4 R Tables
Table 1

@_‘ Use as Source %, Clear Source
= Edit Node
Selected source:

B Table1

By clearing the check box Show headers, you can choose to hide the column
headers of the results table.

RESULTS TABLE TOOLBAR

The Include standard results table toolbar check box is selected by default. When
selected, a toolbar is included that provides the following buttons:

* Full Precision

* Automatic Notation

¢ Scientific Notation

¢ Engineering Notation

¢ Decimal Notation

¢ Rectangular Complex Numbers

¢ Polar Complex Numbers

¢ Copy Table and Headers to Clipboard
¢ Export

260 |

The Export button is used to export to the following file formats:
o Text File (.txt)
« Microsoft® Excel Workbook (.x1sx)

- Requires LiveLink™ for Excel®

* CSV File (.csv)
+ Data File (.dat)

This is shown in the figure below.

Text File (*.txt) ~

Microsoft Excel Workbook (*.dsx)
C5V File (*.csv)

Data File (*.dat)

All Files (*%)

CONTROLLING RESULTS TABLES FROM METHODS

There is a built-in method useResultsTable() for changing which table is shown
in a particular results table form object. For more information on this built-in
method, see “GUI-Related Methods” on page 337.

Form

A form object of the type Form is used to organize a main form in one or more
subforms. To embed a subform, you create a link to it by selecting the form you
would like to link to from the Form reference of the Settings window for the

| 261

subform. The figure below shows an example where one of the cells of the form
main has a link to the form input.

@ Preview D main X Sett"”gs
v
Form
>
Gas Box Designer Name: subform S
Form: input ~| |3
P
Input ressure [Addborder
Pipe length: 2[m] m @ Q B -
¥ Position and Size
Pipe diameter: 3.5[mm] m
Ternperature: 300[K] Horizontal alignment: | Fill -
Process chamber pressure: 10[Terr] Pa Vertical alignment: Fill =
Spacing between pipes: 0.125[m] 0 Minimum width: Automatic -
Flow rate and fluid properties: Minimum height: Automatic -
= Row: 3
Flow rate (scem) Molecular weight (kg/mel) Dynamic viscosity (Pa-s) Column: ;
Row span: 1
Colurnn span: 1
Cell margin
Cell margin: MNone -

The figure below shows the referenced form input.

@ Preview D main D input X

v
»

Input

Pipe length: 2[m] F‘ m

Pipe diameter: 3.5[mm] g m

Temperature: 300[K] :b

Process chamber pressure: 10[Tarr] :b Pa

Spacing between pipes: 0.125[m] g m
= 3

Flow rate and fluid properties:

" Flow rate (sccm) Molecular weight (kg/maol) Dynamic viscosity (Pa-s)

Ht+ Y= J & & 4 =

|

If you are using grid layout mode, then you can quickly create subforms using the
Extract Subform button in the ribbon. See “Extracting Subforms” on page 123.

262 |

Form Collection

A Form Collection object consists of several forms, or panes, presented in a main
form. In this example, there are four forms that appear as tabs in a single main
window.

X
Meme: collection?
= Type: | Tabs -
Tempersture | Conversion | Tempersture Profiles | Conversion Profiles
= Active Pane Selector
aafnl e EMO +@ & 4 = Declarstions
4 = String
8 graphecs_pane
122 email 1o
123 saliian_state
% Clear Saurce
Selected source:
128 Singmgraphics_pane
v Panes
Use selected forms a5 panes:
Aoailable: Selected
[sescrmption ™ ternperature
infarmation | camversion
[Jinput = | temperature_prafile
7 conversion_pretile
Default pane: tempersture -

There are four different layout options. From the Type list, choose between:
* Tabs, the default setting, which displays the forms using tabbed panes.

« List, which displays a list to the left of the form panes, where you can select
the form to display.

 Sections, which displays each form in a separate section.

* Tiled or tabbed, which displays the forms in one of two ways depending on
the value of a Boolean variable. For more information, see the description
later in this section.

In the Panes section, in the Use selected forms as panes list, cach form represents a
pane. These will be displayed in the application in the order they appear in the list.
You can change the order by clicking the Move Up and Move Down buttons to the
right.

You can control which tab (or list entry) is active by linking to a string variable in
the section Active Pane Selector.

The string variable needs to be equal to one of the form names in the form
collection, such as temperature or conversion in the example above. Otherwise,
it will be ignored.

| 263

If you change the value of the pane selector pane in the above example, in a
method that will be run at some point (a button method, for example), then the
pane with the new value will be activated, as shown in the example below.
pane=”"conversion”; /* Activate the conversion pane on completion of this
method */
For a form collection with the Type set to Sections, the Active Pane Selector has no
effect. Using an Active Pane Selector is optional and is only needed if you wish to
control which tab is active by some method other than clicking its tab. To remove
a string variable used as an Active Pane Selector, click the Clear source toolbar
button under the tree.
The Tiled or tabbed option displays the forms in one of two ways depending on
the value of a Boolean variable used as source in a Tiled or Tabbed section at the
top of the Settings window.

Mame: collectionl =

Type: Tiled or tabbed -

+ Tiled or Tabbed & E

4 = Declarations

4 B Boolean
TE| display

@ Model (root)

E‘ Use as Source =g Edit Node
Selected source:
123 Boolean=display

Tiled mode settings
Add borders in tiled mode

Tiling strategy: Colurnns first -
MNumber of columns: 2

Active Pane Selector @+ B

Panes ®

The tabbed mode is identical to a form collection with the Type set to Tabs. In
tiled mode, all the forms are shown simultaneously in a grid. The layout for
the tiled mode can be controlled by the settings in the subsection Tiled mode
settings.

264 |

Card Stack

A Card Stack is a form object that contains cards. A Card is another type of form
object, one that is only used in the context of a card stack. Flip between cards in
a card stack to show one at a time. You associate a card stack with a data source
that controls which card to show. Each card specifies a value that is compared
against the data source of the card stack. The card stack shows the first card with
the matching value. If no cards match, nothing is shown.

USING A CARD STACK TO FLIP BETWEEN GRAPHICS OBJECTS

Consider an application where the graphics shown to the user depend on the value
of a scalar variable. This variable may change when a user clicks, for example, a
radio button. The variable may also change depending on a computed value; for
example, the value of a Global Evaluation node in the model tree.

The figure below shows the card stack object in the Form Editor.

In this example, the card stack contains cards with graphics objects.

| 265

The figure below shows a card stack Settings window with five cards and a string
variable display as its Active Card Selector.

Settings v EX
Card Stack
Mame: hintsGlossaryCardstack =
w Active Card Selector & E
4 = Declarations

[=bc String

[» =5 Double

4 @ Boolean
@ islnitialized
isShowHintsGlossary
& Model (root)

@_‘ Use as Source =g Edit Node
Selected source:

@ Boolean=isShowHintsGlossary

¥ Cards

L A
Card Activating value
—hintsGlossary |true

+ &
¥ Position and Size
By clicking a row in the table of cards in the Cards section, followed by clicking

one of the toolbar buttons below the table, you can perform the following
operations on cards:

¢ Delete

¢ Edit

e Add Card

¢ Duplicate

Each row in the table contains the name of the card in the Card column and their
associated activating values in the Activating value column. The stack decides

which cards to display based on their activating values. In this example, the
activating value is a Boolean variable.

266 |

Clicking the Add Card button displays the following dialog box.

3 Add Card X
Card type: Local -
Name: Local
L Existing form
Activating value: “vereres
oK Cancel

By default, the Card type is set to Local, which means that the card is defined locally
in its containing card stack object. If the Card type is set to Existing form, then you
can instead select one of the existing forms. The settings for an Existing form are

accessed directly from the Form Editor by clicking its node or by clicking the Edit
button in the Card section of the corresponding card stack Settings window.

The figure below shows the Settings window of a Card as shown after clicking Edit
in the table in the section Cards.

Settings TAX

34 Goto Card Stack
Mame: electricPotential
¥ Card Activation
Activating value: electricPotential
Margins
Grid Layout for Contained Form Objects

Appearance

| 267

To access locally defined cards, right-click the card stack in a form window to
select between the different cards in the card stack, as shown in the figure below.

Edit card1
Edit card2
Edit card3
Edit card4
Edit card5

Duplicate card1
[5] Duplicate card2
[B] Duplicate card3
E—E Duplicate cardd
[B] Duplicate cards

Align 3
Row 3
Column 3

r5) Extract Subform

Copy as Code to Clipboard 3
$ocut Ctri+X
[Copy Ctrle C
[B] Duplicate Ctrl+Shift+D
M Delete Del
Settings
Help l

From this menu, you can also duplicate cards.

To edit cards, you can also use Alt+Click, which opens a dialog box that lets you
select multiple cards at once.

3 Open Cards X

Select cards to open:

card1
card2
card3
card4
card3

oK Cancel

268 |

The figure below shows card1 of the card stack resultsCardstack with a

graphics form object.

@ Preview D main D main: resultsCardstack: cardl X D main: resultsCardstack: card3 D main: resultsCardst
h 4

Qa@-@ il lyeli=h

G- --BEERM @I

In the Position and Size section you can change the alignment and size of the card

stack and cards.
* Position and Size

Harizontal alignment: Left

Vertical alignment: Fill

Width: Manual
328

Minimum height: Automatic

Adjust size to selected card

Rowe: 1
Column: 3
Row span: 1
Column span: 1

Cell margin
Cell margin: MNone

¥ Appearance

Visible
Enabled

When selected, the check box Adjust size to selected card makes it possible to have
the card stack adjust its size to the currently selected card. When not selected, the
card stack will be as large as the largest card, regardless of which card is selected.
Before version 5.6, the card stack always took the size of'its largest individual card,
which meant that even small or empty cards still took up space in the layout. Now,

| 269

when a card is empty, the card stack will disappear, which is a desirable feature in
many cases. Using it you can for example have a dynamic documentation card
stack appear and disappear depending on the user’s actions.

File Import

A File Import object is used to display a file browser with an associated input field
for browsing to a file or entering its path and name. It is used to enable file import
by the user of an application at run time, when the file is not available in the
application beforehand.

Consider an application where a CAD file can be selected and imported at run
time, as shown in the figure below.

CADfileto analyze: C\pipex_b Browse...

The corresponding File Import object is shown in the figure below.

CAD file to analyze: Browse... |+

270 |

The Settings window for the File Import object has a section File Destination. In this
section, you can select any tree node that allows a file name as input. This is shown
in the figure below, where the Filename for a geometry Import node is selected.

LA
(%5}

etting

e

Name: fileimport1 =

Button text: Browse...

Dialog title: File import

File types:
All 3D Importable Files (*.mphtt; *.mphbin; ..)
All 3D CAD Files (*.step; *.stp; *a_b; "t ..)
All 3D Mesh Files (*.mphtd; *.mphbin; *fla; ..}
All ECAD Files (*xml; *.zip; *.tar; *.tgz; ...)
AutoCAD File (*.dwg)

+
Allow entering file name

= File Destination ®

= Declarations
4 & Model (root)
4 im Component 1 (compl)
4 YA Geometry 1
4 & Import 1 (imp1)
a3 Filename (filename)
aoc Filename (meshfilename)

E‘ Use as Source =g Edit Node
Selected source:

aoc |mport 1 (imp1)=Filename (filename)

Access using: upload:///geom1/imp1/filename

In this application, the File types table

. O Add X
specifies that only CAD files are allowed.
You can further control which File types are File types:
allowed by clicking the Add and Delete i:: ;'['JEEEE';JF_I b o g
. . .- iles (*.dxf; *.m - * mphbin; ...
buttons below the list of File types. Clicking All 2D Importable Files (,,.mpphm *.mpphbin; K
the Add button displays the dialog box All 2D Importable Files (*.mphb; *.mphbin; ..)

All 2D Mesh Files (*.mphtd; *.mphbin; *fla; ...
All 3D CAD Files (*.step; *.stp; "o b; "2t)
All 3D Importable Files (*.mphtd; *.mphbin; ..)
All 3D Importable Files (*.mphtd; *.mphbin; ..)
All 3D Mesh Files (*.mphtd; *.mphbin; *fla; ..}
All COMSOL Files (*.mph; *.class)

shown to the right:

oK Cancel

| 271

ALTERNATIVES TO USING A FILE IMPORT OBJECT

If an input field for the file path and name is not needed, then there are other
methods for file import that allow a user to pick a file in a file browser. For
example, you can use a menu, ribbon, toolbar item, or a button to open a file
browser. The figure below shows the Settings window of a button used to import
a CAD file.

Settings = L&
Button i

Mame: button2 E
Text: Import Geometry

lcon: import_32.png |+ =
Style: Large -
Tooltip:

Keyboard shortcut:

mé

» (Choose Commands to Run

[u GUI Cormmands
[= Declarations
b [Libraries
4 & Model (root)
I (3 Global Definitions
4 im Component 1 (compl)
[Definitions
4 YA Geometry 1
4 & Import 1 (imp1)
123 Filename (filenarme)

123 Filename (meshfilename)
= Edit Node Run Plot Set Value Show

Show as Dialeg [E3 Import File Enable Disable

"
Command lcon Arguments

Impeort file to Impert 1 (imp1) | [E3

Build Geometry 1 7]

Plot Geometry 1 form1/graphicsl

Zoom extents form1/graphicsl
— .'El h

A File Import object can also reference a File declaration. For more information, see
“File” on page 158. For more information on file handling in general, see
“Appendix C — File Handling and File Scheme Syntax” on page 307.

The built-in method that corresponds to the command Import file is importFile.
For example, for importing an image you can use:

success=importFile("filel1",new
String[]{"ALL_IMPORTABLE_IMAGES","PNG","JPEG","BMP","GIF"});

272 |

Information Card Stack

An Information Card Stack object is a specialized type of Card Stack object used to
display information on the relationship between the inputs given by the user to an
application and the solution. The figure below shows a portion of a running
application in which an information card stack is used together with information
on the expected computation time.

Information
Expected computation time (find): 15s
I/':\ Last computation time: 13 5
€/

The corresponding form objects are shown below:

@ Preview D rnain D information X

v

Expected computation time (find): 155

Selution not yet available.

| 273

The figure below shows the Settings window where a string variable
solution_state is used as the source.

Settings

Information Card Stack

MName: infocardl E
+ Active Information Card Selector @ + B
4 Declarations

123 |nteger
25 Double
anc String
afd solution_state
< Model (root)

[Boolean
|
|
a

Use as Source Edit Mode
Selected source:

apc String=solution_state
¥ Information Cards

"
Activating value lcon Text

nosolution B | Scolution not yet available.
inputchanged A |Theinput data has changed since previous solution was computed.
solutionexists i |Last computation time:

+

There are similarities with a Card Stack object, but for the Information Cards, cach
card has an icon and text. In the figure above, the string variable values

nosolution, inputchanged, and solutionexists control which information
card is shown.

274 |

In this example, the information card stack is accompanied by a data display object
where a model tree information node for the Expected Computation Time is used
as the source. The figure below shows its Settings window.

sSettings VLB

L R

Mame: datadisplayl =

[] LaTeX markup
Tooltip: Intel Xeon E5-1650 v3 @3.50 GHz

~ Source @+ 5

| Declarations
4 & Model (root)
4 (1) Information
L&l Expected Computation Time
= Last Computation Time
I () Global Definitions
[~do Study 1

E‘ Use as Source =g Edit Node
Selected source:

= Information=Expected Computation Time

Note that information nodes in the model tree are only shown when working with
the Application Builder. They are made available in the Source section in the
Settings window for form objects, when applicable.

You can also find information nodes with Last Computation Time under each study.
The information node Last Computation, found directly under the Model node, will
correspond to the computation time for the last computed study.

Information nodes can be used as a source for input field objects, text objects, and
data display objects. For input field objects and text objects, in order for the
information nodes to be accessible, the Editable check box has to be cleared.

| 275

The Expected Computation Time take its data from the root node of the application
tree, as shown below.

Settings
tubular_reactormph
¥ Protection

Editing not protected Set Password
Running not protected = Set Password
¥ Used Products

COMSOL Multiphysics

¥ Presentation

Title: Tubular Reactor with Monisothermal Cooling

Description: This example describes a tubular reactor
where propylene oxide (A) reacts with
water (B] to form propylene glycol (C):

A+B->C
Author: COMSOL
Computation time
Expected: 55
Last: s

If the computation time is predominantly spent in a method, such as when the
same study is called repeatedly, then you can manually measure the computation
time by using the built-in methods timeStamp and setLastComputationTime.
For more information, see “Date and Time Methods” on page 342.

Array Input

An Array Input object has an input table used to enter array or vector-valued input
data. An array input object supports string arrays as data sources. You can add an
optional label, symbol, and unit.

276 |

USING AN ARRAY INPUT OBJECT FOR 3D POINT COORDINATE INPUT

Consider an application where the user enters 3D coordinates for a point where
the stress is evaluated. The figure below shows a screenshot from an application
with an array input, button, text label, and data display object.

Point coordinates:

0,001

-0,001

0,0005

Evaluate stress at point

Won Mises stress at point: 40,16 MPa

| 277

The figure below shows the Settings window of the array input object.

Name: arrayinput1 =
Length: 3

Show vectoras: | Table

~ Source & E

4 = Declarations
4 122 Array 1D Double
153 samplecoords

Use as Source Edit Mode
Selected source:
123 Array 1D Double=samplecoords

Initial value: | Custorn value -

"
Value

0.0

0.0

0.0

¥ Layout Options

Label position: | Above -

Label text: Point coordinates

[Include symbol

Symbol (LaTeX encoded): samplecoords

[Include unit

Custom unit

278 |

The Array Input form object uses a Source named samplecoords, which isa ID
Array of type Double. This array is created prior to the creation of the Array Input
object by declaring an Array ID Double with the following Settings.

ettin

LA

S

Ya

Array 1D Double

List of Variables

MName Initial values ~ MNew elementv Description
samplecoords |{0.0,0.0,0.0} 0.0 Sample coordinates
tisesEH#

In the Settings window of the array input object:

 In the Length ficld, enter the length of the array as a positive integer. The
default is 3.

* From the Show vector as list, choose Table (the default) to show the array
components as a table, or choose Components to show each array component
as a separate input field with a label.

* In the Value table, enter the initial values for the components in the array.

* The Layout Options section provides settings for adding optional labels and
units to the array input.

In this example, when the user clicks the button labeled Evaluate stress at point,
the following method is run:

with(model.result().dataset("cpt1"));
set("pointx", samplecoords[0]);
set("pointy", samplecoords[1]);
set("pointz", samplecoords[2]);
endwith();

where the values pointx, pointy, and pointz will be used subsequently as
coordinates in the evaluation of the stress.

| 279

Radio Button

A Radio Button object has a fixed number of options from which you can choose
one. It is most useful when you have just a handful of options.

USING RADIO BUTTONS TO SELECT A LOAD

Consider an application where the user can select one of three predefined loads,
as shown in the following figure.

Applied force:

® High load (300 N)
2 Medium load (150 N)
2 Light load (50 N)

280 |

The corresponding Settings window is shown below, where the global parameter
F is used as the source.

- X
MName: radiobuttonl E
Orientation: | Vertical -
v Source & E

= Declarations
4 & Model (root)

4 (7)) Global Definitions

4 P Parameters
153 Applied force (F)

Use as Source Edit Mode
Selected source:

123 Parameters=Applied force (F)
Initial value: | First allowed value -
¥ Choice List ® +

Available: Selected:
<%» Choice List 1 {choicelist]}

The Orientation can be set to Vertical (default) or Horizontal.

In the Initial value list, choose the manner in which the initial selection of the radio
button should be made. The options are From data source, First allowed value (the
default), and Custom value. For the Custom value option, select from a list of the
allowed values given by the choice list.

In the Choice List section, you can add choice lists that contribute allowed values
to the radio button object, where each valid value represents one radio button.

| 281

The radio button names are taken from the Display name column of their
associated choice list. The figure below shows the choice list used in this example.

Settings
Choice List
Label: Choice List1a

Mame: choicelist]

List Content

" Value Display name

300 High load (300 M)
150 Medium load (150 M)
50 Light load (50 M)
tisYymeH

USING A UNIT SET INSTEAD OF A CHOICE LIST

If the radio button will be used for the purpose of changing units, then a Unit Set
can be used instead of a Choice List (You still select it in the Choice List section of
the Settings window of the radio button object).

Selection Input

In the Application Builder, you can allow the user of an application to interactively
change which entities belong to an Explicit selection with a Selection Input object
or a Graphics object. For more information on selections, see “Selections” on page
88.

You can choose to use a graphics object as the source of a selection without
having any selection input object. You can also link both a graphics object
and a selection input object to the same explicit selection.

282 |

In the example below, the embedded model has a boundary condition defined
with an Explicit selection. Both a Selection Input object and a Graphics object are
used to let the user select boundaries to be excited by an incoming wave.

0.27]
0.17

The user can select boundaries here by clicking directly in the graphics window
corresponding to the Graphics object or by adding geometric entity numbers in a
list of boundary numbers corresponding to a Selection Input object.

To make it possible to directly select a boundary by clicking on it, you can link a
graphics object to an explicit Selection used to group boundaries, as shown in the
figure below. Select the explicit selection and click Use as Source.

| 283

In the figure below, there are two explicit selections, Excitation Boundary and Exit
Boundary, and the graphics object graphics2 is linked to the selection Excitation
Boundary.

Settings TAX

Name: graphicsl
Zoom to extents on first plot
[] Data picking
¥ Source for Initial Graphics Content
4 & Model (root)
4 T Component 1 (comp1)
4 = Definitions
4 g Selections
ﬁ Excitation Boundary
& Exit Boundary
WA Geometry 1
A Mesh 1

b {8 Results

Use as Source %, Clear Source Edit Mode

Selected source:

& Excitation Boundary

When a graphics object is linked directly to an explicit selection in this way, the
graphics object displays the geometry and the user can interact with it by clicking
on the boundaries. The boundaries will then be added (or removed) to the

corresponding explicit selection.

284 |

To make it possible to select by number, you can link a selection input object to
an explicit selection, as shown in the figure below.

X

Name: |selectioninputl =
¥ Source

4 & Model (root)
4 T Component 1 (comp1)
4 = Definitions
4 g Selections
ﬁ Excitation Boundary
& Exit Boundary

@_‘Use as Source %, Clear Source =# Edit Node
Selected source:

& Excitation Boundary

¥ Graphics to Use When Active

4 B Forms
el D form1
[graphicsl
graphics2

@_‘Use Graphics ', Clear Source =p Edit Node
Selected graphics:
[graphics2

In a selection input object, you can copy, paste, remove, clear, and zoom into
selections.

You can have events associated with selections. The On data change event will be
triggered when the selection is changed. If you have a local method associated
with this event, you will get a method with an integer array argument. The
method is called with the new entities of the selection. The On activate event will
be triggered when the Activate Selection button is clicked.

¥ Events
On data change: modifiedSelection - Ej +
On activate: activatedSelection A E:I T

| 285

Text

A Text object is a text field with default text that is taken from a string variable or
an Information node. The Settings window for a text object is shown below.

Settings = L1
MName: textl E
[] Editable

Wrap text

~ Source @+ B

4 = Declarations
4 aoc String

a3 svar

@ Model (root)

E‘ Use as Source =g Edit Node
Selected source:

apc String=svar

Initial value: From data source -

Select a string variable or Information node from the tree in the Source section and
then click Use as Source. In the Value field, enter the initial text. By default, the
Initial value text is taken from this field. To instead use the string variable for the
Initial value text, change the Initial value sctting to From data source.

The check box Editable is cleared by default. If selected, the text object can be
used, for example, to type comments in a running application. If the text is
changed by the user, it is stored in the string variable that is used as the data
source, regardless of the Initial value setting.

The check box Wrap text is sclected by default. Clear this check box to disable
wrapping of the text. A scroll bar appears if the text does not fit.

For more information on Information nodes, see “Data Display” on page 101.

286 |

List Box

A List Box object is similar to a radio button object, except that it allows for the
simultancous selection of multiple options.

USING A LIST BOX TO SUPERIMPOSE VIBRATIONAL MODES

Consider an application where the first six vibrational modes of a mechanical part
can be superimposed and visualized by selecting them from a list box, as shown in
the figure below.

Superimposed modes: @ a |~ ey RO R [O] B
o
Mode 1
Mode 2
Mode 3
Mode 4

Mede 5
Mode 6

| Plot Shape |

z 7 .05

As an alternative, the following figure shows that a list can be displayed as a dialog
box.

aQa@~- & -

Superimposed modes:

Mode 1 @ add %
Mode 3
Mode 4 Allowed values:
Mode 2
Mode 5
Mode &
+

| Plot Shape |

| 287

The Settings window for the list box of this example is shown in the figure below.

Settings =3
List Box

Mame: listbox1 =5
-+ Source FAF
4 = Declarations

4 255 Array 10 String
2 svarlD
[» =5 Double

[@ Boolean

Use as Source Edit Mode
Selected source:

255 Array 1D String=svar1D

Initial value: First allowed value =
+ Choice List ® +
Available: Selected:

<> Choice List 1 {choicelist1}

Select values in: List box

The Select values in list allows you to choose between two alternatives, List box or
Dialog, for displaying the list.

You can use any scalar or array declaration as a source. Select from the tree and
click Use as Source. If you use a string array as the source, you can, in the running
application, select more than one item in the list using Shift+Click or Ctrl+click.

288 |

For other sources, you can only select one value from the list. This example uses a
1D string array svariD. Its Settings window is shown below.

List of Variables

L33

MName Initial values New element value Description
svarl D 1,23456} (1 Array 1D String
Tt 15

In the Choice List section, you can add choice lists that contribute allowed values
to the list box. The figure below shows the choice list used in this example.

Settings

Choice List

Label: Choice List 1 =
Mame: choicelist]

List Content

" Value Display name
7 Mode 1
a Mode 2
9 Mode 3
10 Mode 4
1 Mode 5
12 Mode &
YEHE

The vibrational modes 1-6 correspond to trivial rigid body modes and are not of
interest in this application, hence the Value column starts at 7. The choice list
allows you to hide the actual mode values in the model from the user by only
displaying the strings in the Display name column. The first nonrigid body modes
arc named Mode 1, Mode 2, etc.

The method below uses the COMSOL Multiphysics operator with () to visualize
the superimposed modes. This example is somewhat simplified, since it ignores the
effects of amplitude and phase for the modes.

String withstru="0";
String withstrv="0";
String withstrw="0";

| 289

for(int i=0j;i<svariD.length;i++){
withstru=withstru + "+" + "with(" + svariD[i] + ",u)";
withstrv=withstrv + "+" + "with(" + svariD[i] + ",v)";
withstrw=withstrw + "+" + "with(" + svariD[i] + ",w)";

}

with(model.result("pg7").feature("surfi1").feature("def"));
setIndex("expr", withstru, 0);
setIndex("expr", withstrv, 1);
setIndex("expr", withstrw, 2);
endwith();
useGraphics(model.result("pg7"),"/form1/graphics8");
zoomExtents("/form1/graphics8");

Assuming the user selected the modes 1, 3, and 5 by using the list box, the method
creates an expression with(1,u)+with(3,u)+with(5,u). This expression is then
used for the x-displacement (dependent variable u) in a displacement plot. In a
similar way, the method automatically creates expressions for the variables v and w
associated with the y- and z-displacement, respectively. Note that the command
with(), used in the results in the example above, is different from the built-in
with() command used to shorten syntax that is described in “With, Get, and Set
Methods” on page 346.

USING A UNIT SET INSTEAD OF A CHOICE LIST

If the list box will be used for the purpose of changing units, then a Unit Set can
be used instead of a Choice List (You still select it in the Choice List section of the
Settings window of the list box).

290 |

Table

A Table Object represents a table with rows and columns that can be used to define
input or output. The figure below shows an example of a running application with
a table object used to accept input in three columns.

Flow rate and fluid properties:

" Flow rate (sccm)
100

200

300

1000

250

700

2000

600

Ht+bY:

Molecular weight (kg/mol)

0.032
0.028
0.146
0.004
0.032
0.004
0.04

0.028

Dynamic viscosity (Pa-s)
2E-5

1.78E-5

1.38E-5

19E-5

2E-5

19E-5

21E-5

1.78E-5

The figure below shows the corresponding form object and its Settings window.

[ymnput x

L]

Input

Fipe lengeh:

Pipe diameter:

Temperature:

Frocess chamber pressures

Spacing between pipes

Flow rate and fluid properties:

"
Flow rate (sccm)

200
£
1000
%0
700
000
600

=]

0037
0028
0045
0004
0032
0.004
0

0.028

t + %5

= 1 L L

Maolecular weight (kg/meal)

2m) o m
3.5/men] - m
%
0[K) o K
Weerl . Pa
usm . m

Dynamic viscasity (Pa-s)
85

17865

1.38k-5

19E-5

85

1365

FAI S

17805

Mame: b

[Show headers

[] Automatically add new rows
[[] Sunable

- Sources

4 B Declarations
4 135 Array 1D String
1] Thow_rate
£ mokecular weight

260 dynamac_viscosity

[53 Add to Table T Edit Node

" Hesder

Flow eate [scem] 120

Width

Maolecular weight (kg/mel] 160

Dynamic viscosity (Pa-3) 180

= Toolbar

Position: | Helow

Semall

leon see

.’+-o[§

"
Mame
Heml
emi
emi
itemd
Hems
emb

~ |l

item?
process]

processd

Grow Editable Algnment

4 Left
g Left
w Left

Diata source

Data ‘Mlorw_rate’ from ‘Aray 10 Strng’

Data ‘medecular_weight' from “Aeray 10 String’

Data ‘dynamic_viscosity’ fram “Aray 10 String’

Toultip
Save b file
Move up
Add

Clear table
Delete

Lead from file
Mewve down

In this example, the data source references three 1D string arrays. You can select
any type of array as the source and then click Use as Source.

| 291

Three check boxes control the overall appearance of the table:

e Show headers

¢ Automatically add new rows

* Sortable

The Automatically add new rows check box ensures that an additional empty row
is always available when a user is filling out a table. If all of the 1D string arrays,
which are used as a source to the table, have nonempty values for New element
value in their declaration Settings window, then this functionality is deactivated. In

this case, new rows can only be added by clicking the Add button in the associated
table toolbar, if such a button has been made available.

The Sortable check box makes it possible to sort the table with respect to a
particular column by clicking the corresponding column header.

The Sources section contains a table with five columns:

¢ Header

* Width

¢ Grow

¢ Editable

¢ Alignment

¢ Data source

Each row in this table defines a column in the table object. The option Grow allows

individual columns to grow when a form is resized. This option is only applicable
to grid mode and if the Horizontal alignment of the table is set to Fill.

292 |

In the example, the string arrays define the initial values for the rows
corresponding to the three columns, as shown in the figure below:

List of Variables

MName Initial values MNew element Description
flow_rate {100°,'200",'300","1000",'250','700,'2000",'600"} 100 Flow rate
melecular_weight {'0.032','0,.028','0.146','0.004",'0.032",'0.004','0.04",'0.028"} 0.032 Melecular weight
dynamic_viscosity |{'2E-5',1.78E-5'1.38E-5'"1 9E-5''2E-5',"1 9E-5','2,1E-5'," .7T8E-5'} |1.78E-5 Dynamic viscosity

tiseE#
TOOLBAR

In this section, you can select which toolbar items (buttons) should be used to
control the contents of the table. The Pesition list defines the location of the
toolbar relative to the table and provides the following options:

¢ Below
¢ Above
e Left

« Right

The Icon size setting allows you to choose Small or Large icons.

To add an item to the toolbar, click the Add Toolbar Item button below the table.

item3 = Delete

iternf Load from file
item7 1 Move down
process] LN

process2 !

+ B
Add Toolbar ltem

| 293

The following dialog box is then shown.

3 Toolbar ltems X

=] Save to File

Move Up

Add

Clear Table

Delete

Load from File
1 MoveDown

Add>> . Process1

=t 0

., Process2
<<Remove :
2. Process3
Purge
Clean

= Clear Table and Load from File

Custom ltem... Custom Toggle ltemn...
OK Cancel

You can add the following items:

¢ Save to File

* Move Up

* Move Down

e Add

* Delete

¢ Clear Table

¢ Clear Table and Load from File

* Load from File

In addition, you can add customized items by clicking Custom Item or Custom

Toggle Item in the Toolbar Items dialog box. The figure below shows the Edit
Custom Toolbar Item dialog box used to define a customized button. The dialog

294 |

box has two tabs for a regular item and three tabs for a toggle item. In this case,
the button Process | is used to set default values for a certain process.

O Edit Custom Toolbar ltem
General | Choase commands to run
Mame: process]
Text: Process 1
Icon: compute_32.png ~| |+| =
Toottip: Process 1
Keyboard shortcut:
State
Visible
Enabled
oK Cancel

x

O Edit Custom Toolbar ltem

General | Choose commands to run

& Forms
I3 GUI Commands
4 = Declarations
4 2 Amray 1D String
123 flow_rate
123 molecular_weight
123 dynamic_viscosity
ass String
4 [Methods
p_reset_input_to_defaults
p_solve_and_update

Plot Set Value
Disable

Run
Enable

" Command

Set flow_rate of Array 1D String
Set molecular_weight of Array.
Set dynamic_viscosity of Array.
p_data_change

Show [=] Show as Dialog £+ Import File

lcon Arguments
S {1100,'200,'300', 1000, 250", 700", 2000",'600°}
7 {0.032,0028'0.146,0.004', 0,032, 0.004', .
{2E-5,178E-5,1.386-5,1 9E 5, 2E-5. 19E...

0K Cancel

The Choose commands to run tab is similar to that of menu, ribbon, and toolbar

items, as well as buttons.

The Load from File and Save to File buttons are used to load and save from/to the

following file formats:
o Text File (.txt)

« Microsoft® Excel Workbook (.x1sx)

- Requires LiveLink™ for Excel®

* CSV File (.csv)
+ Data File (.dat)

This is shown in the figure below.

Text File (*.txt) ~

Microsoft Excel Workbook (*.dsx)
C5V File (*.csv)

Data File (*.dat)

All Files (*%)

The allowed separators are comma, semicolon and tab for CSV files, and space and

tab for DAT and TXT files.

| 295

Slider

A Slider is a form object for choosing numerical input using a slider control.

USING A SLIDER TO CHANGE THE MAGNITUDE OF A STRUCTURAL LOAD

Consider an application where the magnitude of a load can be changed by a slider
control, such as in the figure below.

Applied force: 150 N

In this example, the slider is accompanied by an input field that is used to display
the selected value.

296 |

The Settings window of the slider is shown in the figure below.

Settings TAX

Slider

Mame: sliderl =

Minimum value: 0
1000

Maximum value: 1000

Number of steps: 20

Orientation: Horizontal =
Tooltip:
~ Source @+ B

Declarations
@ Model (root)
4 () Global Definitions

[8
N

4 Py Parameters 1
= Applied force (F)

Use as Source Edit Mode
Selected source:

5.5 Parameters 1=Applied force (F)

Initial value: From data source =
¥ Unit
Method: Append unit to number *

Unit expression: N

In this example, the slider uses a global parameter F as its source. You can select
any parameter, variable, or declared scalar variable as a source. Select from the
application tree and click Use as Source.

You determine the range of values for the data source by defining the Minimum
value, Maximum value, and Number of steps for the slider. The Orientation can be
Horizontal or Vertical. You can also set a Tooltip that is shown when hovering over
the slider. The Append unit to number option lets you associate a unit with the
slider. This unit is appended to the number using the standard bracket notation,
such as [N], before being passed as a value to the source variable. In the example
above, the input field and the slider both have the setting Append unit to number
activated. As an alternative to Append unit to number, you can choose Append unit
from unit set. See “Unit Set” on page 159 for more information.

| 297

In the Initial value list, select From data source or Custom value for the initial value
for the slider.

In the Events section, in addition to specifying which method to call for an On data
change cvent, you can select the check box Trigger while dragging. This setting
determines if the event method should be called continuously while the slider is
being dragged or only upon its release.

¥ Events

On data change: | plot_displacement P

+

Trigger while dragging

This setting can be useful if the method that is called by the On data change event
is computationally heavy, so that there is a lag when dragging the slider.

Knob

A Knob is a form object for choosing numerical input using a control knob, similar
to a slider.

USING A KNOB TO CHANGE THE ANGLE OF A CRANE ARM

Consider an application where the angle of a truck mounted crane arm can be
changed by control knobs, such as in the figure below.

\ I I

~ / - \.\)J ‘\.:\ IJ

s ~ s Y ’/ \‘-
a| &5 |- i} 30 |- Al 15 m

In this example, the knobs are accompanied by input fields that are used to display
the selected value.

298 |

The Settings window of one of the knobs is shown in the figure below.

Settings = L1
MName: knob1 =
Minimum value: -13
Maximum value: 90

Number of steps: 33

Mouse movemnent: Distance =
Tooltip: -152=value==90
~ Source @+ B

4 = Declarations
4 abec String

abe solutionState
=2 Anglel
abc RelAng
abe Extlen
abe Fel
abe Fe2
abe Fe3
abe results
abe cylCapl

Use as Source Edit Mode
Selected source:

abe String=Anglel

Initial value: From data source =

In this example, the knob uses a string variable Angle1 as its source. You can select
any parameter, variable, or declared scalar variable as a source. Select from the
application tree and click Use as Source.

You determine the range of values for the data source by defining the Minimum
value, Maximum value, and Number of steps for the slider.

The Mouse movement can be Distance, Vertical, or Circular. Distance changes the
value with a linear mouse movement in any direction. Vertical changes the value
when you move the mouse vertically. Circular changes the value when you make a
circular mouse movement. A physical control knob is usually controlled with a
circular movement. However, when using a mouse this is usually not the most
convenient way. Instead, use a linear mouse movement by selecting Distance or
Vertical.

You can also set a Tooltip that is shown when hovering over the knob. The settings
for units are similar to that of a slider.

In the Initial value list, sclect From data source or Custom value for the initial value
for the knob.

| 299

In the Events section, in addition to specifying which method to call for an On data
change event, you can select the check box Trigger while dragging. This setting
determines if the event method should be called continuously while the knob is
being dragged or only upon its release.

¥ Events

On data change: updateGeometryAndSolutionState 39+

[] Trigger while dragging

This setting can be useful if the method that is called by the On data change event
is computationally heavy, so that there is a lag when dragging the knob.

Hyperlink

A Hyperlink object embeds a hyperlink in a form. The figure below shows an
example of a hyperlink.

COMSOL Web Page

300 |

The figure below show the corresponding Settings window.

Settings

Hyperlink

MName: hyperlinkl E
Text: COMSOL Web Page

URL: www.comsol.com

¥ Position and Size
Width: 105
Height: 15
Positionx: 20

Position y: 490
¥ Appearance

Background color: | Transparent -

Font: Default font e

Font size: Default size v opt

[] Bold
[] Italic

State
Visible
Enabled

The Hyperlink object supports the types of URLs that you can use in a web
browser, including;:

Web Page: When a user clicks the hyperlink for a web page, it opens in the
user’s default browser. The URL string needs to be on the form
protocol://address, where protocol is the transmission protocol; for
example, HTTP or HTTPS. The web address can be partial or complete, but
it is recommended to use a complete web address.

Email: An email address is specified on the form mailto:emailaddress. This
will launch the user’s default email application program and prepare a new
message where the To field is set to the address specified. This way of
interactively sending an email from a COMSOL application is different from
using the built-in method. For more information on the built-in methods
for email, see “Email Methods” on page 334.

| 301

Toolbar

A Toolbar object contains the specifications of a toolbar with toolbar buttons. The
figure below shows a toolbar with buttons for Save as, Compute, and Plot.

B =@

The Settings window for this toolbar is shown in the figure below.

Settings =L e
MName: toolbarl E
lcon size: | Small -

¥ Toolbar tems

" Name lcon Text Tooltip
iternl =] Save As
separator] E =

item2 = Compute
item3 Plot

t wEHEB

Each row in the Toolbar Items table contains either an Item or Toggle Item
corresponding to a toolbar button or toggle button, respectively, or a Separator.
Use the buttons below the table to add items or separators, change the row order,
or delete a row. Click the Edit button to display the Settings window associated

302 |

with each row. The figure below shows the Settings window of iteml, the Save As
item.

3 Edit Custom Toolbar ltem x 3 Edit Custom Toolbar ltem
General | Choose commands to run General | Choose cammands te run
Name: item’ b g Forms
oy Save e v |3 GUI Commands
b = Declarations
Icon: save_as.png = i = b = Form Declarations
Tooltip: Save As b [Methods
b [l Libraries
Keyboard shortcut: | CTRL+S b 4 Model root]
State
] Visible
] Enabled
Run (@ Plot % SetValue || Show [Show as Dialog [i3 Import File
Enable () Disable
"
Command leon Arguments
Save application as =]
oK Cancel oK Cancel

The text in the Tooltip ficld will be shown as a tooltip when hovering over the
toolbar button. The text in the Text field will be shown next to the icon, if any;
otherwise just the text is shown. The lcon list, the Keyboard shortcut field, and the
Choose commands to run tree represent the same functionality as a button object.
For more information, see “Button” on page 63.

Spacer

A Spacer object is invisible in the user interface and is only used when working in
grid layout mode. It defines a space of fixed size that you can use to ensure that
neighboring form objects have enough space to show their contents. Typically,
you would use a spacer next to a table or graphics object to ensure that they are
rendered properly. If the user resizes the window so that it becomes smaller than

| 303

the size of the spacer, the effective size of the window is maintained by displaying
scroll bars. The figure below shows the Settings window of a spacer object.

Settings
r

pace

[l

MName: spacerl E
¥ Position and Size

Horizontal alignment: | Left -
Vertical alignment: Top -
Width: 40

Height: 20

Row: 8

Column: 10

Row span: 1

Column span: 1

Cell margin

Cell margin: From parent form

304 |

Appendix B— Copying Between Applications

Many nodes in the application tree can be copied and pasted between applications,
including: forms, form objects, menu items, methods, Java® utility methods,
external libraries, file declarations, choice list declarations, menus, menu items,
ribbon sections, ribbon tabs, and ribbon items.

When you copy and paste forms, form objects, and items between applications, the
copied objects may contain references to other objects and items. Such references
may or may not be meaningful in the application to which it is copied. The
following set of rules apply when objects are pasted from the clipboard:

* A declaration referenced in a form object or menu item is included when
copying the object, but is not necessarily pasted. It is only pasted if there is
no compatible declaration present. If a compatible declaration exists, that is
used instead. A compatible declaration is defined as one having the same
name and type. For example, a string declaration is not compatible with an
integer declaration. An existing declaration may have an invalid default, but
no such check is done when pasting.

» A referenced global parameter may have a different unit, but will still be
considered compatible.

* A form or form object directly referenced from another form object is not
included automatically when copying objects. The direct reference will point
to an existing object if it has the same name. If the original reference is
among the copied objects, then that object will be used in the reference
instead of any existing objects having the same name. The name of the
copied reference will be changed to avoid name collisions.

+ No objects in the model tree will be automatically copied, for example, a
graphics object referring to a geometry or an input field referring to a
low-level setting exposed by Data Access. If the reference points to an object
that exists in the model tree of the target application, then that reference will
be used.

» References to nonexisting objects will be attempted to be removed when
pasted. An exception is command sequences in buttons, where all commands
are kept and marked as invalid if they point to a nonexisting reference.

* Local methods are included in the copy-paste operation. However, no
attempt is made to update the code of the method. This also applies when
copying a global method.

* Arguments to commands in the command sequence of a button or a menu
item will be left as is.

| 305

» Allimage references are automatically copied and added to the image library
when applicable. If there is an existing image with the same name, it will be
used instead of the copied version.

* No files, sounds, or methods are automatically copied if referenced to.
However, methods can be copied and pasted manually.

» All pasted objects that have a name that conflicts with that of an existing
object will be renamed. Any references to the renamed object from other
pasted objects will be updated.

306 |

Appendix C — File Handling and File Scheme Syntax

The handling of files may be an important feature of an application. For example,
the application may require a spreadsheet file with experimental data as input, a
CAD file to be imported, or a report to be generated and exported. The
Application Builder provides tools for reading and writing entire files or portions
of a file. The way that this is done will vary depending on the system where the
application is running. The file system may be difterent on the computer running
COMSOL Multiphysics, where the application is developed, and on the computer
where COMSOL Server is installed and the application will run once it is
deployed. For more in-depth information on reading and writing various types of
data to file, see the Application Programming Guide.

File Handling with COMSOL Server

In general, you cannot read and write files to local directories when running
applications with a web browser or the COMSOL Client for Windows®. The
application and its methods are run on the server and have no knowledge of the
client file system (where the web browser or COMSOL Client is run).

However, there are techniques for transferring files to and from the client file
system when running an application both with a web browser and the COMSOL
Client.

A File Import object can be used to ask the user for a file. The user then browses
to a file on the client file system, which is then uploaded to the COMSOL Server
file system and becomes available to the application and its methods. This can be
used, for example, to provide a CAD file or an experimental data file from the user
at run time. This is covered in the section “File Import” on page 312.

In a command sequence of, for example, a button, you can export data generated
by the embedded model by running a subnode of the Export or Report nodes. This
is covered in the section “File Export” on page 319.

| 307

SAVING AND OPENING FILES USING FILE COMMANDS

In the editor tree used in a command sequence, the File Commands folder contains
commands to save and load applications and files, as well as exiting an application.

Marne: button7 =
Text: About

lcon: = open_model_pdf_32.png - + &=
Size: Large =
Style: Flat =
Tooltip: Open PDF documentation

Keyboard shortcut: CTRL+0

» (Choose Commands to Run 5

b B Forms

4 @ GUI Commands

- File Commands
Save Application
[Save Application As
Save Application on Server
[Save Application on Server As

Open File

L SaveFile As
Exit Application

[[‘u Graphics Commands

Edit Mode P Run Plot Set Value Show Show as Dialog

Import File Enable Disable

L
Command lcon | Arguments
Open file embedded:///tuning_fork.pdf

% . -

The command Open File will pick any file from the server produced by a method,
the model, or embedded with the application, and open it using the associated
application on the client. This can be used, for example, to open a PDF file in the
client file system, or show a text file or an image exported from the model on the
client side. In the figure above, an Open File command is used to open the PDF
documentation for an application. The corresponding PDF file is embedded in the
application by being stored in the Libraries > Files node. Files located there are
referenced using the embedded: /// file scheme syntax described in the next
section, “File Scheme Syntax” on page 310.

308 |

To open files from a method, use the built-in method fileOpen; see also
“Operating System Methods” on page 334.

To save a file, use the command Save File As, which is similar to Open File. It will
take any file from the server file system and display a Save As dialog box to the user
where the user can browse to a client location to save the file. This is similar to
downloading files from a link within a web browser. In the figure below, a Save
File As command is used to save a CAD model that is stored in the Libraries > Files
node.

» (Choose Commands to Run b

b B Forms
4 @ GUI Commands
- File Commands
Save Application
[Save Application As
Save Application on Server
[Save Application on Server As
Open File
L SaveFile As
Exit Application
| [‘u Graphics Commands

Edit Mode P Run Plot Set Value Show Show as Dialog
Import File Enable Disable

L
Command lcon | Arguments

Save file as L | embedded:///exhause_manifold.x_t

M-

To save files from a method, use the built-in method fileSaveAs; See also “GUI
Command Methods” on page 340. For more information on saving and exporting
files, see “File Export” on page 319.

The Save Application and Save Application As commands are available for use in the
command sequence for certain form objects. The Save Application As command
will display a Save As dialog box where the user can specify a client path where the
entire application will be saved.

Similarly, the Save Application on Server and Save Application on Server As
commands are available to save the entire application on the server file system. For
information on the corresponding built-in methods, see “GUI Command
Methods” on page 340.

In summary, both uploading and downloading files from the client file system is
supported, but, due to web browser and system security settings, the application
can never do it silently in the background without the user browsing to the source
or destination location of the file.

| 309

MoDEL COMMANDS

In the editor tree used in a command sequence, the Model Commands folder
contains two commands: Clear all solutions and Clear all meshes. Usc these
commands to make the MPH file size smaller before saving an application by
erasing solution and mesh data, respectively.

+ (Choose Commands to Run]

I U Forms

- u GUI Cormmands
I [File Commands
I & Graphics Commands
4 & Model Commands
H‘é Clear All Solutions
H‘;’ Clear All Meshes

Declarations

Methods

[fifi Libraries

@ Model (root)

-
&0 m

Edit Mode Run Plot Set Value
Show Show as Dialog Import File
Enable Disable

"
Command lcon Arguments
- y
Clear all solutions “3
u
Clear all meshes “3
iE -

File Scheme Syntax

To make applications portable, the Application Builder allows you to use virtual

file locations using file schemes. A file scheme can be seen as a pointer to a file on
the file system, but the application does not need to know where the file is actually
stored (this is set in the Preferences dialog box, see below.)

Different file schemes exist for different purposes:

» The user file scheme is for files that should be persistent between different
runs of an application by the same user.

e The common file scheme behaves in the same way, but is for files that should
be shared between all users.

e The temp file scheme is for files that should be removed as soon as the
application is closed.

310 |

» The embedded file scheme is used to store files in the application itself. This
can be useful if you want to make the application self-contained and send it
to someone else.

* The upload file scheme is for files that are uploaded to the application by the

user at runtime, such as a CAD-file to which the user browses.

The table below summarizes all available file schemes.

SCHEME

REFERS TO

DEFAULT PATH

TYPICAL USAGE

embedded:///

Files embedded in
the application using
Libraries > Files

N/A

Experimental data,
CAD files, mesh files,
interpolation data

upload:/// Files to be uploaded = Determined by the Experimental data,
by the user at run Target directory in CAD files, mesh files,
time the Settings window interpolation data

of the File declaration

temp:/// Files in a random A random Temporary files
temporary directory, subdirectory to the produced by
which is unique for folder for temporary ~ command sequences
each started files, as determined or methods, or data
application instance. by the settings in export to a file saved
These files are Preferences > Files on the client (for use
deleted when the with COMSOL
application is closed. Server)

user:/// Files in a directory Determined by the Output from
shared by all settings in methods to be saved
applications for the Preferences > Files between sessions
current user

common:/// Files in a directory Determined by the Files shared between

shared by all users

settings in
Preferences > Files

many users or
applications

For more information on files in the Libraries node accessible by the
embedded:/// syntax, see “Libraries” on page 217.

The table below summarizes the usage of the different file schemes. In the table,

a check mark means that this scheme is available and (r) means that it is the
recommended scheme.

USAGE EMBEDDED UPLOAD TEMP USER COMMON
File is used as input \ 6 V V

File is output G \

Method reading a file \ 6 V \ \/ V

1311

USAGE EMBEDDED ~ UPLOAD TEMP USER COMMON
Method writing a file \ () \
File is client-side v \/ v N N

You can set the preferences for the paths to temporary, user, and common files in

the Files page of the Preferences dialog box, which is accessible from the File menu,
as shown in the figure below.

3 Preferences %
Add-in Libraries Saving COMSOL application files
Application Builder Optimizefor. | Speed -

Application Libraries Warn before overwriting afile saved by an older version of COMSOL

Client/Server
Recovery

Save recovery file

Color Themes

Email

Files Check for recovery files at launch

Forms Folder for recovery files: C:\Users\paul\.comsol\v3G\recoveries] Browse...
General Temporary files

Geometry

Folder for temporary files (temp:///): | C\Users\paul\AppDatalLocal\ Temp\ Browse...
Graphics and Plot Windows porary fles (temp://1) pRAcPe £

Graphics Interaction Application files

Graphics Toolbars Folder for user files (user///): C\Users\paul.comsol\v36\applications\files\user Browse...
Help Folder for common files (common:///); C:\Users\pault.comsolwg\applicationsifiles\comman Browse...
LiveLink Connections

Libraries>Files (embedded:

Mesh Use embedded:///filename to refer to a file with the name filename in the application.
es|

Methods
Medel Builder
Multicore and Cluster Computing

Declarations File (upload:///): Use upload:///filename to refer to a file with the name filename in the application.

Parametric Sweep
Part Libraries

Physics Builder
Quick Access Toolbar
Remote Computing

Results
Security
Show More Options
Updates
Factory Settings
Factory Settings for All Import... Export... oK Cancel

File Import

CAD IMPORT USING THE MODEL TREE AND A FILE IMPORT OBJECT

A File Import object is used to display a file browser with an associated input field
for browsing to a file or entering its path and name. It is used to enable file import
by the user of an application at run time, when the file is not available in the

application beforehand. You can directly link a File Import object to a file Import
node in the model tree; for example, a CAD Import node. Consider an application

312 |

where a CAD file can be selected and imported at run time, as shown by the figure
below.

CADfileto analyze: C\pipex_b Browse...

The corresponding File Import object is shown in the figure below.

CAD file to analyze: Browse... |+

The Settings window for the File Import object has a section File Destination. In this
section, you can select any tree node that allows a file name to be input. This is
shown in the figure below, where the Filename for the Import node is selected.

ettings vax

LA

Name: fileimport1 =
Button text: Browse...
Dialog title: File import
File types:
All 3D Importable Files (*.mphtt; *.mphbin; ..)
All 3D CAD Files (*.step; *.stp; *a_b; "t ..)
All 3D Mesh Files (*.mphtd; *.rmphbin; *fla; ...
All ECAD Files (*xml; *.zip; *.tar; *.tgz; ...)
AutoCAD File (*.dwg)
+
Allow entering file name

= File Destination ®

= Declarations
4 & Model (root)
4 im Component 1 (compl)
4 YA Geometry 1
4 & Import 1 (imp1)
a3 Filename (filename)
aoc Filename (meshfilename)

E‘ Use as Source =g Edit Node
Selected source:
aoc |mport 1 (imp1)=Filename (filename)

Access using: upload:///geom1/imp1/filename

1313

If you do not wish to use a File Import object, you can directly reference a Filename

from a button or an item in a menu, ribbon, or toolbar, or alternatively create a

method that calls the built-in method importFile as an event, for example
importFile("filel1");

assuming there is a file declaration fileil.

The figure below shows a ribbon item used for geometry import together with its
Settings window.

Settings v RXx
MNarne: itern’1 =
Text: Import
lcon: geometry_32.png | 4| =
Size: Large -
Tooltip: Import Geometry
Keyboard shortcut: CTRL+I

State
Visible
Enabled

mé

+ (Choose Commands to Run

omponent 1 (compl)
Definitions
4 4 Geometry 1
4 & Import 1 (imp1)
aoc Filename (filename)

aoc Filename (meshfilename)
I 5z& Materials
== Laminar Flow (spf)
A5 Mesh 1

[~do Study 1

I {8 Results
=# Edit Node Run Plot Set Value Show Show as Dialog
[E3 Import File Enable Disable

"
Command lcon Arguments

Import file to Impert 1 (imp1) | E3

Build Geometry 1

Plot Geometry 1 form1/cardstack1/card3/graphics1
Zoom extents form1/cardstack1/card3/graphics1
Set mode of String | Visualization

314 |

In the Settings window above, the command Import file to Import | will open a file
browser for the user to select a file, as shown in the figure below.

(e = | Applications - O *
“ Home Share View o
&« v A <« applications » CFD_Module » Applications v O Search Applications »

A

MName Date modified Type Size
7 Quick access

| | pipex_b X_B File 4KB
& Creative Cloud Files | | split_recombine_geom.x_b ¥_B File 125 KB
& OneDirive | | star_chip_geom.x_b 2018-12-10 16:04 ¥_B File G KB
[This PC
¥ Metwork

3 itemns =

The subsequent commands build and plot the geometry, zoom out using zoom
extents, and finally set the value of a string variable (in this case used to control a
card stack).

For more information on the File Import object, sce “File Import” on page 270.

FILE IMPORT IN METHODS

Continuing the example of the previous section, assume that we click Convert to
New Method in the Settings window. The corresponding lines of code show how
CAD import can be accomplished from a method:

importFile (model.geom("geom1").feature("imp1"), "filename");
model.geom("geom1").run();
useGraphics(model.geom("geomi1"), "formi/cardstack1/card3/graphicsi");
zoomExtents("formi/cardstacki/card3/graphicsi");
mode = "Visualization";
The first line illustrates using the built-in method importFile. For more
information on the method importFile and other methods for file handling, see
“File Methods” on page 332 and the Application Programming Guide.

FILE ACCESS AND FILE DECLARATIONS

At the bottom of the Settings window of a File Import object, you can see which
file scheme syntax to use to access an imported file from a method (next to Access

1315

using:). The figure below shows an example where a File Destination and Filename
are used.

Selected source:

123 Import 1 (imp1)=Filename (filename)

Access using: upload:///geoml/imp1/filename

The file scheme syntax, upload:///geomi/imp1/filename, needs to be used
whenever accessing this file.

As an alternative, you can use a File declaration under the Declarations node.
(However, File declarations are primarily used for file import from method code.)
In this case, the file chosen by the user can be referenced in a form object or
method using the syntax upload: ///file1,upload:///file2, etc. The file name
handle (file1, file2, etc.) can then be used to reference an actual file name
picked by the user at run time. See also “File” on page 158.

This syntax can also be used in any file browser text fields within the Model
Builder nodes. The figure below shows a file reference used in the Filename field
of the Import model tree node for a model using geometry import.

Settings -
[Build Selected ~ [E8 Build All Objects =}
Label: Import1 E

¥ Import
Source:
Any importable file -
Filename:
upload:///filel

Browse... Import

However, a quicker way is to link a file import object directly to the Filename field,
as described previously in the section “CAD Import using the Model Tree and a
File Import Object” on page 312.

316 |

IMPORTING EXPERIMENTAL DATA

Consider an application where the user is providing a file with experimental data
at run time. The figure below shows the file import object of such an application
as it appears in grid layout mode.

Experimental Data

Impedance measurement file: Browse...

2

The figure below shows the Settings window of the corresponding file import
object and its link to a file declaration.

Settings

File Impart

Name: filebrowser1 =
Button text: Browse...

Dialog title: File import

File types:

C5V File (*.csv)

+

[C] Allow entering file name
w File Destination ®

4 = Declarations
experimental {experimental.csv}

Use as Source Edit Mode
Selected source:
E experimental {experimental.csv}

Access using: upload:///experimental.csv

Position and Size
Appearance

¥ Events

On data change: p_updated_results 3 +

1317

In this application, the File types table specifies that only CSV files are allowed. The
Settings window for the File declaration is shown in the figure below.

Settings “ L83

Tl

Label: experimental

MName: experimental.csv

File Location
Target directory: | Temporary v
Access using: upload:///experimental.csv

The file declaration serves as the “destination” of the imported data, which is
written to the file upload:///experimental.csv.

Note that the file extension .csv used in the declaration is optional and that the
file picked by the user at run time can have any name. For example, the file name
picked at run time can be my_data.csv, but when referenced in method code, the
abstract file handle name experimental.csv is always used.

In order to make it possible to run the application without having to first provide
experimental data, a file containing default experimental data is embedded in the
application. This default data file is used by the application by accessing it with the
embedded:/// file scheme syntax, as shown in the figure below.

In this example, which uses the Optimization Module, the application performs a
least-squares fit to the experimental data.

Model Builder - * Settings
R = v B i~ Global Least-Squares Objective
4 %@ li_battery_impedance.mph (root)
b (3 Global Definitions Label: Global Least-Squares Objective 1 =
‘ ! ;Drgfzi:iet?;:sl'mmp?} ¥ Experimental Data
b/, Geometry 1 Data source:
I 5z& Materials File S
b 77 Lithium-lon Battery {liion)
el CJ Optimization {opt) Filename:
4 (%) Global Least-Squares Objective 1 embedded:///experimental_default.csv Browse...
CJ Parameter Column 1
c{ Value Column 1 ¥ Experimental Parameters
CJVaIueCDIumn}l "
I A Mesh 1 Mame Expression
[~do Study 1
[~cf Study 2
b {8 Results + a9)
Expression:

318 |

The following method handles the logic to determine if user-provided
experimental data files exist or if the default data set should be used.

If a user-provided file exists, the code replaces

if (exists("upload:///experimental.csv")) {
with(model.physics("opt").feature("glsobj1"));
set("fileName", "upload:///experimental.csv");

endwith();

}

else{

String s_data
want to use the embedded data?",
Parameter Estimation");

if(s_data.equals("Cancel Parameter Estimation")){

return;

}
}

confirm("No experimental data file was uploaded. Do you
"Experimental Data",

embedded:///experimental default.csv with upload:///experimental.csv

in the physics interface glsobj1.

More information on file import can be found in the Application Programming
Guide.

File Export

FILE EXPORT USING THE MODEL TREE

In a command sequence of, for example, a button, you can export data generated
by the embedded model by running a subnode of the Export or Report nodes.

In the model tree, the Export node may contain several types of subnodes for file

export, including:

Data
Plot
Mesh
Table

3D Image
2D Image
ID Image

Animation

1319

The Settings window for each of these nodes contains an Output section with a
field for Filename. The figure below shows the Settings window for an Export > Plot
node.

Settings

Plot

(* Refresh [[= Export

Label: Plot1 =
¥ Plot

Plot group: | 1D Plot Group 3 - |Z
Plot: Line Graph 1 | [
¥ Qutput

File type: Text -
Filename: Browse...
Always ask for filename

Data format: Spreadsheet -
If multiple curves: | Append as rows -

You can leave the Filename ficld blank, as shown in the figure above. In the
command sequence of, for example, a button, you can run the corresponding
Export > Plot node and, at run time, it will open a file browser window for the user
to select a location and file name, as seen in the figure below.

"
Command lcon Arguments

Export Plot 1 {plotl} =

While developing an application, you may need to use the Model Builder
repeatedly to check the exported data. In this case, you can use the Filename field
for a test file and, by selecting the Always ask for filename check box, a file browser
will still be opened at run time.

320 |

In a similar way to the Export subnodes, each Report subnode has a Format section
with a Filename field, as seen in the figure below.

¥ Format

Output format: Microsoft Word -
Filename: Browse...
[] Always ask for filename

Open finished report

["] Disable cross-reference hyperlinks

Microsoft Word template: Default =
Start new page at section level: | Level 1 -
Enumerate sections to level: Level 3 -

By running a Report subnode, a file browser window is opened for the user to
select a location and file name for the report.

For more detailed control over file import and export, you can instead use a file
scheme.

FILE EXPORT USING A TEMPORARY FILE

Some applications may need to produce temporary files, and this is accomplished
by using the temp:/// file scheme. The temporary files are stored in a random
temporary directory, which is unique for each started application instance. These
files are deleted when the application is closed. Temporary files can be produced
by command sequences or methods, or output to be saved on the client when used
with COMSOL Server.

| 321

The example below shows the Settings window of an Export > Plot node that is
used to export plot data as numerical values.

Settings

Plot

(* Refresh [[= Export

Label: Plot1 =
¥ Plot

Plot group: | 1D Plot Group 3 | [

Plot: Line Graph 1 | [

¥ Qutput

File type: Text -
Filename: temp:///lineplot.bd Browse...

[] Always ask for filename
Data format: Spreadsheet -

If multiple curves: | Append as rows -

The Filename in its Output section is set to temp:///lineplot.txt.

To make it possible to save the plot in this example, a button is created. In the
Settings window for the button, in the section Choose Commands to Run, first create
the output graph file by choosing the Export > Plot node created above and
clicking Run. Second, choose GUI Commands > File Commands > Save File As and
click Run again.

322 |

In the Output section of the button Settings, sct the filename to the name of the
temporary file created by the Export Plot command, in this case,
temp:///lineplot.txt.

Settings = L1
Button

Mame: button3 E

Text: Save Line Plot

lcon: MNone ~| |4

Size: Small =

Tooltip:

Keyboard shortcut:

+ Choose Commands to Run 5

b B Forms

4 @ GUI Commands
- File Commands
Save Application
[Save Application As
Save Application on Server
[Save Application on Server As
Open File
L SaveFile As
Exit Application
3 [‘u Graphics Commands

Edit Mode P Run Plot Set Value Show
Show as Dialog Import File Enable Disable

L
Command lcon | Arguments
Export Plot 1 =
Save file as 1 temp:///lineplot.bet
oE -

| 323

The Save File As command provides a dedicated Edit Argument dialog box
with easy access to all embedded files as well as shortcuts for all file

schemes.
+ Choose Commands to Run B | o Edit Argument ks
Fl u GUI Commands File schemne: embedded:/// ~
4 File C d
H File omman.s X Choose an application file resource: embedded:///
[Save Application uploadi///
5] Save Application As about_infermation.png common://f
=] Save Application on Server about_infermation_32.png "
o user/f/
5! Save Application on Server As compute.png
_ ternp/ff
Open File compute_32.png
+ SaveFile As cube.png Custom
[%] Exi.tAppIication cube_32.png
b & Graphics Commands cube_large.png
I <@ Model Commands
error.png
Edit Node P Run Plot Set Value Show error_32.png
Show as Dialog Import File Enable Disable exit.png
"
Command lcon Arguments oK Cancel
Save file as + |
St~

Edit Argument

The corresponding method code is as follows:

model.result().export("plot1").run();
fileSaveAs("temp:///lineplot.txt");

The Use of Temporary Files for File Export

Note that as a first step, in the example above, the file is written to a temporary
file, using the call to model.result().export("plot1").run(). This step is
done automatically by the application. In the second step, the method
fileSaveAs opens a file browser and lets the user of the application choose the file
location, for example, a folder on the computer’s local file system or to a network
folder. This extra step is needed in order for the application to function in a web
browser. Due to the security settings of a typical web browser, the application is
not permitted to automatically save a file to an arbitrary location. Instead, the
application is allowed to save to a few specific locations including the temp folder,
whose location is specified in the Preferences dialog box settings. The other
locations are the user and common folders, also specified in the Preferences settings.

For more examples of file export, see the Application Programming Guide.

CREATING REPORTS USING LOW-LEVEL FUNCTIONALITY

This section describes creating reports using low-level functionality. For a more
direct method, see “File Export” on page 319.

324 |

The example below shows an application where a report in the Microsoft® Word
format (.docx) can be saved by the user. The figure below shows a tab in the

ribbon of the application. In this tab, there is a Report button in the Documentation
section.

Hc:me
S5 = Fa

Reset Compute Report Help

Input | Simulation | Documentation
The associated application tree node is shown in the figure below.

Application Bu
LR
- li_battery_designer.mph (root)
ﬁ Inputs
% Themes
- D Main Window
b [E File Menu
4 [+ Ribbon
4 ™ Home {home}
3 Input {input}
[Simulation {simulation}
4 Documentation {documentation}
El Report {report}
[+ Help {help)

| 325

The following figure shows how the syntax user:/// was used in the Filename
field in the Settings window of the Report node of the Model Builder.

Maodel Builder v

4 @ li_battery_designermph (root)
4 () Global Definitions
Pi Parameters 1
%5 Default Model Inputs
[Materials
> — Component 1 (comp 1)
b~ Study 1
4 @ Results
b E Datasets

&2 Derived Values
B Tables
Probe Plot Group 1
Cell Potential and Load vs. Time
Positive Electrode Potentials vs. Time
Megative Electrode Potentials vs. Time
Temperature and Heat sources vs, Time
Parasitic Lithium Losses vs, Time
Electrolyte Potential Distribution
Electraode Phase Potential Distribution
Electrolyte Concentration Distribution
Electrolyte Conductivity Distribution
Integrated Lithium Loss Distribution
Electrode SOC Distrubution
Intercalation Reaction Current Scurce Distribution
50C vs, Time
f& Export
4 [# Reports
4 [55 Report1
E 1D Lithium-lon Battery Model for Determina
Table of Contents 1
I ¢= 1. Software Infermation
= 2.Input Data
P = 3.Results

Heacdddddddddal

-

Settings
teport

"El Generate El Preview Selected Preview All & Write

Label: Report 1
Template
= Format
Qutput format: Microsoft Word
Filename: user:///Li-lon_Battery_Impedance.docx

[Always ask for filename
Open finished report
[] Disable cross-reference hyperlinks

Microsoft Word template: Default
Start new page at section level: Level 1
Enumerate sections to level: Level 3

¥ Images

Size: Large

Type: PNG
Colortheme: Global theme
Background: Color

® Generate images

_) Suppress image regeneration

_) Disable image generation
~ MNumber Format

Format: Default

[] Right align numeric columns

=

Browse...

In this application, the check box Open finished report is sclected, which means
that the Word® document will open after the report has been created. The user of
the application can then save the report from the Word® file menu.

In this example, the file scheme common:/// could have been used in the same
way. The user and common file schemes are primarily useful when the same files
are used repeatedly by an application.

326 |

The figure below shows the Settings window of the Report ribbon item.

Settings v RX
Name: report =

Text: Report

lcon: ¥ results_report_32.pn » + =
Size: Large =

Tooltip: Create simulation report

Keyboard shortcut: CTRL+W
State

Visible

Enabled

» (Choose Commands to Run B

b B Forms

I @ GUI Commands

I = Declarations

4 B Methods

E initializeApplication

changeMaterial
changeChargelnputMode
updateSolutionState
changeBatterySizeType
changeRowlnputMode
changeVsTimePlot
changeProfilePlot
compute
updateResults
createReport
resetToDefault

Edit Mode Run Plot Set Value Show
Show as Dialog Import File Enable Disable

L
Command lcon | Arguments
createReport @

b BE -

The method createReport includes the following call:
model.result().report("rpt1").run();

The file scheme syntax can also be used directly in methods. The code below is
from a method used to export an HTML report.
String answerh = request("Enter file name","File Name", "Untitled.html");
if(answerh != null){
model.result().report("rpt1").set("format","html");
model.result().report("rpt1").set("filename","user:///"+answerh);
model.result().report("rpt1").run(); }}

| 327

Appendix D — Keyboard Shortcuts

The table below lists the keyboard shortcuts available in the Application Builder.

SHORTCUT ACTION APPLICATION FORM METHOD
BUILDER EDITOR EDITOR

Ctri+A Select all ol v ol

Ctrl+D Deselect all \

Ctr+C Copy \ v \/

Ctrl+V Paste \ \

Ctrl+X Cut J v V

Del Delete \ \ \

Ctrl+N Create a new application \ v \

Ctri+S Save an application \ \ \

Ctrl+F8 Test an application \ v \

Alt+Click Edit certain form objects \

Ctrl+Pause Stop a method \

Ctrl+Shift+F8 Apply changes \ \ \

Ctrl+R Record code \/

FI Go to node \

Ctri+K Create shortcut \ V \

FI Display help \ v \

F2 Rename applicable nodes \

F3 Disable applicable nodes \

F4 Enable applicable nodes \

Ctrl+Up arrow Move applicable nodes up \

Ctrl+Down arrow Move applicable nodes down \

Ctri+Z Undo ol v v

Ctrl+Y Redo (Control+Shift+Z on Mac) \ V \

F5 Continue (in debugger) \

Fé Step (in debugger) \

F7 Step into (in debugger) \

F8 Compile Application/Create Add-in \

Fo Check syntax \

328 |

SHORTCUT

ACTION

APPLICATION
BUILDER

FORM
EDITOR

METHOD
EDITOR

Ctrl+F

Ctrl+Space, Ctrl+/,
or Ctrl+OEM2

Ctrl+U
Ctrl+Shift+U
Ctrl+B
Ctrl+M

Ctrl+Shift+M

Ctrl+Scroll wheel
up

Ctrl+Scroll wheel
down

Ctri+All arrow keys

All arrow keys

Ctrl+Shift+A
Ctrl+Shift+M
Ctri+Alt+Left-click

Ctri+Alt+
Double-click

Alt+F4
Ctrl+F4
Ctrl+Shift+F4
Ctrl+7

Press Ctrl and
left-click. While
holding down the
key and button, drag
the mouse.

Find and replace text in methods

Autocomplete method code

Make selected code lowercase
Make selected code uppercase
Toggle breakpoint on selected line

Toggle between matching
parentheses, square brackets, or
curly braces

Select all characters between
matching parentheses, square
brackets, or curly braces

Zoom in, in method code window

Zoom out, in method code window

Fine-tune position of selected form
objects

Fine-tune position of selected form
objects

Go to Application Builder window
Go to Model Builder

Create a local method or open a
method associated with a form
object

Open a method from Method
Editor code

Close window

Close document

Close all documents

Toggle comment on and off

Copy form object

<

2 2 2 <

<

\/

2 22 2 2

< 2 2 =2 <

| 329

330 |

Appendix E— Built-In Method Library

This appendix lists all of the built-in methods available in the Method Editor,
except for methods that operate on the model object and the application object.
For detailed information on using the built-in methods and for full information
on the syntax used, see the Application Programming Guide and the
Programming Reference Manual.

As an alternative method of learning the syntax of these methods, you can use
code completion by typing the name of the method and then use Ctrl+Space. A
window will open with information on the syntax and method signature.

@ Preview Dform‘l

I p1aysound

@ playSound(String name)
@ playSound(double hz, int milliseconds)

method] X

Plays a signal with given frequency and duration.

Parameters:
hz Frequency in Hz.
milliseconds Duration in milliseconds.

Model Utility Methods

The model utility methods make it possible to load the model object part of an
MPH file into a method for further processing.

NAME DESCRIPTION

clearModel Clears the model object contents.

createModel Creates a new model with a given tag.

removeModel Removes a model. The embedded model cannot be removed.

modelTags Returns an array of model tags for all loaded models, including the
embedded model.

uniqueModeltag Returns a model tag that is not in use.

getModel Returns a model with a specified tag.

loadModel Loads a model with a specified tag from a file.

loadProtectedModel Loads a password protected model with a specified tag from a file.

loadRecoveryModel Loads a model from a recovery directory/folder structure.

saveModel Saves a model to a file. The filename can be a file scheme path or,
if allowed by security settings, a server file path.

getComsolVersion Returns the current software version as a string.

| 331

File Methods

NAME DESCRIPTION
readFile Returns the contents in a given file as a string.
openFileStreamReader Returmns a CsReader object that can be used to read

openBinaryFileStreamReader

readMatrixFromFile

readStringMatrixFromFile

readCSVFile

writeFile

openFileStreamWriter

openBinaryFileStreamWriter

writeCSVFile

exists

deleteFile

copyFile

importFile

writeExcelFile

readExcelFile

line-by-line or character-by-character from a given file
name.

Returns a CsBinaryReader object that can be used to
read from a given file byte-by-byte.

Reads the contents of the given file into a double matrix.
The file has the same spreadsheet-type format as available
in the model tree Export node.

Reads the contents of the given file into a string matrix.
The file has the same spreadsheet-type format as available
in the model tree Export node.

Reads a file with comma-separated values (CSV file) into
a string matrix. It expects the file to use the RFC 4180
format for CSV.

Writes array data to a given file. If the spreadsheet
format is used, then the data can be read by
readMatrixFromFile or
readStringMatrixFromFile

Retums a CsWriter object that can write to a given file.

Returns a CsBinaryWriter object that can be used to
write to a given file byte-by-byte.

Writes a given double or string array to a CSV file. The
RFC 4180 format is used for the CSV.

Tests whether a file with a given name exists.

Deletes a file with a given name if it exists. The file is
deleted on the server.

Copies a file on the server. Both the source and target
names can use file scheme paths.

Displays a file browser dialog box and uploads the
selected file to the file declaration with the given name.
Alternatively, it uploads the selected file to the Filename
text field in a given model object entity.

Writes the given string array data starting from a
specified cell in a specified sheet of an Excel file.

Reads a specified sheet of an Excel file, starting from a
specified cell, into a 2D string array.

332 |

NAME

DESCRIPTION

getFilePath

getClientFileName

getClientFilePath

Returns the absolute server file path of the server proxy
file corresponding to a certain file scheme path, or null if
the server proxy file for the given path does not exist.

This method can be used to pass the path to, for
example, a file using the temp:/// scheme to external
code or an application.

Returns the original name of an uploaded file on the client
file system (or null if there is no uploaded file matching
the given file scheme path).

This method is only useful for providing user interface
feedback; for example, to get information on which
uploaded file is being used. There is no guarantee that the
original file would still exist on the client or even that the
current client would be the same as the original client.

Returns the original path of an uploaded file on the client
file system (or null if there is no uploaded file matching
the given file scheme path).

This method is only useful for providing user interface
feedback; for example, to get information on which
uploaded file is being used. There is no guarantee that the
original file would still exist on the client or even that the
current client would be the same as the original client.

| 333

Operating System Methods

NAME DESCRIPTION

execute0SCommand Executes the OS command with a given command (full path) and
parameters. When applicable, the command is run server side.

fileOpen Opens a file with the associated program on the client. See also
the section “File Methods".

getUser Returns the usermame of the user that is running the application. If
the application is not run from COMSOL Server, then the value
of the preference setting General>Username>Name is returned.

openURL Opens a URL in the default browser on the client.

playSound Plays a sounds on the client.

Email Methods

NAME DESCRIPTION

emailFromAddress Retums the email from address from the COMSOL Server or
preferences setting.

sendEmail Sends an email to the specified recipient(s) with the specified
subject, body text, and zero or more attachments created from
Report, Export, and Table nodes in the embedded model.

userEmailAddress Returns the user email address(es) corresponding to the currently

logged in user, or an empty string if the user has not configured an
email address.

Email Class Methods

The class EmailMessage can be used to create custom email messages.

NAME DESCRIPTION
EmailMessage Creates a new EmailMessage object.
EmailMessage.setServer Sets the email (SMTP) server host and port to

EmailMessage.setUser

use for this email message.

Sets the username and password to use for email
(SMTP) server authentication. This method must
be called after the setServer method.

EmailMessage.setSecurity Sets the connection security type for email

EmailMessage.setFrom

(SMTP) server communication.

Sets the from address.

334 |

NAME DESCRIPTION

EmailMessage.setTo Sets the to addresses.

EmailMessage.setCc Sets the cc addresses.

EmailMessage.setBcc Sets the bcc addresses.

EmailMessage.setSubject Sets the email subject line. Note that newline
characters are not allowed.

EmailMessage.setBodyText Sets the email body as plain text. An email can
contain both a text and an HTML body.

EmailMessage.setBodyHtml Sets the email body as HTML text. An email can
contain both a text and an HTML body.

EmailMessage.attachFile Adds an attachment from a file. The attachment
MIME type is determined by the file name
extension.

EmailMessage.attachFile Adds an attachment from a file with a specified
MIME type.

EmailMessage.attachFromModel Adds an attachment created from a report,
export, or table feature in the model.

EmailMessage.attachText Adds a text attachment with a specified
sub-MIME type, such as plain or HTML.

EmailMessage.attachBinary Adds an attachment from a byte array with a
specified MIME type.

EmailMessage.send Sends the email to the email (SMTP) server. An

email object can only be sent once.

| 335

EMAIL PREFERENCES

To set preferences for an outgoing email (SMTP) server, open the Email page of
the Preferences dialog box, as shown in the figure below.

3 Preferences

Add-in Libraries

Graphics and Plot Windows

Outgoing server (SMTP)

Application Builder Host: servermyoerganization.com
Application Libraries Port 2
Client/Server
Color Themes Connection security: Nene =
Email Usen:
Files
Password: |
Forms :
General Settings
Geometry From address: paul@myorganization.com

Default to address:

Graphics Interaction
Graphics Toolbars
Help

LiveLink Connections
Mesh

Methods

Model Builder
Multicore and Cluster Computing
Parametric Sweep
Part Libraries

Physics Builder
Quick Access Toolbar
Remete Computing

Results
Security
Show More Options
Updates
Factory Settings
Factory Settings for All Import... Export... oK Cancel

COMSOL Server provides a similar set of email preferences.

336 |

GUI-Related Methods

NAME

DESCRIPTION

Call a method directly

callMethod

useGraphics

useForm

closeDialog

dialog

alert

alert

confirm

error

request

message

evaluateToResultsTable

Call a method from the Methods list by using its name; for
example, method1 (), method2()

Alternate way to call a method from the Methods list;
used internally and in cases of name collisions.

Plots a given entity (Plot Group, Geometry, Mesh, or
Explicit Selection) in the graphics form object given by a
name or name path in the second argument.

Shows the form with a given name in the current main
window. Equivalent to the use method of a Form object;
see below.

Closes the form, shown as a dialog box, with a given
name

Shows the form with a given name as a dialog box.
Equivalent to the dialog method of a Form object; see
below.

Stops execution and displays an alert message with a
given text.

Stops execution and displays an alert message with a
given text and title.

Stops execution and displays a confirmation dialog box
with a given text and title. It also displays two or three
buttons, such as “Yes”, “No", and “Cancel".

Stops execution and opens an error dialog box with a
given message.

Stops execution and displays a dialog box with a text field,
requesting input from the user.

Sends a message to the message log.

Evaluates a given entity, a Derived Value, in the table
object given by the name or name path in the second
argument, which will then be the default target for the
evaluations of the Derived Value. If the third argument is
true, the table is cleared before adding the new data.
Otherwise, the data is appended.

| 337

NAME

DESCRIPTION

evaluateToDoubleArray2D

evaluateToIntegerArray2D

evaluateToStringArray2D

useResultsTable

getChoicelList

setFormObjectEnabled

setFormObjectVisible

setFormObjectText

setFormObjectEditable

setMenuBarItemEnabled

setMainToolbarItemEnabled

Evaluates the given entity, a Derived Value, and returns
the nonparameter column part of the real table that is
produced as a double matrix. All settings in the numerical
feature are respected but those in the current table
connected to the numerical feature are ignored.

Evaluates the given entity, a Derived Value, and returns
the nonparameter column part of the real table that is
produced as an integer matrix. All settings in the
numerical feature are respected, but those in the current
table connected to the numerical feature are ignored.

Evaluates the given entity, a Derived Value, and returns
the nonparameter column part of the potentially complex
valued table that is produced as a string matrix. All
settings in the numerical feature are respected, but those
in the current table connected to the numerical feature
are ignored.

Shows the values from the tableFeature in the
resultsTable form object.

Returns an object of the type ChoiceList, representing
a choice list node under the declarations branch. The type
Choicelist has associated methods that make it easy
to change values and display names, see the Application
Programming Guide.

Sets the enable state for the form object specified by the
name or name path.

Sets the visible state for the form object specified by the
name or name path.

Sets the text for the form object specified by the name or
name path in the second argument. This method throws
an error if it is impossible to set a text for the specified
form object.

Sets the editable state for the form object specified by the
name or name path. This functionality is only available for
text field objects.

Sets the enable state for the menu bar item specified by
the name or name path (from the menu bar) in the first
argument.

Sets the enable state for the main toolbar item specified
by the name or name path (from the main toolbar) in the
first argument.

338 |

NAME

DESCRIPTION

setFileMenultemEnabled

setRibbonItemEnabled

setToolbarItemEnabled

useView

resetView

getView

setWebPageSource

getScreenHeight

getScreenWidth

Sets the enable state for the file menu item specified by
the name or name path (from the file menu) in the first
argument.

Sets the enable state for the ribbon item specified by the
name or name path (from the main window) in the first
argument.

Sets the enable state for the toolbar form object item
specified by the name or name path in the first argument.

Applies a view to the graphics contents given by the name
or name path in the second argument.

Resets the view to its initial state in the graphics contents
given by the name or name path in the second argument.

Returns the view currently used by the graphics contents
given by the name or name path in the second argument.

Sets the source for the form object specified by the name
or name path in the first argument.

Returns the height in pixels of the primary screen on the
client system, or of the browser window if Web Client is
used.

Returns the width in pixels of the primary screen on the
client system, or of the browser window if Web Client is
used.

| 339

GUI Command Methods

NAME DESCRIPTION

clearAllMeshes Clears all meshes.

clearAllSolutions Clears all solutions.

clearSelection Clears the selection in the given graphics object.

exit Exits the application.

fileOpen Opens a file with the associated program on the client.
fileSaveAs Downloads a file to the client. See also the section “File Methods".
printGraphics Prints the given graphics object.

saveApplication Saves the application.

saveApplicationAs Saves the application under a different name. (Or as an MPH file.)
scenelight Toggles scene light in the given graphics object.

selectAll Selects all objects in the given graphics object.

transparency Toggles transparency in the given graphics object.

zoomExtents Makes the entire model visible in the given graphics object.
zoomToSelection Zooms to the current selection.

Debug Methods

NAME DESCRIPTION
clearDebuglLog Clears the Debug Log window.
debuglog Prints the value of an input argument to the Debug Log window.

The input argument can be a scalar, 1D array, or 2D array of the
types string, double, integer, or Boolean.

Methods for External C Libraries

EXTERNAL METHOD

NAME

DESCRIPTION

external

Returns an interface to an external C (native) library given by the
name of the library feature. The External class uses the Java
Native Interface (JNI) framework. For more information, see the
Application Programming Guide.

340 |

METHODS RETURNED BY THE EXTERNAL METHOD

The external method returns an object of type External with the following
methods:

NAME DESCRIPTION

invoke Invokes a named native method in the library with the supplied
arguments.

invokeWideString Invokes the named native method in the library with the supplied
arguments.

close Releases the library and frees resources. If you do not call this

method, it is automatically invoked when the external library is no
longer needed.

| 341

Progress Methods

NAME

DESCRIPTION

setProgressInterval Setsa progress interval to use for the top-level progress and

setProgress

resetProgress

display message at that level.

Calling this method implicitly resets any manual progress
previously set by calls to setProgress().

Sets a value for the user-controlled progress level.

Removes all progress levels and resets progress to 0 and the
message to an empty string.

showIndeterminatePr Shows a progress dialog box with an indeterminate progress bar,

ogress

showProgress

closeProgress
startProgress

setProgressBar

given message, and an optional cancel button.

Shows a progress dialog box with an optional cancel button,
optional model progress, and one or two levels of progress
information.

Closes the currently shown progress dialog box.
Resets the value of a given progress bar form object name to 0.

Sets the value of a given progress bar form object name in the
range 0 —100 and the associated progress message.

Date and Time Methods

NAME DESCRIPTION

currentDate Returns the current date as a string (formatted according to the
server's defaults) for the current date.

currentTime Returns the current time as a string (not including date and formatted
according to the server's defaults).

formattedTime Returns a formatted time using the given format. The format can
either be a time unit or text describing a longer format.

sleep Sleep for a specified number of milliseconds.

timeStamp Current time in milliseconds since midnight, January I, 1970 UTC.

getExpectedComp Returns a string describing the approximate computation time of the

utationTime

application. The string can be altered by the method
setExpectedComputationTime.

342 |

NAME

DESCRIPTION

setLastComputat
ionTime

getLastComputat
ionTime

Set the last computation time, overwriting the automatically
generated time.

You can use the timeStamp method to record time differences and
then set the measured time in ms (a long integer).

Returns the last computation time in the given format. The format can
either be a time unit or text describing a longer format. This format is
localized and the output is translated to the current language setting.

| 343

License Methods

NAME

DESCRIPTION

checkoutLicense

checkoutLicenseForFil
e

checkoutLicenseForFil
eOnServer
getLicenseNumber

hasProduct

hasProductForFile

hasProductForFileOnSe
rver

Checks out one license for each specified product.

Checks out one license for each product required to open an
MPH file.

Checks out one license for each product required to open an
MPH file.

Returns a string with the license number for the current
session. Example: 1icensenumber=getLicenseNumber()

Returns true if the COMSOL installation contains the
software components required for running the specified
products.

Retumns true if the COMSOL installation contains the
software components required for running the specified MPH
file.

Returns true if the COMSOL installation contains the
software components required for running the specified MPH
file.

Conversion Methods

NAME DESCRIPTION

toBoolean Converts strings and string arrays to Booleans. (‘true’ retums true, all
other strings return false).

toDouble Converts floats, float arrays, strings, and string arrays to doubles.

toInt Converts strings and string arrays to integers.

toString Converts Booleans, integers, and doubles, including arrays, to strings.

Array Methods

NAME DESCRIPTION

getColumn Returns a string, double, integer, or Boolean array for a specified column
in a 2D array (matrix). This is, for example, useful when values have been
read from a file and only certain columns should be shown in a table.

getSubMatrix Returns a rectangular submatrix of an input matrix. Available for string,
double, integer, or Boolean 2D arrays.

insert Inserts one or more elements in an array and returns the expanded array.

Auvailable for string, double, integer, or Boolean arrays.

344 |

NAME DESCRIPTION

append Adds one or more elements to the end of an array and returns the
expanded array. Available for string, double, integer, or Boolean arrays.

remove Removes one or more elements from an array and returns the shortened
array. Available for string, double, integer, or Boolean arrays.

insertRow Inserts one or more rows into a rectangular 2D array and returns the
expanded array. Available for string, double, integer, or Boolean arrays.

appendRow Adds one or more rows to the end of a rectangular 2D array and returns
the expanded array. Available for string, double, integer, or Boolean arrays.

removeRow Removes one or more rows from a 2D array and returns the reduced
array. Available for string, double, integer, or Boolean arrays.

replaceRow Replaces one or more rows in a rectangular 2D array and retums the
array. Available for string, double, integer, or Boolean arrays.

insertColumn Adds one or more columns into a rectangular 2D array and returns the
expanded array. Available for string, double, integer, or Boolean arrays.

appendColumn Adds one or more columns at the end of a rectangular 2D array and
retumns the expanded array. Available for string, double, integer, or
Boolean arrays.

removeColumn Removes one or more columns from a rectangular 2D array and returns
the smaller array. Available for string, double, integer, or Boolean arrays.

replaceColumn Replaces one or more columns in a rectangular 2D array and returns the
array. Available for string, double, integer, or Boolean arrays.

matrixSize Returns the number of rows and columns of a matrix as an integer array
of length 2. Available for string, double, integer, or Boolean arrays.

| 345

String Methods

NAME DESCRIPTION

concat Concatenates a given array or matrix of strings into a single string using
the given separators.

contains Returns true if a given string array contains a given string.

find Returns an array with the indices to all occurrences of a string in a string
array.

findIn Returns the index to the first occurrence of a string in a string array or the
first occurrence of a substring in a string.

length Returns the length of a string.

replace Returns a string where a string has been replaced with another string.

split Returns an array of strings by splitting the given string at a given separator.

substring Returns a substring with the given length starting at the given position.

unique Returns an array of strings with the unique values in the given array of

strings.

Collection Methods

NAME DESCRIPTION

copy Returns a copy of the given array or matrix. Available for string, double,
integer, or Boolean arrays.

equals Returns true if all elements in the given array are equal and they have the
same number of elements. Available for string, double, integer, or Boolean
arrays. For doubles, comparisons are made using a relative tolerance.

sort Sorts the given array. Note: The array is sorted in place. Available for
string, double, or integer arrays. If the array is two-dimensional (a matrix),
the columns are sorted by their row values from top to bottom.

merge Returns an array with all of the elements merged from the given arrays.

Available for string, double, or integer arrays.

With, Get, and

Set Methods

NAME DESCRIPTION

with Used to make code more compact.

endwith The ending of a with statement.

set Sets a Boolean, integer, double, or string property value. Allows

for a scalar, array, or matrix property.

346 |

NAME

DESCRIPTION

setIndex

getIntArray
getIntMatrix
getBoolean
getBooleanArray
getBooleanMatrix
getDouble
getString
getDoubleArray
getDoubleMatrix
getStringArray
getStringMatrix
getDblStringArray
getint

get

descr

Sets a string, double, or integer property value for a matrix or
vector at a given index.

Gets an integer vector property.

Gets an integer matrix property.

Gets a Boolean property.

Gets a Boolean vector property.

Gets a Boolean matrix property.

Gets a double property.

Gets a string scalar, vector, or matrix property.
Gets a double vector property or parameter.
Gets a double matrix property or parameter.
Gets a string vector property or parameter.
Gets a string matrix property or parameter.
Returns the value as a matrix of strings.

Gets an integer property.

Returns a variable expression.

Returns a variable description.

Model Builder Methods for use in Add-Ins

For writing add-in method code that operates on the current component, current
mesh, current physics etc. use the methods in the table below.

NAME DESCRIPTION

getCurrentComponent Retumns an object of the type ModelNode for the current
component.

getCurrentPhysics Returns an object of the type Physics for the current physics
interface.

getCurrentMesh Returns an object of the type MeshSequence for the current
mesh.

getCurrentStudy Retumns an object of the type Study for the current
component.

getCurrentPlotGroup Returns an object of the type ResultFeature for the current

component.

| 347

NAME DESCRIPTION

getCurrentNode Returns an object of the type ModelEntity for the current
component.
selectNode Select a particular model tree node.

These methods return the corresponding entity such that the method code in an
add-in can operate on it. When called from an application a method in this
category returns null. Also, null is returned if no entity of the corresponding

type exists such that nothing is current.

348 |

Appendix F — Guidelines for Building Applications

General Tips

Include reports to files with input data and corresponding output data.
Make it intuitive. Provide help, hints, and documentation as necessary.
Make it foolproof: “Safe I/0”, “Reset to default data”, etc.

Save a thumbnail image with the model.

Include a description text (It will be visible in the COMSOL Server library).
Test the application on the computer platforms for which it is intended.

Be minimalistic. From the developer’s point of view, it is much easier to
make sure logic works, organize, debug, maintain, and further develop the
app. From a user’s point of view, it is easier to use the application. The
minimalistic approach requires more care while developing but much less
maintenance later on and much higher adoption among users.

Embed libraries in the model if they are of manageable size.

Display the expected computation time and, after the computation, the
actual computation time.

When a computation is canceled, output data from the previous
computation should be cleared.

Password protect as needed. (Remember: No one can help you if you forget
the password.)

Naming Conventions

In the demo applications in the Application Libraries, all forms, events,
declarations and methods use camelCase. You can adopt this convention also in
your own applications. Following this convention, a name should be composed of
a number of words joined without spaces, with each word's initial letter in capitals
except the first letter that should be lowercase. Use a descriptive name and long
names are better than hard-to-understand short names.

Examples of names for forms:

main
inputParameters

geometryTab

| 349

Examples of names for events:
+ updatePlot
» moveToVelocityTab

Examples of names for declarations:

o Strings — state, waveguideType

* Boolean — isError, didChange, hasBeenInitialized
¢ Integer — year, nextYear

* Double — speed, heatTransferCoefficient

Examples of names for methods:
e compute();

» computeStudyl();

» computeStudyAndPlot();

o getDataForPostProcessing();
 setPlotType();

Methods
* Do not create more methods than necessary.

Fewer methods give you a shorter list of methods to browse through when
looking for something. Fewer methods usually mean fewer lines of code to
worry about.

- If'several methods you wrote do essentially the same thing, consider merging
them into one method and dealing with the different cases by input
arguments.

- Do not create a method if it is only called from one place. Insert the code
right into that place instead.

» Create a local method if it is only used in a form, or triggered by a form
event or a form object event.

* Give methods descriptive names and name them so that similar methods are
grouped together when sorted alphabetically. You will have less to
remember and you will find what you are looking for casier. Long names are
better than hard-to-understand short names.

* The points above apply to method code as well: be minimalistic, use as few
lines of code and variables as possible, use descriptive names for variables,
use long names instead of hard-to-understand short names, and optimize
code to run efficiently.

350 |

» The above points apply to declarations as well: use good names, don't use
more than necessary, and declare variables where they are used (in forms and
methods or in the model).

Forms
» Do not create more forms than necessary.
* Give forms descriptive names. Same reasoning as for methods.

* Make good use of the many different types of form objects. Some are good
for some things, while some are good for others.

* Do notinsert more form objects than necessary. Too many options for input
data may make the application hard to use. Too much output data makes it
hard to find important information.

 Insert a text field for the user to leave comments to save with the user’s set
of input and output data when saving the application.

» Consider inserting a button with a method to reset to default data.

* Apply “Safe 1/0”:

- Forinput fields, alert the user about input data that is out of bounds. You can
do that cither by an alert triggered by an On Data Change event for an input
field, or by setting limits in the form objects settings window, which then sets
hard limits. In a method generating the alert, you may just warn the user and
then allow the input data if the user chooses to go ahead anyway.

- On output fields, give the precision that makes sense. If current results are
not based on current input data, show it. If the computation failed, show it.

* Include tooltips, help, documentation, hints, and comprehensive reports.

* Provide the user with information about how long it takes to run the
simulation with default input data on a typical computer. It could be
seconds, hours, or even days depending on the application, so that is
something the user would like to know before hitting the compute button.
Consider playing a sound to alert the user when the computation has
finished. The user may be doing something else while waiting for results.
(Sending an email message with a report to the user or some other place
when the computation is done may be a better alternative if the computation
is really long.)

* Spend some time on the layout of a form. A good-looking form makes it
easier and more fun to use the application.

Consider setting keyboard shortcuts for buttons and menu items.

| 351

Appendix G — The Application Library Examples

In the Application Libraries, you can find example applications that showcase the
capabilities of the Application Builder. They are collected in folders with the name
Applications and are available for many of the add-on products. You can edit these
applications and use them as a starting point or inspiration for your own
application designs. Each application contains documentation (PDF) describing
the application and an option for generating a report.

Below is a partial list of the available application examples organized as they appear
in the Application Libraries tree. Note that some applications may require

additional products to run.

NAME

APPLICATION LIBRARY

Cluster Setup Validation
Helical Static Mixer
Transmission Line Calculator
Tubular Reactor

Tuning Fork

B-H Curve Checker

Effective Nonlinear Magnetic Curves
Induction Heating of a Billet
Organ Pipe Design

Lithium Battery Designer
Lithium Battery Pack Designer
Lithium-lon Battery Impedance

Water Treatment Basin

Reaction Equilibrium - Gas Phase Conversion of

Ethylene to Ethanol
Cyclic Voltammetry

Electrochemical Impedance Spectroscopy

Concentric Tube Heat Exchanger

Equivalent Properties of Periodic Microstructures

Finned Pipe
Forced Air Cooling with Heat Sink

Inline Induction Heater

COMSOL Multiphysics
COMSOL Muttiphysics
COMSOL Multiphysics
COMSOL Multiphysics
COMSOL Multiphysics
AC/DC Module
AC/DC Module
AC/DC Module
Acoustics Module, Pipe Flow Module
Battery Design Module
Battery Design Module
Battery Design Module
CFD Module

Chemical Reaction Engineering Module

Electrochemistry Module
Electrochemistry Module
Heat Transfer Module
Heat Transfer Module
Heat Transfer Module
Heat Transfer Module

Heat Transfer Module

352 |

NAME

APPLICATION LIBRARY

Thermoelectric Cooler
Mixer

Charge Exchange Cell Simulator

Truck Mounted Crane Analyzer
General Parameter Estimation

Heat Recovery for System for Geothermal Heat
Pump

Solar Dish Receiver Designer
Corrugated Circular Horn Antenna
Frequency Selective Surface Simulator

Slot-Coupled Microstrip Patch Antenna Array
Synthesizer

Rotor Bearing System Simulator
Si Solar Cell with Ray Optics

Beam Section Calculator (Using Livelink™ for
Excel®)

Beam Section Calculator

Bike Frame Analyzer

Fiber Simulator
Plasmonic Wire Grating Analyzer

Polarizing Beam Splitter

Heat Transfer Module
Mixer Module

Molecular Flow Module, Particle Tracing
Module

Multibody Dynamics Module
Optimization Module
Pipe Flow Module

Ray Optics Module
RF Module
RF Module
RF Module

Rotordynamics Module
Semiconductor Module

Structural Mechanics Module, LivelLink™
for Excel®

Structural Mechanics Module

Structural Mechanics Module, LiveLink™
for SOLIDWORKS®

Wave Optics Module
Wave Optics Module
Wave Optics Module

The following sections highlight some of the applications listed in the table above.

The highlighted applications exemplify a variety of important Application Builder
features, including the use of animations, email, optimization, parameter
estimation, tables, and the import of experimental data.

Helical Static Mixer
This app demonstrates the following:

e Geometry parts and parameterized geometries

e Dark theme

» Material appearance visualization with environment reflections

« Report generation for both Microsoft® Word and Microsoft® PowerPoint

| 353

» Options for setting different mesh sizes
* Improved graphics visualization when showing and hiding different
geometry objects

* Enabling and disabling ribbon items based on the solution state.

Helical static mixers are often used to mix monomers and initiators which then
react during a polymerization process. The concentration field is included in the
analysis in order to compute the extent of mixing between two streams injected
into the static mixer through semicircle-shaped inlets.

The app can be used to estimate the degree of mixing in a system including one
to five helical blades whose dimensions can also be varied. The monomers' liquid
properties and inlet velocity can also be varied.

This application does not require any add-on products.

Transmission Line Calculator

This app demonstrates the following;:

+ Creating apps for small screens such as smartphones

» User-interface navigation with a top menu typically used on websites

* Dynamically hiding forms using card stacks to minimize the space required
by the app

» Changing appearance by using different background colors.

354 |

Transmission line theory is a cornerstone in the teaching of RF and microwave
engineering. Transmission lines are used to guide waves of electromagnetic fields
at radio frequencies. They exist in a variety of forms, many of which are adapted
for easy fabrication and employment in printed circuit board (PCB) designs.
Often, they are used to carry information, with minimal loss and distortion, within
a device and between devices.

Electromagnetic fields propagate along transmission lines as transverse
clectromagnetic (TEM) waves. The Transmission Line Parameter Calculator app
computes resistance (R), inductance (L), conductance (G), and capacitance (C) as
well as the characteristic impedance and propagation constant for some common
transmission lines types: coaxial line, twin lead, microstrip line, and coplanar
waveguide (CPW).

This application does not require any add-on products.

Transmission Line Calcolator O *

Twin-lead Microstrip CPW
® =

Geometry Physics Simulation Results/Help

Compute
Expected computation time: 4 seconds

Last computation time: 4s

Coaxial Line simulation is solved.

About

| 355

Tubular Reactor

This app demonstrates the following:

» Sending an email with a report when the computation is finished

» User-defined email server settings

» Playing a sound when the computation is completed

* Options to visualize plots tiled or tabbed.

The app exemplifies how students in chemical engineering can model nonideal
tubular reactors (radial and axial variations) and investigate the impact of different

operating conditions. It is also a great example of how teachers can build tailored
interfaces for problems that challenge the students’ imaginations.

The model describes a tubular reactor where propylene oxide (A) reacts with water
(B) to form propylene glycol (C):
A+B->C

Since water is the solvent and present in abundance, the reaction kinetics may be
described as first order with respect to propylene oxide

R=k*C_A
Alternatively, a second-order reaction can also be implemented according to
R =kf*C_A*C_B - kr*C_C

The reaction is exothermic and a cooling jacket is used to cool the reactor. The
reactor is modeled in 2D axisymmetry and the simulation results yield
composition and temperature variations in both the radial and axial directions.

356 |

This application does not require any add-on products.

Uit mgh - Tubular Bacton - o =

aput and Description Results o

= Reactor Description

asf 340

ot
1o
ol
T o4 41 a0

apected computation time: § pecands. a3 00

Asial locabion {m:

= Information
© Last computation times 6 3
= When Solved 290

¥ Play seund
mad epot to:

Radial boeatien ()

Tuning Fork

This app demonstrates the following:

* Playing a sound at a specific computed frequency
¢ Selecting different materials from a combo box

* Visualizing material appearance, color, and texture

» Choice of three different user interface layouts for computer, tablet, or
smartphone

¢ Custom implementation of the secant method

e Custom window icon.

When a tuning fork is struck, it vibrates in a complex motion pattern that can be
described mathematically as the superposition of resonant modes, also known as
cigenmodes. Each mode is associated with a particular eigenfrequency. The tuning
fork produces its characteristic sound from the specific timbre that is created by
the combination of all of the eigenfrequencies.

The app computes the fundamental resonant frequency of a tuning fork where you
can change the prong length. Alternatively, you can provide a user-defined target
frequency and the application will find the corresponding prong length using an
algorithm based on a secant method.

| 357

This application does not require any add-on products.

H Taring For - o x

= iz 74 ‘
e

I

igiw

B-H Curve Checker

This app demonstrates the following;:

» Importing measured data from a text file
+ Handling measured data using methods

» Exporting the results to a text file.

The app can be used to verify and optimize B-H curves using experimental data.
It also generates curve data in the over-fluxed region, where measurement are
difficult to perform. It removes the unphysical ripples of the slope of the B-H
curve that might cause numerical instability.

The original B-H curve is evaluated from two aspects. Firstly, to verify that the
extrapolation of the curve is reasonable from the physical point of view. Secondly,
to check if the slope of the curve is smooth. The optimization algorithms are
mainly based on the simultaneous exponential extrapolation method and the
linear interpolation method, respectively.

The app requires the original curve data defined in a text input file. Once the curve
is imported, the application checks if optimization is required. By clicking the
Optimize Curve button, the user can generate the optimized curve data, which can
be exported to a text file.

358 |

This application does not require any add-on products.

b -4 Curen Chacker - o *®

ux denaty B, T

Magrete &

= Optimized Duts

™ W aim

& Theeptim

Induction Heating of a Steel Billet

This app demonstrates the following:

e Geometry parts and parameterized geometries

» Using tables for user input parameters
 Visualization on a 2D cross-section of a 3D geometry

» Improved visualization and user experience when a geometry object (the air
object) is hidden.

Induction heating is a method used to heat metals for forging and other
applications. Compared with more traditional heating methods, such as gas or
electric furnaces, induction heating delivers heating power directly to the piece in
a more controlled way and allows for a faster processing time.

The app is used to design a simple induction heating system for a steel billet,
consisting of one or more electromagnetic coils through which the billet is moved
at a constant velocity. The coils are energized with alternating currents and induce
eddy currents in the metallic billet, generating heat due to Joule heating. The
billet cross section; the coil number, placement, and size; as well as the initial and
ambient temperature and the individual coil currents can all be specified as inputs
in the app.

| 359

This application requires the AC/DC Module.

Effective Nonlinear Magnetic Curves Calculator

This app demonstrates the following:

« Importing measured data from a text file

+ Handling measured data using methods

« Exporting the results to a text file

» Exporting the results as COMSOL Material Library file.

The app is a companion to the Effective Nonlinear Constitutive Relations
functionality. Magnetic-based interfaces in the AC/DC Module support the
Eftective HB/BH Curve material model that can be used to approximate the
behavior of a nonlinear magnetic material in a frequency domain simulation
without the additional computational cost of a full transient simulation.

The Effective HB/BH Curve material model requires the effective Heff (B) or
Beff (H) relations defined as interpolation functions. This utility app can be used
to compute the interpolation data starting from the material’s H(B) or B(H)
relations.

The interpolation data for the H(B) or B(H) relations can be imported from a text
file or entered in a table. The app then computes the interpolation data for the
Heff (B) or Beff (H) relations using two different energy methods. The resulting

360 |

effective material properties can be exported as a COMSOL Material Library file
and be further used in a model with the Magnetic Fields interface.

This application does not require any add-on products.

Organ Pipe Design
This app demonstrates the following;:

« Using a Java® utility class for combining several waveforms and for playing
sound

» Using tables for presenting results.

The app allows you to study the design of an organ pipe and then play the sound
and pitch of the changed design. The pipe sound includes the effects of different
harmonics with different amplitudes.

The organ pipe is modeled using the Pipe Acoustics, Frequency Domain interface.
The app allows you to analyze how the first fundamental resonance frequency
varies with the pipe radius and wall thickness, as well as with the ambient pressure
and temperature.

Using the app, you can find the full frequency response, including the
fundamental frequency and the harmonics. With a method written in Java®code,
the app detects the location and amplitude of all harmonics in the response, thus
extending the analysis beyond the built-in functionality of the COMSOL
Multiphysics user interface.

| 361

This application requires the Acoustics Module.

S o

gt Rasonance Fraguencies

2

Lithium Battery Designer

This app can be used as a design tool to develop an optimized battery
configuration for a specific application. The application computes the capacity,
energy efficiency, heat generation, and capacity losses due to parasitic reactions of
a battery for a specific load cycle.

Various battery-design parameters consist of: geometrical dimensions of the
battery canister, the thicknesses of the different components (separator, current
collectors and electrodes), the positive electrode material, and the volume
fractions of the different phases of the porous materials can be changed. The load
cycle is a charge-discharge cycle using a constant current load, which may be
different for the charge and discharge stages.

362 |

The app also computes the battery temperature (assuming an uniform internal
battery temperature), based on the generated heat and the thermal mass. Cooling
is defined using an ambient temperature parameter and a heat transfer coefficient.

Li-lon Battery Pack Designer
This app demonstrates the following:

Dynamic help system using card stacks
Multiple components (1D and 3D) in a single app

Toggle buttons in the ribbon for showing different input, hiding,/showing
geometry selections, and for dynamic help

Geometry parts and parameterized geometries
Importing experimental data

Options for creating different mesh sizes
Resetting a portion of the input parameters or all
Generating a results table during the app session

Exporting results to a text file or to Microsoft® Excel if a license of
LiveLink™ for Excel® is available

Sliders and buttons to control the time step to plot

| 363

* Visualizing results with animations

e Custom window icons.

It is a tool for investigating the dynamic voltage and thermal behavior of a battery
pack, using load cycle and SOC vs OCV dependence experimental data.

Parameter estimation of various parameters such as the ohmic overpotential, the
diffusion time constant, and the dimensionless exchange current can be performed
by the app. The app may then be used to compute a battery pack temperature
profile based on the thermal mass and generated heat associated with the voltage
losses of the battery.

Various battery pack design parameters (packing type, number of batteries,
configuration, geometry), battery material properties, and operating conditions
can be varied.

This application requires the Battery Design Module and the Optimization
Module.

L Untitiedd rmph - Li Batiery Foct Dergrar - (=] x

L e Te—
pummmarital Duta (1} Vakage Lz
3 Col Sotn-of-Charga

e A M
S = (L] a rraml - |

e Mash Chunguds Bgaman £ Bl | W Oinetan
e L i T =l)

- @Nm rMas

O w Tme=0.1 b Vikrme: Temparature [degc)

I]

Li-lon Battery Impedance

The goal with this app is to explain experimental electrochemical impedance
spectroscopy (EIS) measurements and to show how you can use a simulation app,
along with measurements, to estimate the properties of lithium-ion batteries.

364 |

The app takes measurements from an EIS experiment and uses them as inputs. It

then simulates these measurements and runs a parameter estimation based on the
experimental data.

The control parameters are: the exchange current density, the resistivity of the
solid electrolyte interface on the particles, the double-layer capacitance of NCA,
the double-layer capacitance of the carbon support in the positive electrode, and
the diftusivity of the lithium ion in the positive electrode. Fitting is done to the

measured impedance of the positive electrode at frequencies ranging from 10
mHz to 1 kHz.

The application requires the Optimization Module and the Battery Design
Module.

Livtan Battery impadance

= B 8
o Help

Graphics

0.0008 00000 o.001 T o012 a.0011 00018 80015 0.0018

| 365

Water Treatment Basin

This app demonstrates the following:

o Parameterized geometry containing a geometry sequence with if-statements
to produce different types of designs

* Options to set the mesh size

o Light Theme

+ A graphical user interface that includes different windows that can be shown
or hidden.

Water treatment basins are used in industrial-scale processes in order to remove
bacteria or other contaminants.

The app exemplifies modeling turbulent flow and material balances subject to
chemical reactions. You can specify the dimensions and orientation of the basin,
mixing baffles, and inlet and outlet channels. You can also set the inlet velocity,
species concentration, and reaction rate constant in the first-order reaction.

The app solves for the turbulent flow through the basin and presents the resulting
flow and concentration fields as well as the space-time, half-life, and pressure drop.

The application requires the CFD Module.

366 |

Reaction Equilibrium—Gas Phase Conversion of Ethylene to Ethanol
This app demonstrates the following:
* How an app can be used as a teaching tool

* An 8 question multiple choice quiz where the answers can be sent to the
grader by email

This app calculates the equilibrium compositions in gas phase conversion of
ethylene to ethanol. It allows you to study how the initial conditions and the
operating conditions affect the ethanol production.

The app is designed to teach you how to compute quantitative results for the
equilibrium composition and provide an understanding for the dynamics of a
chemical equilibrium.

The application requires the Chemical Reaction Engineering Module.

o - Baations Epliiars - Gt Phss Comeivwan f Eibytens fo Rl

Cyclic Voltammetry

The purpose of the app is to demonstrate and simulate the use of cyclic
voltammetry. You can vary the bulk concentration of both species, transport
properties, kinetic parameters, as well as the cycling voltage window and scan rate.

Cyclic voltammetry is a common analytical technique for investigating
electrochemical systems. In this method, the potential difference between a
working electrode and a reference electrode is swept linearly in time from a start

| 367

potential to a vertex potential, and back again. The current-voltage waveform,
called a voltammogram, provides information about the reactivity and mass
transport properties of an electrolyte.

The application requires one of the Battery Design Module, Electrochemistry
Module, Electrodeposition Module, Corrosion Module, or Fuel Cell &
Electrolyzer Module.

Uit mgh - Eychc Ve Rammatry -ouo=

Graphics]

Cyche Vokammograms

I Current densiy

ront, dusity (e’

1 [01 02 03 04 03
Electric potential (V)

Electrochemical Impedance Spectroscopy

The purpose of this app is to understand EIS, Nyquist, and Bode plots. The app
lets you vary the bulk concentration, diffusion coefficient, exchange current
density, double layer capacitance, and the maximum and minimum frequency.

Electrochemical impedance spectroscopy (EIS) is a common technique in
electroanalysis used to study the harmonic response of an electrochemical system.
A small, sinusoidal variation is applied to the potential at the working electrode,
and the resulting current is analyzed in the frequency domain.

The real and imaginary components of the impedance give information about the
kinetic and mass transport properties of the cell, as well as the surface properties
through the double layer capacitance.

368 |

The application requires one of the Battery Design Module, Electrochemistry
Module, Electrodeposition Module, Corrosion Module, or Fuel Cell &
Electrolyzer Module.

o Unstiadimph.- Bactrochamcsl mpadance Spectoscpy - o x
5 = B8
Reet Compue Raport Help
Input and Information Results s O
- gt Nysst Pl BodePiet | Bede Pt Phase Angie
Cherrieal prepeties aadm-H UED a8
Diffusion cotfcion, uidiad species. Se-10 i Nyquist phot: Impedance with respect to ground
Coftuion coafficont, rechoced rpecies Ser10 e aoors|T T T 1
Bk ncentinticn, cvidited sgecies 10 melim’ o7 i
Wk concantration, educed prcies 10 matim’ conis| 1
Enchange current density, reference sute 40 et 2.006] / 1
Cousie by melscid cpacmen. 20 e o033 s
| S— Py W 4
M frequency: ' He £ oo rd 9
mum. 3 [r ~
Masimum fagquancy: 0000 e ? oom // 1
= Simuation Information § oo P 1
Uapected compatation time: 7 pecands E oo0z — - 4
St 5 oous o - 1
/ N -
) Lo e 5 o 1
= oons q
aonf | q
aooos - 1
of! 1
20003 1
] 0002 0004 9.006 6.008 ot

Real impedance Igem’}

| 369

Concentric Tube Heat Exchanger

This app demonstrates the following:

 Selecting predefined or user-defined materials

» User option to switch between laminar flow or turbulent flow

» Changing boundary conditions using methods

* Visualizing temperature dependent material properties as graph plots

» User option to set the solver tolerance.

Finding the right dimensions for a heat exchanger is imperative to ensure its
effectiveness. Other properties must also be considered in order to design a heat
exchanger that is both of the right size and provides heated or cooled fluid of the
right temperature.

The app computes these quantities for a heat exchanger made of two concentric
tubes. The fluids can flow either in parallel or in counter current flow.

The fluid properties, heat transfer characteristics, and dimensions of the heat
exchanger can all be varied. The Nonisothermal Flow multiphysics interface is
used to model the heat transfer.

This application requires the Heat Transfer Module.

a

Cancentric Tube Hast Exshanger Eumamsicning Toct - o %

= " H

Beet Compus Raport Melp

Concentric Tube Heat Exchanger Dimensioning Tool

Tusbas P, e Tubs | P, Cuter Tube Termparatins oves Langth | Presauee oves Length

(wil-]

Georntry and Material

Tarmparatuce cver Lingth

Temparature (€]

Expacted computation time: 30 paconds

Expected memory wages Less than 468 ° 2 4 &] 10
fommation zcoordinate im}

Lusk computation time: 393

i

fre
1AW e faid mata 1823k
128208 Gt ok KTy
Tee Dol mass: S7ky

370 |

Equivalent Properties of Periodic Microstructures
This app demonstrates the following:

 Visualization of a periodic structure from a unit cell
* Resetting some or all input parameters

» Export the resulting material properties as an MPH-file or an XML-file that
can be imported to a COMSOL Multiphysics session.

Periodic microstructures are frequently found in composite materials, such as
carbon fibers and honeycomb structures. They can be represented by a unit cell
repeated along three directions of propagation.

To reduce computational costs, simulations may replace all of the microscopic
details of a composite material with a homogenecous domain with equivalent
properties. This app computes the equivalent properties for a geometrical
configuration and the material properties of a unit cell to be used in a macroscopic
model that uses these composite materials.

Nine different microstructures are given, with dimensional characteristics that are
modifiable by the user, as well as thirteen predefined materials. The app calculates
the equivalent density, heat capacity, and thermal conductivity or diftusivity of the
composite materials.

This application does not require any add-on products.

[e e p———

t Updele Updsis Computs Erpent Help
oty Wi [
nt Pr T Periodi 1 -

4

ol demamisees MACH Parieic

[Fereds Lample

esn el (=3 N B e S-G-FRoc@l es
Dopens — =a ,

Heg - = 1

4

Erpectud mamery wiage Lava than 4 G

Stk et et o dable

| 371

Finned Pipe
This app demonstrates the following:
* Geometry parts and parameterized geometry

+ A results table form object containing outputs.

Finned pipes are used for coolers, heaters, or heat exchangers to increase heat
transfer. They come in different sizes and designs depending on the application
and requirements.

When the fins are placed outside the pipe, they increase the heat exchange surface
of the pipe so that a cooling or heating external fluid can exchange heat more
efficiently. When placed inside the pipe, it is the inner fluid that benefits from an
increased heat exchange surface. Instead of fins, grooves can also increase the heat
exchange surface, particularly inside the pipe where space is limited.

With this app, you can customize a long cylindrical pipe with predefined inner and
outer fins or grooves to observe and evaluate their cooling effects. The app
calculates the thermal performance of a pipe that is filled with water and then
cooled or heated by surrounding air with forced convection.

Various geometric configurations are available for the outer structure
(disk-stacked blades, circular grooves, helical blades, helical grooves, or none) and
for the inner structure (straight grooves or none).

The app computes the dissipated power and the pressure drop as functions of the
geometry and air velocity.

372 |

This application requires the Heat Transfer Module

gt grevm

[T

w

Numerical Results
= me

ol e (i) st st sute [N
40000 L4170
&.2000

care sap, et Pt (Pa) Porissn oo, s s) Sarpenstune dhop, e st (1)

Forced Air Cooling with Heat Sink

This app demonstrates the following:
e Geometry parts and parameterized geometries
* Sending an email with a report when the computation is finished

* User-defined email server settings which is useful when running compiled
standalone applications

» Options for setting different mesh sizes
« Error control of input parameters using methods.
Heat sinks are usually benchmarked with respect to their ability to dissipate heat

for a given fan curve. One possible way to carry out this type of experiment is to
place the heat sink in a rectangular channel with insulated walls.

The temperature and pressure at the channel’s inlet and outlet, as well as the
power required to keep the heat sink base at a given temperature, is then
measured. Under these conditions, it is possible to estimate the amount of heat
dissipated by the heat sink and the pressure loss over the channel.

The purpose of the app is to carry out investigations of such benchmarking
experiments. You can vary the type of heat sink as well as the number of fins or

| 373

pins and their dimensions to find the optimal design for a given pressure loss over
the channel.

Air velocities and heat source rates can be varied and the app solves for
nonisothermal flow, assuming turbulence as described by the algebraic yPlus
model.

This application requires the Heat Transfer Module.

. iy, sk B
[

AL
Bot | Uk Meh Compar T Yty gt

h = 1 w8
e

= b ok e oM Hide » o MnEsE0 e
S - Velocty magmtute il
Lo 1
T 5 -
e

vt gt g 7 -
e
P -
Dt e oo
Lot st -
o s -
= b bk Fin

it ety e

g -
Pk U -
b o e i

= Oparstng Contaam

it v "o
it g]

b e e L
= i arssagn

] St o amd wth th epet inchd wham o

Inline Induction Heater

This app demonstrates the following:

* A model using symmetry while the results are visualized in full 3D
» Provides info if the results are above or below certain critical values
 Selecting predefined or user-defined materials

* Error control of geometry parameters using methods and presentation of
possible errors using card stacks

* Sliders and buttons to control the position of the slice when visualizing the
results with a slice plot.

The app computes the efficiency of a magnetic induction apparatus for the heating
of liquid food flowing in a set of ferritic stainless steel pipes.

374 |

Ferritic stainless steels become more and more used in food processing due to their
relatively low and stable price, and their magnetic properties that allow using new
heating techniques.

A circular electromagnetic coil is wound around a set of pipes in which a fluid
flows. The alternating current passing through the coil generates an alternating
magnetic field that penetrates the pipes, generates eddy currents inside them, and
heats them up. Then heat is transferred to the fluid essentially by conduction.
Various configurations are available for the set of pipes (number, length, thickness,
material) and for the coil (number of turns, wire radius, current density, and
excitation frequency) to optimize the heat exchange with the fluid, while ensuring
homogeneous temperatures within it for a given flow rate.

This application requires the Heat Transfer Module and the AC/DC Module.

Thermoelectric Cooler

This app demonstrates the following;:

* Visualizing material appearance, color, and texture

» Showing info below the graphics about geometry parameters, results and
performance depending on the selected plot action

Thermoelectric coolers are widely used for electronics cooling in various
application areas, ranging from consumer products to spacecraft design. A

| 375

thermoelectric module is a common type of component used in thermoelectricity
applications. A typical module consists of several thermoelectric legs sandwiched
between two thermally conductive plates, one cold and one hot. The device that
needs to be cooled down must be attached to the cold face.

Due to the variety of applications, there can be many different thermoelectric
cooler configurations. This app covers the basic design of a single-stage
thermoelectric cooler of different sizes with different thermocouple sizes and
distributions. It also serves as a starting point for more detailed calculations with
additional input options and can be extended to multistage thermoelectric
coolers.

This application requires the Heat Transfer Module, AC/DC Module, and
Optimization Module. Instead of the AC/DC Module you could alternatively use
the MEMS Module or the Plasma Module.

o Tharmeselestric Cacler - o =

= Material
- Biamuth Teburide - BTl =
= Operating Condticns

ot sice tamparatune ;s K

Pedermante Parameters

Masieruan terrgeratuss Sfference (v hestloadk 8Ty, 73176 Mmierurn veflage Una 180V

Wi 2004 Mmoo bast boad (872 O Poaa 255 W

Feirtare ef the thermeslectie cesher " varn Figuee of et z osenIrm

376 |

Mixer

This app demonstrates the following:

* Multiple tabs in the ribbon

* Geometry parts and parameterized geometries

 Parts and cumulative selections can be used to automatically set domain and
boundary settings in the embedded model

+ Adding or removing geometry parts with different geometrical
configuration

» Options for creating different mesh sizes

e Sending an email with a report when the computation is finished

» User-defined email server settings which is useful when running compiled
standalone applications

« Sliders to control the visualization of a slice plot.

The app provides a user-friendly interface where scientists and process engineers
can investigate the influence that vessels, impellers, baffles, and operating
conditions have on the mixing efficiency and on the power that is required to drive
the impellers. You can use this application to understand and optimize the design
and operation of a mixer for a given fluid.

You can specify the dimensions of the vessel from a list of three types and the
dimensions and configuration of the impellers from a list of eleven types. The
vessels can also be equipped with baffles. You can further specify the impeller
speed and the properties of the fluid that is being mixed.

| 377

The application requires either the CFD Module or the Polymer Flow Module.

Charge Exchange Cell Simulator

A charge exchange cell consists of a region of gas at an elevated pressure within a
vacuum chamber. When an ion beam interacts with the higher-density gas, the
ions undergo charge exchange reactions with the gas which then create energetic
neutral particles. It is likely that only a fraction of the beam ions will undergo
charge exchange reactions. Therefore, in order to neutralize the beam, a pair of
charged deflecting plates are positioned outside the cell. In this way, an energetic
neutral source can be produced.

This app simulates the interaction of a proton beam with a charge exchange cell

containing neutral argon. User input includes several geometric parameters for the
gas cell and vacuum chamber, beam properties, and the properties of the charged
plates that are used to deflect the remaining ions.

The simulation app computes the efficiency of the charge exchange cell, measured
as the fraction of'ions that are neutralized, and records statistics about the different
types of collisions that occur.

378 |

This application requires the Particle Tracing Module and the Molecular Flow
Module.

..... Time=5.0081E-T 5 Particie traestorses

Truck Mounted Crane Analyzer

This app demonstrates the following;:

+ Using the knob form object

» Updating the geometry by rotating a knob

e Provides info if the results are above or below certain critical values

Many trucks are equipped with cranes for handling loads and such cranes have a
number of hydraulic cylinders that control the motion of the crane. These
cylinders and other components that make up the crane are subjected to large
forces when handling heavy loads. In order to determine the load-carrying
capacity of the crane, these forces must be computed.

In the app, a rigid-body analysis of a crane is performed in order to find the
payload capacity for the specified orientation and extension of the crane.

Inputs include the angle between the booms, the total extension length, the
capacity of the inner and outer boom cylinders, and the capacity extension
cylinders. Results from the app include the payload capacity and hydraulic cylinder
usage.

| 379

The application requires the Multibody Dynamics Module.

General Parameter Estimation
This app demonstrates the following;:

* Importing measured data from a text file or use built-in functionality for
data generation

» Automatically change solver options based on the input
* Dynamically update the equation display.
The app can be used to estimate parameters in models without any physics. Data

can be imported from a file or the built-in functionality for data generation can be
utilized.

The models include linear, quadratic, sigmoid, sloped Gaussian, and a custom
model with up to 5 parameters.

The Levenberg—Marquardt solver computes confidence intervals for the estimated
parameters, while the other solvers (MMA, SNOPT, and BOBYQA) allow for
specification of parameter bounds. MMA and BOBYQA allow for minimization
of the maximum square instead of the sum.

380 |

The application requires the Optimization Module.

Livaribg o =

Geothermal Heat Pump
This app demonstrates the following;:

Changing the design by using a combo box with predefined options
Options for creating different mesh sizes

Editing and plotting monthly data input

Setting the end time and the time steps size of a time dependent simulation
Visualizing the initial values for a time dependent simulation

Includes a simple control system to manage the temperature.

Geothermal heating is an environmentally friendly and energy-efficient method to
supply modern and well insulated houses with heat. Heat exchangers placed at a
sufficient depth in the ground below the house utilize subsurface heat, where
temperatures are almost constant throughout the year.

The app studies different pipe configurations of a ground heat exchanger. It
provides information on the performance of ground-coupled heat exchangers for
different specifications (depth, pattern, pipes configuration, and heating
conditions), temperature conditions, soil thermal conductivity, and temperature
gradient.

| 381

The heater can also be turned off if the daily heat demand is achieved, and then
turned on again after 24 hours. The temperature at the pipe’s outlet can be
controlled and compared to the minimum temperature required in the heat
exchanger specifications.

This application requires the Pipe Flow Module.

= ast Bacrenry Syrtam fon & Gectharmal Vaat Sump = £

3 Outiet Temparatuss e

- B oy e Pracion i

Been Lpdets el v Meh el Compuie Tempesture Tempeuters Rapen Help
Drign Temprstan + Ve whpe i Hete Sle

P
I

Hemt Exchingts Yasrly Tempasatuse L &3~ e - 0 Om
* Design Time=2 d Temperature |degC]

P parrm: nad

1]

Solar Dish Receiver Designer

Solar concentrator/cavity receiver systems can be used to focus incident solar
radiation into a small region, generating intense heat which can then be converted
to electrical or chemical energy. A common figure of merit in solar thermal power
systems is the concentration ratio, or the ratio of the solar flux on the surface of
the receiver or in the focal plane to the ambient solar flux.

This app is an application based on the Solar Dish Receiver tutorial model. In this
app, incident solar radiation is reflected by a parabolic dish, while the concentrated
solar radiation is collected in a small cavity. A total of six different parameterized
cavity geometries are available for investigation: Cylindrical, Dome,
Heteroconical, Elliptical, Spherical, and Conical. It is also possible to take several
different types of perturbation into account, including solar limb darkening and
surface roughness. For each cavity geometry, built-in plots show the flux
distribution and concentration ratio in the focal plane as well as the incident flux
on the interior surfaces of the cavity.

382 |

You can learn more about this example in a related blog post: “Efficiently
Optimizing Solar Dish Receiver Designs”:
https: / /www.comsol.com/blogs/efficiently-optimizing-solar-dish-receiver-designs /.

This application requires the Ray Optics Module.

o Uintitled mph - Sclar Cieh Recers Desigrer - o %

¥ Distrisution in the Focal Blne Ed |
55 Rachal Concertration Raticin the Focal Plane =1

= [—
A Pl Disrisusion on the Side Walk -

Focalengehe) -
Rim anghe 5 .

Coviy Settings B
£ Cenieal 3 Cytingical] Deme

O Eepreal) Sphericl [Hetmoceriesl

Conica Satings
Top s o m
Bettom s &l m
Hesghe ozt m

= Physics

Maximum sola dic anghe 485 mud
Surlace siope enee 1 mund

ol ivsdiance { wtim
Sole collctor sbuseption coeffiiert 81
ity wale sbaception coafficint]
Advanced
= infoematicn
Expected comptation time: Sseconds
T Lemcempaatontine 14

The gesmetry i updated.

Corrugated Circular Horn Antenna

This app demonstrates the following:

+ A toolbar with large buttons for the navigation instead of a ribbon

+ Subforms used as sections and the sections' headings include an image

+ Provides info if the results are within a certain range

* Visualizes a 2D axisymmetric model in full 3D

The excited TE mode from a circular waveguide passes along the corrugated inner
surface of a circular horn antenna where a TM mode is also generated. When
combined, these two modes give lower cross-polarization at the antenna aperture.
By using this app, the antenna radiation characteristics, as well as aperture

cross-polarization ratio can be improved by modifying the geometry of the
antenna.

| 383

This application requires the RF Module.

. R
§
® ¢ :
B8 L2283 3¢

384 |

Frequency Selective Surface Simulator
This app demonstrates the following;:

* Designing an app for small screens such as smartphones

» User-interface navigation with a top menu typically used on websites
* Geometry parts and parameterized geometries

* Visualizing periodicity of a geometry with material rendering

» Warning messages on icons when properties are not updated

* Sending an email with a report attached when the computation is finished

Frequency selective surfaces (FSS) are periodic structures that generate a bandpass
or a bandstop frequency response. They are used to filter or block RF, microwave,
or, in fact, any electromagnetic wave frequency. For example, you see these
selective surfaces on the doors of microwave ovens, which allow you to view the
food being heated without being heated yourself in the process.

The app simulates a user-specified periodic structure chosen from the built-in unit
cell types. It provides five unit cell types popularly used in ESS simulations along
with two predefined polarizations in one fixed direction of propagation that has
normal incidence on the ESS. The analysis includes the reflection and transmission
spectra, the electric field norm on the top surface of the unit cell, and the
dB-scaled electric field norm shown on a vertical cut plane in the unit cell domain.

You can change the polarization, center frequency, bandwidth, number of
frequencies, substrate thickness and its material properties, and unit cell type
(circle, ring, split ring, etc.) as well as their geometry parameters, including
periodicity (cell size).

| 385

This application requires the RF Module.

386 |

Microstrip Patch Antenna Array Synthesizer

This app demonstrates the following:

o Parameterized geometries

* Visualizing material appearance, color, and texture

* Multiple plots in the same window to visualize the results

+ Options to visualize the results with different views using check boxes

Microstrip patch antenna arrays are used in a number of industries as transceivers
of radar and RF signals. This is a prime candidate for the 5G mobile network
system.

The app simulates a single slot-coupled microstrip patch antenna, fabricated on a
multilayered low-temperature cofired ceramic (LTCC) substrate. When using this
app, you will be able to simulate the far-field radiation pattern of the antenna array
and its directivity. The far-field radiation pattern is approximated by multiplying
the array factor and the single antenna radiation pattern to perform an efficient
far-field analysis without simulating a complicated full-array model.

You can also evaluate phased antenna array prototypes for 5G mobile networks
with a default input frequency of 30 GHz. You can do this by varying antenna
properties such as the geometric dimension and substrate material.

| 387

This application requires the RF Module.
"n Nt Cionpesd M resivg Pach Restmsas ity Syeihasiins D x

Bet Updsis Loyout ek Eomputs

L]

an

£

i

8§
11111

4
LR
i

v e
Dpiee w e
0 plen m

* ifermaten

aprtea semputsion v [in

[Lact computstion e 105

LT T ——

Umctac Pkt B Binctmc inded) Buplodes um

Rotor Bearing System Simulator
This app demonstrates the following;:

» Navigation system using toggle buttons in the ribbon and Back/Forward
buttons in the settings window

 Selecting predefined or user-defined materials
+ Using a table for input of geometry objects
The app simulates a rotor bearing system consisting of disks and bearings mounted

on a rotating shaft. An eigenfrequency analysis is performed for a range of angular
speeds, to identify critical speeds of the system.

An app of this kind is useful at an early design stage where design modifications
can be made to move critical speeds away from the operating speed of the system.

Results include whirl modes, a Campbell plot, and a list of critical speeds.

388 |

This application requires the Structural Mechanics Module and the
Rotordynamics Module.

a
N
.OQ' ’ : = A
Rekse | [

Dby Bewings Sty Pelts Updits Notstions Compute Repont Melp

Si Solar Cell with Ray Optics
This app demonstrates the following:
e Multiple components (1D and 3D) in a single app

» Using the same choice list in the app as in the model using Data Access
functionality

¢ Output numerical results for a specific time step using a combo box

The app combines the Ray Optics Module and the Semiconductor Module to
illustrate the operation of a silicon solar cell at a location specified by the user. The
Ray Optics Module computes the average illumination over a day of the year. The
Semiconductor Module computes the normalized output characteristics of a solar
cell with design parameters specified by the user. The normalized output
characteristics is then multiplied by the computed average illumination to obtain

| 389

the output characteristics of the cell at the specified date and location, assuming
simple linear relationship between the output and the illumination.

% Solar Call with Ray Optica - o x
W -

P Curve

/ i |
[— o |
Expcted computation bme for Sunbght 4
Expacted computation tee for Calk £
7 oo 1

Searligh renit
Dy ol e puae:
e s ot naees
bbbt o e

4 dey
a1
Pryg— v

Pemer (m)

1828 miwn

Fil fncter sl 1 /
oo

A . /

he 0 ma U3 s

Ve LR o

Vmp oy

i~y om esf P

P o

0% e [EN) 04 s 03
Veltags (V]

390 |

Beam Section Calculator

This app demonstrates the following:

+ Reading and importing data from an Microsoft® Excel-file

« Exporting data to an Microsoft® Excel-file

The app computes the beam section properties and true stress distribution in a
designated steel beam section. A broad range of American and European beam

standards are available. It uses LiveLink™ for Excel® to read and store the beam
data in Excel® worksheets.

This %Jplication requires the Structural Mechanics Module and LiveLink™ for
Excel®. A version of this app is also provided without Microsoft® Excel
functionality.

|aoon

Bike Frame Analyzer

This app demonstrates the following;:

» Connecting an app to a SOLIDWORKS® session

¢ Setting a maximum allowed value which the solution is compared to
* Seclecting predefined or user-defined materials

» Changing boundary conditions with a combo box using methods

The app computes the stress distribution and the deformation of a bike frame
based on user configurable loads and constraints. It leverages LiveLink™ for

| 391

SOLIDWORKS® to load the geometry, and to update the frame dimensions for
studying their effect on the results.

This application requires the Structural Mechanics Module and LiveLink™ for
SOLIDWORKS®.

392 |

Fiber Simulator

For almost all commercial optical fiber types, the design consists of a concentric
layer structure with the inner layer(s) forming the core and the outer layer(s)
forming the cladding. Since the core has a higher refractive index than the
cladding, guided modes can propagate along the fiber.

This application performs mode analyses on concentric circular dielectric layer
structures. Each layer is described by an outer diameter and the real and imaginary
parts of the refractive index. The refractive index expressions can include a
dependence on both wavelength and radial distance. Thus, the simulator can be
used for analyzing both step-index fibers and graded-index fibers. These fibers can
have an arbitrary number of concentric circular layers. Computed results include
group delay and dispersion coefficient.

This application requires the Wave Optics Module.

. Untitled mgh - Fiser famulstor - o *®

(7 B aof

* Avaiabie Materials

| 393

Plasmonic Wire Grating
This app demonstrates the following:

» Choice of different user interface layouts for computer/tablet or
smartphone

+ Custom background image and color

» Graphics appearance with custom top color and bottom color

» Custom position of the graphics toolbar

This application computes diffraction efficiencies for the transmitted and reflected
waves (m = 0) and the first and second diffraction orders (m = +1 and +2) as
functions of the angle of incidence for a wire grating on a dielectric substrate. The
incident angle of a plane wave is swept from normal incidence to grazing

incidence. The application also shows the electric field norm plot for multiple
grating periods for a selected angle of incidence.

This application requires the Wave Optics Module.

n Platmonic Wire Geating Anabaer - o X

Qam-E W
Plottype [f] Sudace F] Comtewr (] Incident wave.
Plotangieofincidemee: &7 =

Detraction order: ()2 41 &A% A1 ()2

Polarizing Beam Splitter

A Gaussian beam is incident on a 45-degree thin-film stack embedded in glass
material prisms. The thin-film stack is designed from alternating high and low
refractive index materials. The wave will be refracted at the Brewster angle at each
internal interface. Thus, mainly p-polarized waves (polarization in the plane of
incidence) will be transmitted, whereas mainly s-polarized waves (polarization

394 |

orthogonal to the plane of incidence) will be reflected. Changing the spot radius
for the Gaussian beam modifies the polarization discrimination.

The reflectance and transmittance spectra are calculated for different Gaussian
beam spot radii.

The app automatically calculates the phase expressions necessary for the
Electromagnetic Waves, Beam Envelopes interface, when the user changes the
design parameters.

This application requires the Wave Optics Module.

o Ustitiec mgh - Plasing Basm Spister

¥ @

v Rapot Hep

-0 =

Weabngs S5 - Fiottype: Toaal wlectric fiekd norm Folinnabn

| 395

396 |

ID array 153
2D array 154
3D coordinates 277

About dialog box 40
about to shutdown event [40
action 61, 64, 139
Activation Condition 157
activation condition 237, 244
active card selector 266
Add New Choice List 157
Add New Form Choice List 157
add-in 128 210, 211
Add-in Libraries 214
add-on products 10, 352
alert 203, 337
aligning form objects 111, 120
animation 76, 86
appearance
button object 74
forms 50, 52
graphics object 76
input field object 99
multiple form objects 59
table 292
text 58
append unit from unit set 162
append unit to number 95, 297
application
saving 309
Application Argument /3, 129
Application Builder 20
desktop environment 12, 19
window 12, 15, 17
Application Builder Reference Manual

I, 217

application example
beam section calculator 39/
B-H curve checker 358
concentric tube heat exchanger 370
equivalent properties of periodic mi-
crostructures 371
fiber simulator 393
frequency selective surface simulator
385
helical static mixer 353
induction heating of a steel billet 359
li-ion battery impedance 364
li-ion battery pack designer 363
lithium battery designer 362
microstrip patch antenna array syn-
thesizer 387
mixer 377
organ pipe designer 36/
plasmonic wire grating 394
Si solar cell with ray optics 389
transmission line calculator 354
truck mounted crane analyzer 379
tubular reactor 356
tuning fork 357
water treatment basin 366
Application Gallery 28
Application Libraries 10, 27, 28, 44, 352
Application Library
COMSOL Server 32
application object 170
Application Programming Guide I/,
170, 199
application tree 12, 15, 17
applications
publishing 42
applications folder 10, 28, 352

| 397

398 |

apply changes 23
arguments

input and output /95
arranging form objects |
array 153

ID 153

2D 154

2D, interactively defining 155

syntax |54
array input object 144, 276
auto complete 190

Automatic Notation 260

background color 52
background image 52
BMP-file 218
Boolean variable 150, 152, 153, 225
conversion 344
Boundary Point Probe 92, 169
breakpoint 197
browser
web 3/, 131
built-in method library 331
button 63, 75, 109, 193
command sequence 64
icon 63
keyboard shortcut 64
on click event 63, 64
size 63, 113
style 63
text 113
tooltip 64

buttons tab, New Form wizard 48

C libraries

external 340
CAD-file import 270, 311, 313
cancel shutdown 140

card 265

card stack object 109, 150, 151, 265,

273
cell margins 119, 126
cells
merging [18
splitting /18
check box object 109, 144, 152, 174,
193,225
check syntax 183
choice list 62, 146, 156, 157, 230, 234,
239, 247, 248, 281, 282, 289, 290,
338
clear selection
graphics 80
click-through agreement 39
clipboard 252, 260, 305
close application icon 140
Close brackets automatically /89
code completion 190
tooltip 191
code folding 189
color
material 80
selection 80
column settings 117, 125
combo box object 109, 144, 150, 156,
159,229
command line 129
command sequence 18, 48, 49, 64, 67,
68, 75,85, 137,139, 143,170, 194,
195,219, 295, 303
comments
toggle on and off 188
common, file scheme 311, 326
compatible with physical quantity, unit
dimension check 96
compatible with unit expression, unit
dimension check 96
Compiler
button 36

node 37
compiler 10, 23, 36
complex numbers 260
component syntax |89
computation time 276
expected 102, 273, 275
last 102, 275, 343
COMSOL Client 10, 25, 26, 31, 33
file handing 307
running applications in 33, 307
COMSOL Compiler 10, 23, 36
COMSOL Desktop environment 12,
19
COMSOL Multiphysics 10, 23, 24, 29,
30,33, 126, 170, 199, 254, 257, 258
COMSOL Runtime 37
COMSOL Server 10, 23, 25, 26, 28, 30,
31,3334 311
manual 36
COMSOL Software License Agree-
ment 42
confirm 203, 337
Continue 197
Convert to Form Method 18, 69, 170,
194
Convert to Local Method 18, 69, 170,
194
Convertto Method 18, 68,70, 170, 172,
194,315
Coordinate 166, 168
Copy Table and Headers to Clipboard
260
copying
forms and form objects 126, 305
objects 56
rows or columns | /8
Create Local Method 193
Create Local Variable 192

Create New Declaration and Use It as

Source 95
Create New Form Declaration and Use
It as Source 95
creating
forms 16, 44
methods /8
CSV file 151, 261, 295
curly brackets 189

custom settings window 27

DAT file 151, 261, 295
Data Access 106, 178, 182
data change 61, 144, 195, 227, 228, 351
data display object 98, 101, 109
information node 275
tooltip 104
data file 151, 261, 295
Data picking 168
data picking 91, 168
data validation 95, 162
date 342
Debug Log 198
debug log window 198, 340
debugging 197, 340
Decimal Notation 260
Declaration and Use it as Source 148
Declarations 13, 146, 148
form 95, 146, 147
global 95
local 95
declarations node 225
delete button 56, 67, 271
deleting an object 56
Depth Along Line 169
derived values 102, 259
description text
Boolean variable 227
derived value 100
desktop icon 24, 38, 131
desktop shortcut 24, 131

| 399

400 |

Developertab 18, 104, 128, 180, 206

dialog box 337

disable form object 338

display name, for choice list 156, 159,

231,282, 289, 338

displayed text 58

Domain Point Probe 169

domain point probe 92

double variable 150, 152, 153
conversion 344

double, data validation 97

drag and drop, form objects 56

duplicating
rows or columns | /8

duplicating an object 56

edit local method 195
edit node 65, 176, 178
Editor Tools 176
editor tools 61, 179, 233, 234
window 17
editor tree 62, 65, 79, 176, 308, 310
element size 108
change 245
email 301
class 334
methods 334
email attachment
export 334
report 334
table 334
embedded, file scheme 217, 220, 311,
318
Enable code folding 189
enable form object 338
enabled state, for form objects 74
Engineering Notation 260
equation object 249
error message, data validation 96, 98

errors and warnings window |83

Evaluation 2D 168

Evaluation 3D 168

evaluation tables 168

event 61, 139, 144,193, 195,236
about to shutdown 40
button on click 64
for multiple form objects 59, 144
form 144
form object 144
global 13,110, 139
keyboard shortcut 64
local 139
node 140
on close 145
on data change 61, 144, 195, 227,

228, 351

onload 61, 145
on startup 140
slider 298, 300

Events 13

example application
bike frame analyzer 391
charge exchange cell simulator 378
corrugated circular hormn antenna 383
effective nonlinear magnetic curves

calculator 360

finned pipe 372
forced air cooling with heat sink 373
general parameter estimation 380
geothermal heat pump 381
inline induction heater 374
polarizing beam splitter 394
rotor bearing system simulator 388
solar dish receiver designer 382
thermoelectric cooler 375

Excel® file 151, 261, 295

executable 10, 23, 36

explicit selection 88, 89

exponent, number format 102

export

email attachment 334
export button, results table 260
export node 307, 319
Export Selected Image File 218
exporting

results 307, 319
external C libraries 340

extracting subform 113

file
commands 308
declaration 158
destination 271, 313
download 33, 309
import 65, 144, 158,217
menu |38
methods 332
opening 308
saving 309
types 271
upload 33, 309

file browser 324

file import object 144, 158 217, 270,

307, 312

file open
system method 334

file scheme
common 3/ 1, 326
embedded 217, 220, 311, 318
syntax 217
temp 311
upload 158, 311,316,319
user 311, 326

filename 271, 313, 332

files library 220

Find 184

fit, row and column setting 13, | 17

fixed, row and column setting 13, 117

for statement 20/

form 15, 52
Declarations 146
local 54
form collection 109, 134, 263
Form editor 20
desktop location 12
overview 5
preferences 19, 55
using 51
form event 144
form method 18, 139, 144, 170
form object 15, 55, 61, 221
event [44
with associated methods 174
form reference 263
Form tab, in ribbon 15
form window 15
Form wizard 61, 62, 100
Forms 13
Full Precision 260

function 17

geometry 30, 48, 65, 76, 82, 91, 284,
305, 314, 316, 337

import 270, 311, 313
operations 254, 257, 258

Geometry Entity Level 169

geometry node 65

get 347

GlIF-file 218

global evaluation 102, 265

global event /3, 139

global method 18, 144, 170

global parameter 202

Go to Method 18

go to method 68, 172

graphics 69
clearing contents 82
commands 79

hardware acceleration 42

| 401

hardware limitations 81/
object 46, 48, 75, 144, 337
plot group 82
Source for Initial Graphics Content
166
source for initial graphics content 75
tab, New Form wizard 48
toolbar 82, 109
using multiple objects 81
view 79, 85, 339
graphics data 92, 146, 166
grid layout mode 33, 52, 101, 110
grid lines, sketch layout mode 111
grow, row and column setting /13, 17

growth rules /13

Home tab, in ribbon 44
HTML
code 251
report 251, 327
HTTP and HTTPS protocols 30/
hyperlink object 300

icon 218,303
button 63
close application 140
command 65
desktop 24, 38, 131
graphics 76
help 97
main window [33
menu item 37
method |74
ribbon item 37
toolbar 303
if statement 201
ignore license errors 25
image
background 52
formats 218

object 252
Preview 218
thumbnail 28
Images library 218
Immediately
Store changes 74
import
file 65, 144, 158 217,271, 313
Indent and Format /88
Indent and format automatically 189
information card stack object 109, 273
information node 275
inherit columns 125
initial size, of main window 34
initial values, of array 153
initialize
parameter 70
variable 70
Initializing Installer progress window 39
input arguments 129, 195
input field object 93, 109, 144, 150, 162
adding 93
information node 275
text object 100
tooltip 94
unit object 100
Inputs 13, 129
inputs/outputs tab, New Form wizard
46
inserting
form objects 60, 61
rows and columns 13, 116
rows or columns [/8
integer
data validation 97
variable 150, 152, 153
variable conversion 344
item

menu /36, 193

ribbon 138
toolbar 302

ava utility class 217

PG file 29

J
Java® programming language 170, 199
J
JPG-file 218

keyboard shortcut 19,61, 139, 178, 190,
192,199, 328
event 64, 137, 303
knob object 298

language elements window 17, 175, 199
LaTeX 100, 103, 249
layout mode 52, 110
layout options, form collection 263
layout template 16, 45, 55
Libraries 14
libraries node 217, 252
license agreement 42
license errors
ignoring 25
Line Entry Method 169
line object 250
list box object 109, 144, 150, 156, 159,
287
LiveLink™ for Excel® 151, 261, 295
Livelink™ products 34
local event 139
local form 54
local method 18, 61, 69, 139, 144, 145,
170, 174, 193, 195, 227, 231, 305
local variable 192
log object 257
logo image 76

low-resolution displays 33

main form 134

Main Window [3

main window 134, 254
node /33

margins
cell 119,126
material 237
material color and texture 80
math functions 201
menu 136, 138
bar 134, 135
item 75, 109, 136, 193
toggle item 136, 222
menu toggle item 109
merging cells 13, 118
mesh 48, 76, 82, 108
change element size 245
size 108
meshing 254, 257, 258
message log object 258 337
method 14, 17,59, 68 75, 146, 170, 331
event 140, 144
form 18, 139, 144, 170
form object 174
global 18, 144, 170
local 18 61,69, 139, 144, 145, 170,
174, 193,227, 231, 305
Model Builder 203
window |7
Method Call 204, 21 1
Method editor 20, 331
desktop location |2
overview |7
Preferences 189
using 170
Method tab, in ribbon 17
method, called from the Model Builder
203
Methods |4
Microsoft® Word® format 325
minimum size
form objects 119
Model Builder

| 403

404 |

method 190, 203
model commands 3/0
model data access /109, 142, 305
Model Expressions 185
model expressions window |7
model object 170, 199, 331
model tree node, controlling if active

204

model utility methods 33/
move down

command sequence 67

table 294
move up

command sequence 67

table 294
MP4 file 253

MPH file 14, 23, 24, 26, 30, 44, 49, 217,

310, 340
multiline text 101
multiple form objects

selecting 59, 144

name
button 63
check box 227
choice list 156
form 52
form object 59
graphics object 75
menu |37
method 188
shortcut /64
variable 149
named selection 88
new element value 153
new form 16
New Form wizard 60, 100
buttons tab 48
graphics tab 48
inputs/outputs tab 46

new method /8

notation
data display number format 102
unit 102

number format 98, 102

number of rows and columns |13

numerical validation 97, 162

OGYV file 253

on click event, button 63

on close event [45

on data change event 61, 44, 195, 227,
228 351

on load event 6/, 145

On request

Store changes 74

on startup event 140

open file 308

OpenGL graphics hardware accelera-
tion 42

operating system command line 129

operators 200

optimization 365

orthographic projection 79

OS commands 334

output arguments |95

Output directory

for compiled applications 37

panes 263
parameter 7, 47, 69, 94, 96, 150, 202,
305, 347
combo box object 229
declarations 13, 146
events /3, 139
input field object 93
method 182, 201
slider object 297, 299
text label object 100

parentheses |89

password protected application 30
pasting
form objects 56
forms and form objects 127
image 252
rows or columns |18
pixels 58, 110
play sound 33, 219, 334

plot 48, 65, 75, 82, 152, 226, 232, 290,

302, 315,323,337
plot geometry command 65
plot group 69, 152
PNG file 29, 218
PNG-file 218
Point Being Modified 169
Polar Complex Numbers 260
position and size 58, 110, 112
multiple form objects 59
positioning form objects 55
precedence, of operators 200
precision 260
precision, number format 102
preferences 19, 55, 189, 311, 312
for compiled applications 4/
security 30
Preview
image 218
preview form 23
printing
graphics 80, 340
Probe 169
procedure |7
Programming Reference Manual | |
progress 254, 342
progress bar object 254, 342
progress bar, built in 254
progress dialog box 256, 342
publishing applications 42

Q Quick Access Toolbar 23

Find 184

radio button object 109, 144, 156, 159,
280
Record Code 180
recording code 180
Rectangular Complex Numbers 260
recursion /96
regular expression 97
removing
password protection 30
rows and columns [/3, 116
rows or columns |18
report 349, 352
creating 307, 319, 325, 326
creating automatically 204
email attachment 334
embedding 251
HTML 251, 327
image 29
node 307, 319, 326
request 203, 337
reset current view 79, 85
resizable graphics 33
resizing form objects 56
Results Evaluation /66, 168
results table object 259, 338
ribbon /34, 138
item 110, 138
section 138
tab 138
toggle item 109, 138, 222
row settings |16
run application 23, 25
running applications
compiled 36
in a web browser 31, 307
in the COMSOL Client 33

runtime 37

| 405

406 |

save

application 49

running application 26
save application command 309
save as 340
save file 309
Scalar 150
scalar variable 150, 230, 265, 297, 299
scene light 79, 340
Scientific Notation 260
security settings 30
select all

graphics 80
selection 48, 76, 82

explicit 89
selection colors 80
selection input object 89, 283
selections 88
selectNode method 204
separator

menu |36

ribbon 38

toolbar 136, 302
separators

CSV, DAT, and TXT files 295
set value command 108
Settings Form 128, 203, 211
Settings Forms 127
settings window

customized 27

Form editor 12, 15

Method editor 17

shortcut
desktop 24, 131
shortcuts 146, 164
use 185

Show as Dialog command 70
Show Dialog 128

show form command 71

Show in Model Builder 128
shutdown
cancel 140
sketch grid 111
sketch layout mode 52, 101, 110
slider object 109, 144, 296
smartphones
running applications on 33
software rendering 42
solving 254, 257, 258
sound
play 219
Sounds library 218
Source for Initial Graphics Content /66,
168
spacer object 303
special characters |3/
splash screen 38
splitting cells 113, 118
state
enabled, for form objects 74
visible, for form objects 74
status bar 254
Step 197
Stop 197
Stop Recording 182
stopping a method 199
Store changes 74
string variable /3,70, 139, 141, 150, 153,
229,231, 239, 263, 274, 286, 315
conversion 344
methods 346
subroutine 17
Switch to Model Builder and Activate
Data Access 95
syntax errors /83
syntax highlighting 187, 190
system methods 334
OS commands 334

T

table
email attachment 334
table object 144, 153, 291, 337
tables, model tree 259
tablets
running applications on 33
Target for Data Picking 91, 168
temp, file scheme 311/
template 16, 45, 55
temporary file 324
test application 23, 25
test in web browser 23
text 137
text color 52
text file 150, 261, 295
text label object 93, 100, 102
text object 109, 144, 286
information node 275
Theme 190
Themes [3
Themes node 50
thumbnail image 28
time 342
time parameter
combo box object 234
timestamps 258
title
form 52
main window 133
menu |37
toggle button 109, 222

size |13
text 113
toggle item

menu 109, 136, 222
ribbon 109, 138, 222
toolbar 302

toolbar 136, 260, 302
button, table object 294

graphics 82, 109
item 109, 302
separator /36, 302
tooltip
button 64
data display object 104
input field object 94
method editor /91
slider object 297, 299
toolbar button 303
unit mismatch 96
transparency 79, 340
TXT file 150, 261, 295

Unicode 100, 103
unit
changing using unit set 159
data display 102
dimension check 96, 162
expression 96
groups 159
lists 159
object 93, 100
Unit Groups 159
Unit Lists 159
Unit Set 159
unit set 97, 146, 248, 282, 290
Untitled.mph 26

upload
file scheme 158, 311,316,319
URL 131, 251, 301

use as source
array input object 278
card stack object 266
check box object 227
combo box object 230
data display object 102
declaration /48
explicit selection 90, 283
graphics object 75

| 407

information card stack object 274
input field object 93
list box object 288
radio button object 28/
results table object 260
selection input object 90, 283
slider object 297, 299
table object 291
text object 286
Use component syntax /89
use shortcuts 185, 186
user
file scheme 311, 326
user interface layout /5

username 334

Value 156, 159

variable 13, 146, 182
accessing from method 201
activation condition 157
Boolean 152, 153,225
declaration /3, 146
derived values 102
double 152, 153
events 3, 139, 141
find and replace 184
input field object 93
integer 152, 153
name completion /90
scalar 230, 265, 297, 299
slider object 297, 299
string 150, 153, 229, 231, 263, 274,

286

text label object 100

video
controls 254
player 254

video object 253

view

go to default 3D 85

graphics 79, 85, 339
reset current 79, 85
View all code 189
visible state, for form objects 74

volume maximum 102

WAV-file 218
web browser 10, 26, 31, 131
file handling 307
web page
hyperlink 301
web page object 25/
WebGL 31
WebM file 253
while statement 201
with statement 189, 201, 346
with statements 89
wrap text
text label object 101

zoom extents 76, 79, 290, 315, 340

	Preface
	Introduction
	The Application Builder Desktop Environment
	The Application Builder and the Model Builder
	Parameters, Variables, and Scope

	Running Applications
	Running Applications in COMSOL Multiphysics
	Running Applications with COMSOL Server
	Compiling and Running Standalone Applications
	Publishing COMSOL Applications

	Getting Started with the Application Builder
	Themes
	The Form Editor
	The Individual Form Settings Windows
	Local Forms
	Form Editor Preferences
	Form Objects
	Editor Tools in the Form Editor
	Button
	Graphics
	Input Field
	Unit
	Text Label
	Data Display
	Data Access in the Form Editor
	Sketch and Grid Layout
	Copying Between Applications
	Using Forms in the Model Builder

	Inputs
	The Main Window
	Menu Bar and Toolbar
	Ribbon

	Events
	Events at Startup and Shutdown
	Global Events
	Form and Form Object Events
	Using Local Methods

	Declarations
	Scalar
	Array 1D
	Array 2D
	Choice List
	File
	Unit Set
	Shortcuts
	Graphics Data

	The Method Editor
	Converting a Command Sequence to a Method
	Language Elements Window
	Editor Tools in the Method Editor
	Data Access in the Method Editor
	Recording Code
	Checking Syntax
	Find and Replace
	Model Expressions Window
	Use Shortcut
	Syntax Highlighting, Code Folding, and Indentation
	Method Editor Preferences
	Ctrl+Space and Tab for Code Completion
	Creating Local Variables
	Local Methods
	Methods with Input and Output Arguments
	Debugging
	Stopping a Method
	The Model Object
	Language Element Examples
	Running Methods in the Model Builder

	Creating Add-Ins
	Add-In Libraries
	Workflow when Creating and Editing Add-Ins

	Libraries
	Images
	Sounds
	Files

	Appendix A — Form Objects
	List of All Form Objects
	Toggle Button
	Check Box
	Combo Box
	Equation
	Line
	Web Page
	Image
	Video
	Progress Bar
	Log
	Message Log
	Results Table
	Form
	Form Collection
	Card Stack
	File Import
	Information Card Stack
	Array Input
	Radio Button
	Selection Input
	Text
	List Box
	Table
	Slider
	Knob
	Hyperlink
	Toolbar
	Spacer

	Appendix B — Copying Between Applications
	Appendix C — File Handling and File Scheme Syntax
	File Handling with COMSOL Server
	File Scheme Syntax
	File Import
	File Export

	Appendix D — Keyboard Shortcuts
	Appendix E — Built-In Method Library
	Model Utility Methods
	File Methods
	Operating System Methods
	Email Methods
	Email Class Methods
	GUI-Related Methods
	GUI Command Methods
	Debug Methods
	Methods for External C Libraries
	Progress Methods
	Date and Time Methods
	License Methods
	Conversion Methods
	Array Methods
	String Methods
	Collection Methods
	With, Get, and Set Methods
	Model Builder Methods for use in Add-Ins

	Appendix F — Guidelines for Building Applications
	General Tips
	Naming Conventions
	Methods
	Forms

	Appendix G — The Application Library Examples
	Helical Static Mixer
	Transmission Line Calculator
	Tubular Reactor
	Tuning Fork
	B-H Curve Checker
	Induction Heating of a Steel Billet
	Effective Nonlinear Magnetic Curves Calculator
	Organ Pipe Design
	Lithium Battery Designer
	Li-Ion Battery Pack Designer
	Li-Ion Battery Impedance
	Water Treatment Basin
	Reaction Equilibrium—Gas Phase Conversion of Ethylene to Ethanol
	Cyclic Voltammetry
	Electrochemical Impedance Spectroscopy
	Concentric Tube Heat Exchanger
	Equivalent Properties of Periodic Microstructures
	Finned Pipe
	Forced Air Cooling with Heat Sink
	Inline Induction Heater
	Thermoelectric Cooler
	Mixer
	Charge Exchange Cell Simulator
	Truck Mounted Crane Analyzer
	General Parameter Estimation
	Geothermal Heat Pump
	Solar Dish Receiver Designer
	Corrugated Circular Horn Antenna
	Frequency Selective Surface Simulator
	Microstrip Patch Antenna Array Synthesizer
	Rotor Bearing System Simulator
	Si Solar Cell with Ray Optics
	Beam Section Calculator
	Bike Frame Analyzer
	Fiber Simulator
	Plasmonic Wire Grating
	Polarizing Beam Splitter

	Index

