

Developing machines with nanometer accuracy How COMSOL is used as one of the enablers

> Fred Huizinga Group Leader Mechanical Analysis October 2016

History of ASML Founded in 1984 as a spin-off from Philips

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

ASML

Public

Slide 2 20 October 2016

What do we do? A market of 12 large ASML customers

Public Slide 4 20 October 2016

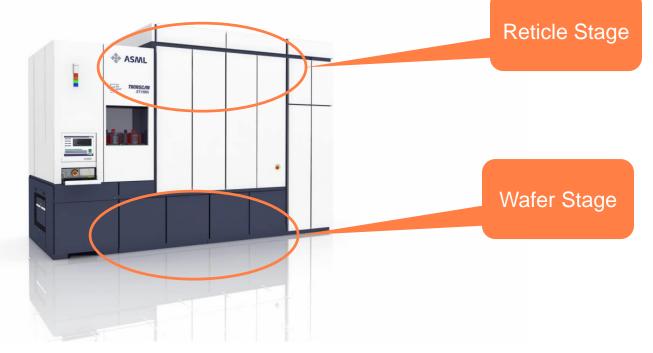
		Company	2015 semi capex (est., \$M)
		Samsung	13,000
A CONTRACTOR OF THE OWNER	A second second	TSMC Group	9,000
		Intel	7,200
	ç e	SK Hynix	4,700
Guidance for next quarter (Q3)		Globalfoundries	4,000
	ST Start Store	Micron Technology	3,800
	1	oshiba (incl. SanDisk)	3,095
 Q3 net sales approximately € 1.7 	my)	Sony	1,991
billion 🦵		Inotera Memories	1,836
Gross margin around 47%	United N	licroelectronics Group	1,800
		SMIC Group	1,500
Full year 2016 sales		Infineon Technologies	896
 Expected to exceed our 2015 			

record sales

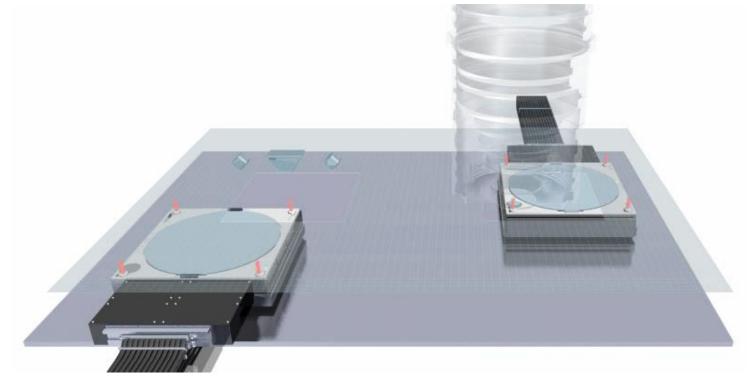
The Microchip Manufacturing Process All process steps

Exposure Photoresist Material deposition (step and scan) coating or modification Polishing ASML Slicing 1111 Repeat 30 to 40 times to build 3 dimensional structure Developing and baking **Etching and ion** Packaging Completed Removing implantation Separation wafer the photoresist (ashing)

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH


Public

Slide 5 20 October 2016

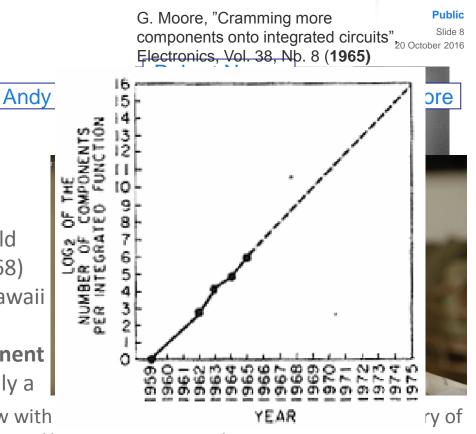

The Microchip Manufacturing Process The machine in action

Public

Slide 6 20 October 2016

The Microchip Manufacturing Process The machine in action

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

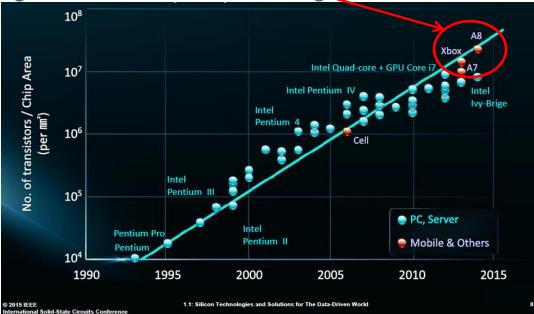

Public

Slide 7 20 October 2016

The challenge Keeping up with "Moore's Law"

Who is Gordon Moore?:

- Born 3 January 1929, San Francisco, California, USA
- Got a BSc (1950) and PhD (1954) in chemistry
- Is one of the founders of both Fairchild Semiconductors (1957) and Intel (1968)
- His is now 87 years old and lives in Hawaii What did Moore state in 1965?
- The complexity for minimum component costs will increased at a rate of roughly a factor of two per year Interview with



ASML: <u>https://www.youtube.com/watch?v=EzyJxAP6AQo</u>

The challenge Keeping up with "Moore's Law"

Retrospective...

Mobile devices and Gaming Consoles are most demanding.

Source: Samsung ISSCC 2015

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

Public

Slide 9 20 October 2016

ASML The challenge Public Slide 10 Keeping up with "Moore's Law" 20 October 2016 Computations per Kilowatt hour double every 1.5 years 2008 + 2009 laptops SiCortex SC5832 Source: Jonathan Koomey, Lawrence 1.E+15 Berkeley National Laboratory and Stanford **Dell Dimension 2400** Moore's Paper Gateway P3. 733 MHz University, 2009 kWh **Dell Optiplex GXI** IBM PS/2E + Sun SS1000 1.E+12 486/25 and 486/33 Desktops per **IBM PC IBM PC-AT** 00 **IBM PC-XT** Cray 1 supercomputer . 1.E+09 Computations DEC PDP-11/20 • **SDS 920 Commodore 64** 1.E+06 Univac III (transistors) **Univac II** Univae I **Regression results:** 1.E+03 **EDVAC** N = 76Adjusted R-squared = 0.983 Eniac Comps/kWh = exp(0.440243 x year - 849.259)Average doubling time (1946 to 2009) = 1.57 years

1960

1970

1980

1990

2000

2010

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

1940

1950

1.E+00

Public

Slide 11 20 October 2016

The challenge Keeping up with "Moore's Law"

Memory: ×8000 Weight: ÷40000 Price: ÷50000 Processing power: ×6 – 230 Electrical Power: ÷30000

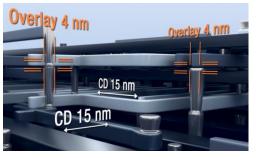
Cray 1, the first supercomputer:

- 8 MB memory
- 5.5 tons
- 150 kW (Freon cooled)
- \$8.86 Million (\$25 Million today)
- 3.4 134 Mflops

Today's phone:
64 GB memory
130 g (incl. 13 megapixel camera with full HD video)

- 1-6 W
- \$ 500,00
- 791 Mflops

The challenge How to keep up with Moore's law


Have a 300 mm wafer magnified to approximately the size of The Netherlands, then...

- CD would be about 15 mm
- And overlay accuracy 4 mm

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

Designing for nanometer accuracy; to create some awareness... Hamburg

Public Slide 13 20 October 2016

The challenge How to keep up with Moore's law

Designing for nanometer accuracy; to create some awareness...

- A human hair measures about 80 micrometer, 5300 times bigger than CD
- A flue virus measures about 100 nm, almost 6 time bigger than CD
- Overlay performance for EUV is 1 nanometer, less than 5 Si atoms!

 \rightarrow Dust is "killing" for the lithography process!

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

Source: Building quantum states with individual silicon atoms, Scienedailv.com.

Public

Slide 14 20 October 2016

How small is a nanometer?

1,000,000 nanometers = 1 millimeter (mr 1,000 nanometers = 1 micrometer (µm)

10 m

10-2m

10⁻³m

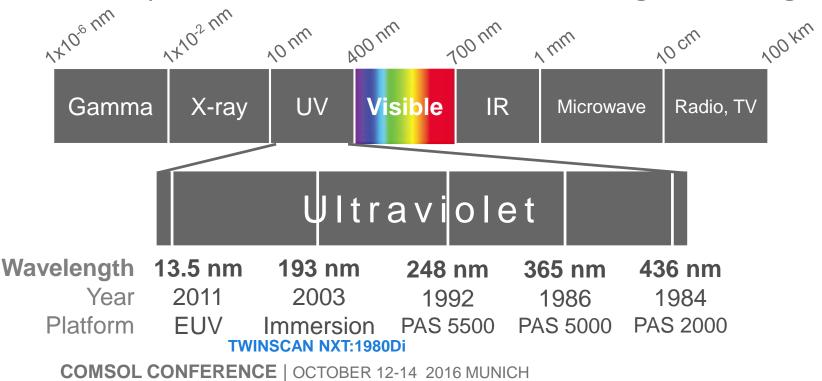
10⁴m

10⁻¹m

10 m

10°m

Source: www.nanodic.com

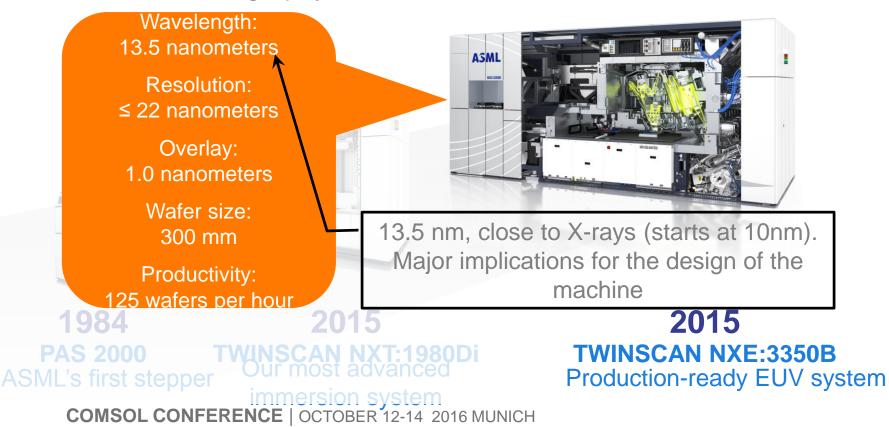

The challenge How to keep up with Moore's law

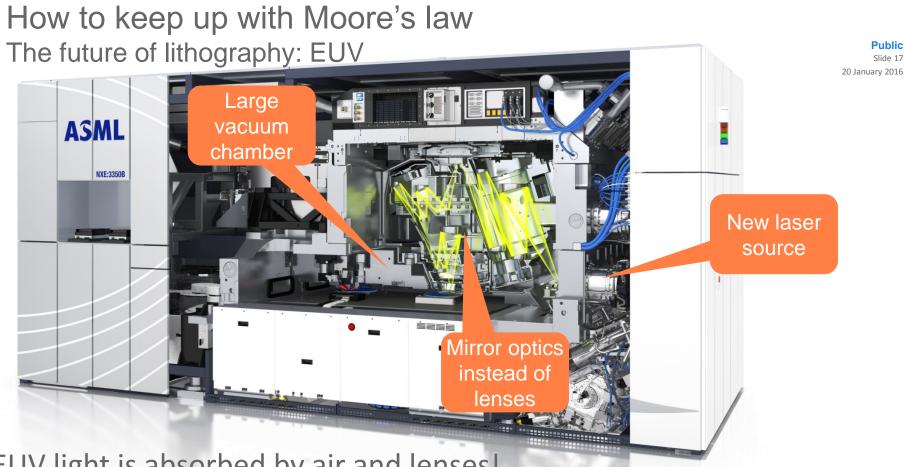
$$CD = k_1 * \frac{\lambda}{NA}$$

Public Slide 15

20 October 2016

How to print smaller lines \rightarrow shorter wavelength of the light





Public

Slide 16 20 October 2016

How to keep up with Moore's law The future of lithography: EUV

EUV light is absorbed by air and lenses!

How to keep up with Moore's law The future of lithography: EUV

RENCE OCTOBER 12-14 2016 MUNICH

Public

Slide 18 20 October 2016

EUV mirrors are polished to an accuracy of ~50 picometers – less than the diameter of a silicon atom.

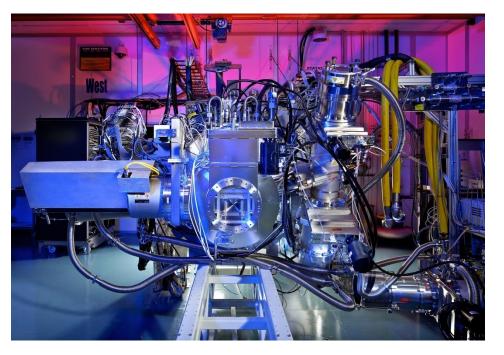
Blown up to the size of the Netherlands, the biggest difference in height would be less than a millimeter.

CARL ZEISS SMT

We need to maintain a clean vacuum, but every time we expose a wafer, the photoresist releases trillions of particles

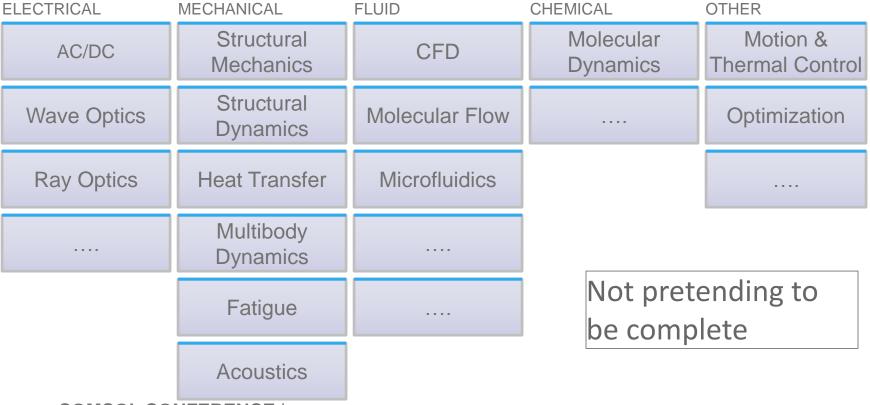
COMSOL GO

How to keep up with Moore's law The future of lithography: EUV



Public

Slide 19 20 October 2016


- Each tin droplet is precisely hit by a drive laser pulse to bring it in a plasma phase
- 40,000 times per second...

Use of CAE within Development & Engineering

Physics / areas of application

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

20 October 2016

Public Slide 20

Use of CAE within Development & Engineering Trends and developments

Public

Slide 22 20 October 2016

ASML

- More complex systems, while ever tighter requirements have to be met. At the same time **Time to Market** should be shorter while quality should not be compromised → **Time to Maturity** mindset
- Requirements on System/Module level are a fraction of the requirements on Machine level → analysis on sub-nanometer level (moving into analysis on pico-meter scale)
- Evolution from "single physics" to "multi physics"
- Verification by physical testing becomes more difficult, not feasible or even not possible.
- Higher demand on CAE: Bigger models, more advanced models, more simulations

Use of CAE within Development & Engineering How do we anticipate

PEOPLE development

- Develop Engineers that are "CAE competent" and let them analyze their own designs (up to a certain level) → Co-operation with NAFEMS on training and PSE Certification*
- Provide user friendly "Simulation App's" to Design Engineers

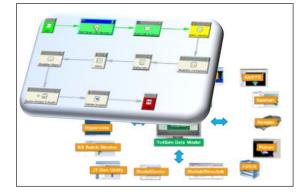
*NAFEMS Juli 2016 Benchmark magazine

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

ASML

Public

Use of CAE within Development & Engineering How do we anticipate


- Tighter Integration of Virtual Verification into the development process
- Define/optimize the CAE "WoW"

("Way-of-Working", not

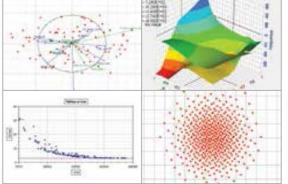
• SPDM (Simulation Process and Data Management)

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

Public Slide 24

20 October 2016

Use of CAE within Development & Engineering How do we anticipate


ASML

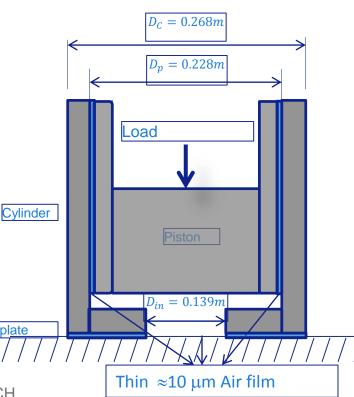
Public Slide 25

20 October 2016

TOOLS & METHODS

- Increase "Analysis Maturity" to enable more verification by analysis
- HPC Cluster. Currently several thousands of cores and a number of GPU enhanced nodes in addition. Used globally.
- Optimization and stochastic analysis
- Multi-physics analysis → **COMSOL Multiphysics**

Use of COMSOL within Development & Engineering Example: Air Bearing Analysis


- Air Bearings are used in our machines at many places because of
 - High stiffness → high positional accuracy is attainable
 - No friction \rightarrow no wear (no particles!)
 - High load bearing capacity in a small volume
 - Thermal isolation
 - ...
- Typical design criteria
 - Stiffness (translational and rotational)
 - Gap size under load ("fly height") Bottom plate
 - Air consumption

COMSOL CONFERENCE | OCTOBER 12-14 2016 MUNICH

ASML

Public

Slide 26 20 October 2016

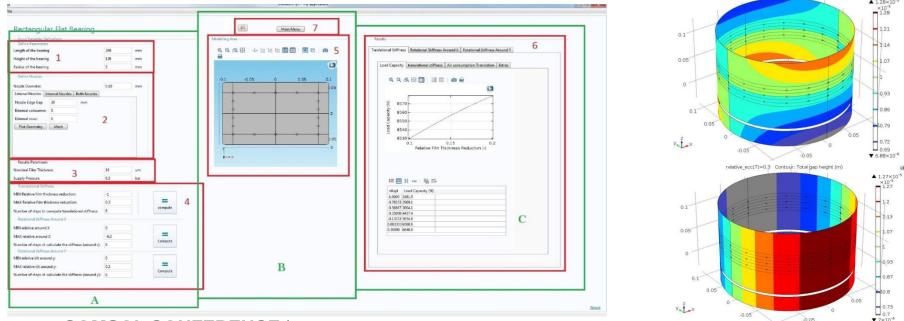
Calculator Takes away the effort of FEM modelling, analysis set-up and post-processing AirBearing Calculator, v4

Flat Rectangular Air Bearing Circular Air Bearing Conical Air Bearing ylindrical Air Bearing . Porous Air Bearing Conical Calculations

- ← Main page: Select configuration:
- 1. Rectangular/Cylindrical flat Air Bearing
- 2. Cylindrical/Conical Air Bearing
- 3. Under development: Flat Porous Air Bearing

Use of COMSOL within Development & Engineering Example 2: Air Bearing Analysis

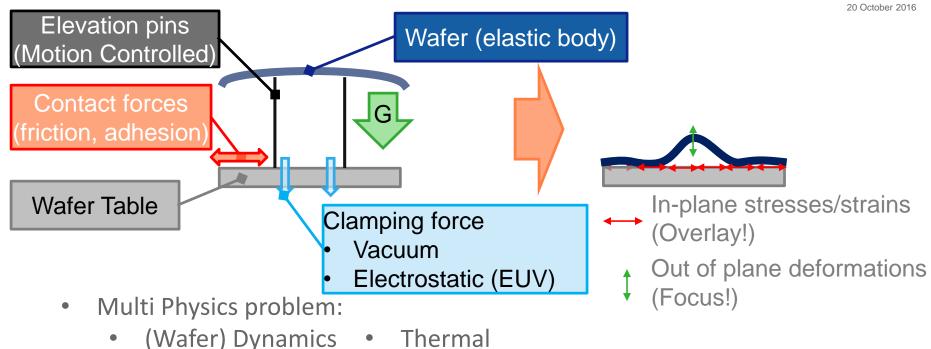
Air film only analysis (structure assumed to be very stiff) with Air Bearing


Public Slide 27 20 October 2016

ASML

Use of COMSOL within Development & Engineering Example: Air Bearing Analysis

Air film only analysis (structure assumed to be very stiff)


- Input dimensions and other variables and results page
- Will be made available to more engineers via COMSOL Application Server

ASML

Public Slide 28 20 October 2016

Use of COMSOL within Development & Engineering Under development: Wafer Load Simulation

ASML

Public Slide 29

• Flow

- Electrostatics
- Contact mechanics
 Motion Control

Questions?

ASML

Public

Slide 30 20 October 2016

